安森美二极管、三极管、摸拟开关丝印
- 格式:docx
- 大小:2.44 MB
- 文档页数:59
Surface MountSchottky Power RectifierMBRS230L, NRVBS230L, NRVBS230LNT3GSMB Power Surface Mount PackageThis device employs the Schottky Barrier principle in a metal−to−silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.Features•Compact Package with J−Bend Leads Ideal for Automated Handling •Highly Stable Oxide Passivated Junction•Guardring for Over−V oltage Protection•Low Forward V oltage Drop•NRVBS Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q101 Qualified and PPAP Capable*•These Devices are Pb−Free and are RoHS CompliantMechanical Characteristics•Case: Molded Epoxy•Epoxy Meets UL 94, V−*********.•Weight: 95 mg (approximately)•Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable•Maximum Temperature of 260°C/10 Seconds for Soldering •Available in 12 mm Tape, 2500 Units per 13″ Reel,Add “T3” Suffix to Part Number•Cathode Polarity BandSMBCASE 403ASCHOTTKY BARRIERRECTIFIER2.0 AMPERES30 VOLTSMARKING DIAGRAMDevice Package Shipping†ORDERING INFORMATIONMBRS230LT3G SMB(Pb−Free)2500 /Tape & Reel†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our T ape and Reel Packaging Specifications Brochure, BRD8011/D.ALYW2BL3GGA= Assembly Location**L= Wafer LotY= YearW= Work WeekG= Pb−Free PackageNRVBS230LT3G*SMB(Pb−Free)2500 /Tape & Reel (Note: Microdot may be in either location)**The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package bottom (molding ejecter pin), the front side assembly code may be blank.NRVBS230LNT3G*SMB(Pb−Free)2500 /Tape & ReelMAXIMUM RATINGSRatingSymbol Value Unit Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking VoltageV RRM V RWM V R 30VAverage Rectified Forward Current (At Rated V R , T C = 110°C)I O 2.0A Peak Repetitive Forward Current(At Rated V R , Square Wave, 20 kHz, T C = 105°C)I FRM 4.0A Non −Repetitive Peak Surge Current(Surge Applied at Rated Load Conditions, Halfwave, Single Phase, 60 Hz)I FSM 40A Storage/Operating Case Temperature T stg , T C −55 to +175°C Operating Junction Temperature T J −55 to +125°C Voltage Rate of Change (Rated V R , T J = 25°C)dv/dt10,000V/m sStresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.THERMAL CHARACTERISTICSCharacteristicSymbol Value Unit Thermal Resistance,Junction −to −Lead (Note 1)Thermal Resistance,Junction −to −Ambient (Note 1)R q JL R q JA18.6135°C/WELECTRICAL CHARACTERISTICSMaximum Instantaneous Forward Voltage (Note 2)(I F = 2.0 A)see Figure 2(I F = 4.0 A)V FT J = 25°C T J = 125°CV0.500.600.450.63Maximum Instantaneous Reverse Current (Note 2)(V R = 30 V)see Figure 4(V R = 15 V)I RT J = 25°C T J = 125°CmA10.317535Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.1.Minimum pad size (0.108″ X 0.085″) for each lead on FR4 board.2.Pulse Test: Pulse Width ≤ 250 m s, Duty Cycle ≤2.0%.Figure 1. Typical Forward Voltage Figure 2. Maximum Forward VoltagevF , INSTANTANEOUS FORWARD VOLTAGE (VOLTS)1010.01V F , MAXIMUM INSTANTANEOUS FORWARDVOLTAGE (VOLTS)0.1i F , I N S T A N T A N E O U S F O R W A R D C U R R E N T (A M P S )I F , I N S T A N T A N E O U S F O R W A R D C U R R E N T (A M P S )Figure 3. Typical Reverse CurrentFigure 4. Maximum Reverse CurrentV R , REVERSE VOLTAGE (VOLTS)100E −10E −V R , REVERSE VOLTAGE (VOLTS)100E −10E −1E −100E −10E −I R , R E V E R S E C U R R E N T (A M P S )1E −100E −1E −10E −I R)Figure 5. Current Derating Per Leg Figure 6. Forward Power Dissipation Per Leg408020T C , CASE TEMPERATURE (°C)2.01.0I O , AVERAGE FORWARD CURRENT (AMPS)0.52.01.81.21.00.40601401201.01.50.63.03.51.50.52.5 3.52.53.00.20.81.4100I O , A V E R A G E F O R W A R D C U R R E N T (A M P S )1.6P F O , A V E R A G E P O W E R D I S S I P A T I O N (W A T T S )Figure 7. Thermal Responset, TIME (s)r (t ), T R A N S I E N T T H E R M A L R E S I S T A N C E (N O R M A L I Z E D )SMBCASE 403A−03ISSUE JDATE 19 JUL 2012SCALE 1:1cNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.DIMENSION b SHALL BE MEASURED WITHIN DIMENSION L1.XXXXX= Specific Device CodeA= Assembly LocationY= YearWW= Work WeekG= Pb−Free Package(Note: Microdot may be in either location)*This information is generic. Please refer todevice data sheet for actual part marking.Pb−Free indicator, “G” or microdot “ G”,may or may not be present.AYWWXXXXX GGGENERICMARKING DIAGRAM*ǒmminchesǓSCALE 8:1*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering andMounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*DIMAMIN NOM MAX MINMILLIMETERS1.952.30 2.470.077INCHESA10.050.100.200.002b 1.96 2.03 2.200.077c0.150.230.310.006D 3.30 3.56 3.950.130E 4.06 4.32 4.600.160L0.76 1.02 1.600.0300.0910.0970.0040.0080.0800.0870.0090.0120.1400.1560.1700.1810.0400.063NOM MAX5.21 5.44 5.600.2050.2140.220H E0.51 REF0.020 REFL1SCALE 1:1AYWWXXXXX GGPolarity Band Non−Polarity Band Polarity Band Non−Polarity BandMECHANICAL CASE OUTLINEPACKAGE DIMENSIONSON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor thePUBLICATION ORDERING INFORMATIONTECHNICAL SUPPORTNorth American Technical Support:Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910LITERATURE FULFILLMENT :Email Requests to:*******************onsemi Website: Europe, Middle East and Africa Technical Support:Phone: 00421 33 790 2910For additional information, please contact your local Sales Representative。
Elite Power SimulatorUser Guide1 2 31 2 3onsemi’s online Elite Power Simulator Powered by •PLECS is a system level simulator that facilitates the modeling and simulation of complete systems with optimized device models for maximum speed and accuracy.PLECS is not a SPICE-based circuit simulator, where the focus is on low-levelbehavior of circuit components .•Power transistors are treated as simple switches that can be easily configured to demonstrate losses associated with conduction and switching transitions.•The PLECS models, referred to as “thermal models”, are composed of lookup tables for conduction and switching losses, along with a thermal chain in the form of a Cauer or Foster equivalent network.•During simulation, PLECS interpolates and/or extrapolates using the loss tables to get the bias point conduction and switching losses for the circuit operation./elite-power-simulatorElite Power Simulator FeaturesBroad Range ofCircuit Topologies Covering DC-DC, AC-DC, and DC-AC applications, including 32 circuit topologies in industrial (DC fast charging, UPS, ESS, solar inverters), automotive (OBC, traction), and non-traction spacesCorner SimulationCapability onsemi’s PLECS models go beyond nominal data from datasheets to include industry first corner simulation based on physical correlations in the manufacturing environment.Soft Switching Models onsemi provides industry first PLECS models valid for soft switchingapplications such as DC-DC LLC and CLLC Resonant, Dual Active Bridge, and Phase Shifted Full Bridge.Loss & Thermal DataPlottingExplore device conduction loss,switching energy loss, and thermalimpedance in a multifunctional 3Ddata visualization utility.Custom PLECS ModelUploadInterface with onsemi’s industry firstSelf-Service PLECS ModelGenerator(SSPMG) to simulate withmodels tailored to your application.Flexible Design &Fast Simulation ResultsFlexible to capture adjustments tovarious attributes such as, gate driveimpedance, cooling designs, andload profiling./elite-power-simulatoronsemi’s State-of-the-Art PLECS Models•Typical industry PLECS models are composed of measurement-based loss tables that are consistent with datasheets provided by the manufacturer.There are four major problems with this approach:1.The switching energy loss data is dependent on the parasitics of the measurements set ups and circuits.2.The conduction and switching energy loss data is limited and thus is often not dense enough to ensureaccurate interpolation and minimal extrapolation by PLECS.3.The loss data is based on nominal semiconductor process conditions only.4.The switching energy loss data comes from datasheet double pulse generated loss data. This means thePLECS models are only valid for hard switching topology simulation. The models are highly inaccurate if used in soft switching topology simulation.•onsemi’s Self-Service PLECS Model Generator (SSPMG) provides solutions to all four problems.•Ultimate power is delivered to the user to build PLECS models tailored for the user’s application. Unleash the power here: /self-plecs-generatorDeploying PLECS Models in Elite Power SimulatorCorner PLECS ModelsProcess ConditionR DSon , V th , BVCapacitance, Device RGConductionLossSwitching EnergyLossNominalNominal Nominal Nominal Nominal Best Case Conduction Loss, Worst Case Switching LossLow High Low High Worst Case Conduction Loss, Best Case Switching LossHighLowHighLow•Conventional PLECS models based on measurements are only valid for the typical or nominal process case in manufacturing. onsemi has developed accurate corner PLECS models based on real manufacturing distribution.•Physics dictates that worst case conduction and switching losses do not happen simultaneously for example.•Depending on the application, the influence of conduction and switching energy losses on the overall system performance will vary. The onsemi corner PLECS models provide the user the flexibility to investigate the entire correlated space.•Accurate corner and statistical modeling covered in detail in−SiC MOSFET Corner and Statistical SPICE Model Generation –Proceeding of International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 154-147, September 2020•For Hard Switching , the conventional Double Pulse Test is the good method to calculate losses for models.•For Soft Switching , it depends on the topology and the operating mode (Transition or Switching)−The Double Pulse Test is NOT representative of SoftSwitching. Using double pulse switching energy losses in the simulation of a Soft Switching Topology is highly inaccurate.−A Soft Switching energy loss schematic is implemented in SSPMG to deliver Soft Switching models accurate for topologies such asDC-DC LLC and CLLC Resonant, Dual Active Bridge, Phase Shifted Full Bridge, othersHard vs. Soft Switching Energy LossesH a r d S w i t c h i n g S o f t S w i t c h i n gOutline of User Guide123Access Elite Power Simulator with MYON AccountMYON MyON is required to use the Elite Power SimulatorLoginReturning UserFirst Time UserAccess Through Direct Link or Product PageIn addition to direct access to the Elite Power Simulator/elite-power-simulatorAccess is available on each EliteSiC Product Page.Learn more about EliteSiC at/silicon-carbideOutline of User Guide123Step 1: Select Application and TopologyApplication choice filters the available topologiesBasic circuit schematic displayedTopologiesgrouped byconverter classStep 2: Select DeviceInputs used to filtervalid devicesChoose discretes ormodulesSelect device to move onto next step Direct datasheet downloadStep 3: Configure Device Set parallel devicesLink to product pageUpload custom PLECS model from onsemi’s Self-Service PLECS Model Generator (SSPMG)Set circuit RGSet deviceprocess corner condition View loss and thermal dataView Device Loss Data SelectMOSFET orBody DiodeToggle on/offtemperatures in 3D plotInteractive 3D plotToggle table datawith temperature View loss dataView Device Thermal Data View thermal chainStep 4: Configure Circuit ParametersSet Circuit parameters, varies by topologySet modulation scheme, varies by topologyStep 5: Configure CoolingSet Thermal interface resistanceConfigure Heat sink as ideal with fixed temperatureor input custom thermal impedanceCustom Heat Sink Thermal Impedance UtilityChoose Foster or Cauer formatwith automatic conversion featureUp to 5 rungs possibleToggle log/linear Y axisStep 6a: Run SimulationDetailed temperature, loss,and efficiency reportedPivot table,export csv LaunchSimulationStep 6b: View PlotsZooming and cursor featuresStep 6c: Compare Multiple Simulation CasesCompare•Device Selection•Device Configuration✓Corner process loss data✓SSPMG Model•Circuit Parameters•CoolingCompare Results Go back to steps 2, 3, 4, or 5 to make changesStep 7: Review Summary TableDownload PLECS ModelsHighlight rows to be print or downloaded to CSVLoad Profile SimulationTopologies with Load Profiling NPC inverter (1 phase, 3 level)NPC inverter (3 phase, 3 level)T-Type inverter (1 phase, 3 level)T-Type inverter (3 phase, 3 level)ANPC inverter (1 phase, 3 level)ANPC inverter (3 phase, 3 level)Inverter (3 phase, 2 level, grid load)Inverter (3 phase, 2 level, motor load)Traction Inverter (3 phase)•Load profile simulation enables power and thermal estimations at multiple, user-defined operating points •Simple intuitive flowLoad ProfileSet up parameter profilesSetupLinearrampingwhenstepped Set up time intervalschanges notenabledAdd orsubtracttimeintervals Real time plotting ofload profileparameters forinspection beforelaunching simulationLoad Profile Simulation Mission Profilesimulation button isenabled (orange)when any circuitparameter is enabledwith a load profileExample Load Profile Simulation ResultsLosses can be tracked over the load profileby enabling the cursor Junction TemperatureQuestion?Have questions, comments, or need support with your Self-Service PLECS Model Generator needs? We’re here to help! Write us an email at ********************.•Self-Service PLECS Model Generator: /self-plecs-generator•Elite Power Simulator: /elite-power-simulatorFollow Us @onsemi。
MOS管简介MOS管的英文全称叫MOSFET(Metal Oxide Semiconductor Field Effect Transistor),即金属氧化物半导体型场效应管,属于场效应晶体管中的绝缘栅型。
因此,MOS管有时被称为场效应管。
在一般电子电路中,MOS管通常被用于放大电路或开关电路。
而在板卡上的电源稳压电路中,MOSFET扮演的角色主要是判断电位。
MOS管的作用是什么MOS管对于整个供电系统而言起着稳压的作用。
目前板卡上所采用的MOS管并不是太多,一般有10个左右,主要原因是大部分MOS管被整合到IC芯片中去了。
由于MOS 管主要作用是为配件提供稳定的电压,所以它一般使用在CPU、GPU和插槽等附近。
MOS 管一般是以上下两个组成一组的形式出现板卡上。
MOS管封装形式MOSFET芯片在制作完成之后,需要给MOSFET芯片加上一个外壳,即MOS管封装。
MOSFET芯片的外壳具有支撑、保护、冷却的作用,同时还为芯片提供电气连接和隔离,以便MOSFET器件与其它元件构成完整的电路。
按照安装在PCB方式来区分,MOS管封装主要有两大类:插入式(Through Hole)和表面贴装式(Surface Mount)。
插入式就是MOSFET的管脚穿过PCB的安装孔焊接在PCB上。
表面贴裝则是MOSFET的管脚及散热法兰焊接在PCB表面的焊盘上。
常见的插入式封装MOSFET典型的表面贴装式封装MOSFET随着技术的革新与进步,主板和显卡的PCB板采用直插式封装的MOSFET越来越少了,而多改用表面贴装式封装的MOSFET。
故而本文中重点讨论表面贴装式封装MOSFET,并从MOS管外部封装技术、MOS管内部封装改进技术、整合式DrMOS、MOSFET发展趋势和MOSFET实例讲解等进行详细介绍。
MOS管外部封装-标准封装形式概览MOS管外部封装-标准封装形式概览下面我们对标准的封装形式进行如下简要的介绍。
著名芯片厂商标志和简介之1标 志 公 司 简 介美国仙童(飞兆),采用世界级 4、5、6-inch 硅片工艺生产逻辑、模拟、混 合信号 IC 和分立元件 美国国际整流器公司成立于 1947 年,是主要的全球功率半导体供应商。
我们的产品通过电能转换,为各种电源系统、电机传动系统及照明镇流器 提供能源。
美国安森美半导体主要拥有三类产品系列: 电源管理和标准模拟集成电路 (放大器、电压参考、接口和比较器);高性能逻辑电路(特殊应用产品、 通信集成电路、时钟、转换器和驱动器);以及包括了有源分立元件和 MOSFET 产品的标准半导体。
IXYS美国 IXYS(艾赛斯)公司是世界著名的半导体厂家,成立于 1983 年, 总 部设于美国加利福尼亚州(二极管、MOS 管等半导体工厂设于德国) ,其 产品包括 MOSFET、IGBT、 Thyristor、SCR、整流桥、二极管、DCB 块、功率模块等。
主要产品:功率模块、MOSFET、整流桥 法国意法半导体公司 SGS-THOMSON,国际著名半导体公司之一。
美国摩托罗拉半导体 Motorola Semiconductor Products Inc.,以数字逻辑器 件、 模拟和接口器件、 通信及功率器件、 各类微处理器、 存储器电路为主。
美国飞思卡尔半导体(原摩托罗拉半导体部)是全球领先的半导体公司。
这 家私营跨国公司总部位于德州奥斯汀,在全球 30 多个国家和地区拥有设 计、研发、制造和销售机构。
飞思卡尔是全球最大的半导体公司之一。
从 其前身———摩托罗拉半导体部算起, 飞思卡尔已有 50 多年的发展历史, 从摩托罗拉分拆出来后,飞思卡尔有了完全中立的市场地位, 美国 APT (先进功率技术)公司(现 Microsemi 公司)。
提供双极晶体管、 VDMOS 和 LDMOS 三大类产品。
APT 于 2005/10/1 被 Microsemi 公司并购, 因此,APT 公司已于 2006/05/01 正式纳入 Microsemi 公司体系运作。
供应商名称(品牌)公司地址(工厂)ACSIP(群登科技)ADI(亚德诺)美国ALSCAMIAmoTech(阿莫泰克)韩国Amplifonix, IncAMPHENOL(安费诺)ANPEC(茂达电子)台湾AOS(美国万代)AOT(荣创)台湾Arlitech(今展科技)AVXAwinic(上海艾为)桂箐路111号6楼601室BOSCH(博世)Bright Led(佰鸿)CITIZEN(西铁城)Coilcraft(线艺)comchip(典琦科技)conwise(康奈科技)CSRCYNTECDiodes(美台)在上海深圳北京有销售点ECT(深圳电连精密技术)宝安区公明西田锦绣工业园8-A栋EPCOS(爱普科斯)在北京上海深圳有经销商,工厂在珠海、湖北孝感、厦门、安徽宁国、江苏无锡。
EPSON(爱普生电子)总部在北京ETEK(无锡力芯微)无锡EUTECH(德信)台湾everlight(台湾亿光)Eyang(宇阳)深圳市南山区高新技术产业园北区朗山二号路齐民道3号Fairchild(飞兆半导体)FANGTEK(方泰)浦东新区 张江高科技园区 张衡路198弄10号楼503—504室Fastron(发仕通)Freescale(飞思卡尔)Fujitsu(富士通)GMTH.ELE(Harmony)(台湾加高)Hexawave(台湾汉威)Hilisin(奇力新)东莞hirose(日本广濑电机)Hosonic(鸿星电子)HYNIX(现代)IDTinfineon(英飞凌)总部在新加坡INNOCHIP(台湾世纪创新)innofidei(北京创毅视讯)京海淀区中关村东路1号清华科技园科技大厦A座8/18层JORJIN(佐臻)JTC(杰顺通)KeiRaku(惠乐光电)KEMET(基美)苏州Kyocera(京瓷)东莞LCN(德国宜森)LETCON(深圳信为通电子)深圳市宝安区石岩洲石路梨园科技园B,C栋LITEON(台湾光宝)LyonTek(台湾来扬)MSTMaximMegaPower(瑞信半导体)Microgate(麦捷科技)MICRON(镁光)MITSUBISHI(三菱)MSTAR(晨星半导体)台湾新竹MTK(联发科)台湾Murata(日本村田)NAIS(松下电工)Natlinear(南麟电子)浦东新区张江高科技园区松涛路489号C座2楼NDK(日本电波)nichicon(尼吉康)在无锡、天津、苏州有工厂,在上海深圳有销售处NUMONYX(恒忆)江苏省无锡市出口加工区K7地块NXP(恩智浦)onsemi(安森美)PAM(panasonic(松下)Partron(韩国帕特仑)PHILIPSPriSemi(芯导电子)上海QuinTic(昆天科)美国Ralec(旺诠)台湾RDA(锐迪科微电子)张江高科技园区碧波路690号2号楼302室RENESAS(瑞萨)RFMD(美国威迅联合半导体)北京Richpower(立隆)浦东新区张江高科祖冲之路1077号2102室.RichTek(立锜科技)台湾Rohm(罗姆)生产基地在天津Sagami(相模)SAMSUNG(三星)Seiko(日本精工半导体)SGMC(圣邦威电子)北京Silicon labsSi_en(矽恩微电子)Siward(希华)SKYWORKSSOSHINSpansion(美国飞索)Spreadtrum(展讯)SSC(汉半)韩国ST(意法半导体)SUMSUNG(三星)Sunlord(顺络电子)深圳SuperPix(视信源集团)北京市海淀区上地五街七号昊海大厦201-202室Taitien(泰艺)TaiYo(太阳铁工/太阳诱电)日本TDKTelegent(泰景)上海市张江高科技园区碧波路177号B 区503室TI(德州仪器)TOREX(日本特瑞仕)日本Toshiba(东芝)TOYOCOM(东洋)TST(台湾嘉硕)TXC(台湾晶技)USI(环旭电子)张江高科技园区张东路1558号TDKVishay(威世)Walsin(华新科技)WillSemi(韦尔半导体)上海市浦东新区松涛路489号B座302-2室winbiz(广州盈商)天河区天河北路886号308-309室Wolfson(欧胜微电子)Yageo(国巨)台湾省Yamaha(雅马哈)日本ZILLTEK(钰太科技)鼎芯浦东张江高科技园区碧波路5号13楼东光电子湖北省荆门市高新技术产业园区迎春大道18号菲阳佳邦科技深圳嘉富盛宝安区大浪街道浪口社区华明路仪佳扬工业园2栋1楼3楼江苏长电科技杰顺通昆山市玉山镇紫竹路1389号启攀微宜山路1618号D栋4楼上海徕木电子股份有限公司松江区洞泾镇洞薛路651弄88号深圳永连兴松下显誉上海松江国半(美国国家半导体)上海鼎芯浦东张江高科技园区碧波路5号13楼经营产品备注无线通讯模组(WIFI),蓝牙耳机天线模组,行动视讯模总部在台湾模拟微控制器、放大器、RF IC、FMIC、音频IC、传感器(SENSOR)Analog Devices, Inc memory、模拟/混合信号IC、Alliance semiconductor已被onsemi收购压敏电阻、贴片变阻器,陶瓷滤波器\电磁干扰及静电释放、天线、直流无刷马达等产品。
可控硅十大品牌1、ON安森美半导体公司概况安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ONNN)拥有跨越全球的物流网络和强大的产品系列,是电源、汽车、通信、计算机、消费产品、医疗、工业、手机和军事/航空等市场客户之首选高能效电源解决方案供应商.公司广泛的产品系列包括电源、模拟、数字信号处理器、混合信号、先进逻辑、时钟管理和标准元器件。
2、RENESAS瑞萨科技是世界十大半导体芯片供应商之一,在很多诸如移动通信、汽车电子和PC/AV 等领域获得了全球最高市场份额。
瑞萨科技(RENESAS)于2003年4月1日—由日立制作所半导体部门和三菱电机半导体部门合并成立。
RENESAS结合了日立与三菱在半导体领域方面的先进技术和丰富经验,是无线网络、汽车、消费与工业市场设计制造嵌入式半导体的全球领先供应商。
3、Littelfuse简介LITTLEFUSE(力特)自1927年Edward V。
Sundt创建Littelfuse以来,我们始终坚持走创新发展之路。
Sundt发明的第一个小型快熔保险丝,可以防止灵敏测试仪被烧毁。
从迈出开创性的第一步起,公司就担负了阐释电路保护行业各种标准的任务。
在20世纪60年代,我们为美国国家航天航空局(NASA)研发了多种小型保险丝,这是美国太空计划中至关重要的元件.1976年,我们开创性地为通用公司研发了Autofuse®;快熔保险丝.短短8年间,该设计已被广泛用于全球所有车辆中。
1986年,我们革命性地推出节省空间的MINI®汽车保险丝.其更小巧的设计为车载电子元件提供了更卓越的保护.最近,我们新推出了全球最小的高浪涌电流保护型晶闸管—Teccor® Q2L 系列“C级”SIDACtor®器件。
我们不断为自己设立更高的新标准。
作为电路保护领域的全球领先企业,Littelfuse 拥有九大核心技术和Teccor®、Wickmann、Pudenz等在业内享受盛誉的品牌。
Surface MountSchottky Power Rectifier SMB Power Surface Mount Package MBRS2040LT3G,NRVBS2040LT3G,NRVBS2040LN...employing the Schottky Barrier principle in a metal−to−silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.Features•Compact Package with J−Bend Leads Ideal for Automated Handling •Highly Stable Oxide Passivated Junction•Guardring for Over−V oltage Protection•Low Forward V oltage Drop•ESD Ratings:♦Human Body Model = 3B (> 16000 V)♦Machine Model = C (> 400 V)•NRVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q101 Qualified and PPAP Capable*•These are Pb−Free DevicesMechanical Characteristics•Case: Molded Epoxy•Epoxy Meets UL94, VO at 1/8″•Weight: 95 mg (approximately)•Maximum Temperature of 260°C / 10 Seconds for Soldering •Cathode Polarity Band•Available in 12 mm Tape, 2500 Units per 13 inch Reel, Add “T3”Suffix to Part Number•Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable•Marking: BKJLDevice Package Shipping†ORDERING INFORMATIONSCHOTTKY BARRIERRECTIFIER2.0 AMPERES40 VOLTSMARKING DIAGRAMMBRS2040LT3G SMB(Pb−Free)2,500 /Tape & Reel†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our T ape and Reel Packaging Specifications Brochure, BRD8011/D.NRVBS2040LT3G*SMB(Pb−Free)2,500 /Tape & Reel (Note: Microdot may be in either location)**The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package bottom (molding ejecter pin), the front side assembly code may be blank.SMBCASE 403ABKJL= Specific Device CodeA= Assembly Location**Y= YearWW= Work WeekG= Pb−Free PackageAYWWBKJL GGNRVBS2040LNT3G*2,500 /Tape & ReelSMB(Pb−Free)MAXIMUM RATINGSRating Symbol Value UnitPeak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage V RRMV RWMV R40VAverage Rectified Forward Current (At Rated V R, T C = 103°C)I O2.0APeak Repetitive Forward Current(At Rated V R, Square Wave, 20 kHz, T C = 104°C)I FRM4.0ANon−Repetitive Peak Surge Current(Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)I FSM70AStorage Temperature T stg, T C−55 to +150°C Operating Junction Temperature T J−55 to +125°CVoltage Rate of Change (Rated V R, T J = 25°C)dv/dt10,000V/m sStresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.THERMAL CHARACTERISTICSCharacteristic Symbol Value UnitThermal Resistance — Junction−to−Lead (Note 1) Thermal Resistance — Junction−to−Ambient (Note 2)RθJLRθJA22.578°C/W1.Minimum pad size (0.108 X 0.085 inch) for each lead on FR4 board.2. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.ELECTRICAL CHARACTERISTICSCharacteristic Symbol Value UnitMaximum Instantaneous Forward Voltage(Note 3) see Figure 2(I F = 2.0 A)(I F = 4.0 A)V F T J = 25°C T J = 125°C Volts0.430.500.340.45Maximum Instantaneous Reverse Current (Note 3) see Figure 4(V R = 40 V)(V R = 20 V)I R T J = 25°C T J = 100°C mA0.80.1206.0Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.3.Pulse Test: Pulse Width ≤ 250 μs, Duty Cycle ≤ 2.0%.TYPICAL CHARACTERISTICSFigure 1. Typical Forward VoltageFigure 2. Maximum Forward VoltageFigure 3. Typical Reverse CurrentFigure 4. Maximum Reverse CurrentFigure 5. Current Derating Figure 6. Forward Power Dissipationv F , INSTANTANEOUS FORWARD VOLTAGE (VOLTS)100101.0V F , MAXIMUM INSTANTANEOUS FORWARD VOLTAGE (VOLTS)1.00.1400V R , REVERSE VOLTAGE (VOLTS)100E-310E-31.0E-3100E-610E-61.0E-6V 20600T L , LEAD TEMPERATURE (°C)3.52.01.51.00.50I O , AVERAGE FORWARD CURRENT (AMPS)0.51.21.00.80.60.202.040i F , I N S T A N T A N E O U S F O R W A R D C U R R E N T (A M P S )I 0.10.60.20.40.80.20.40.60.810100102030, A V E R A G E F O R W A R D C U R R E N T (A M P S )I O 801201002.5 1.01.52.53.00.4P F O , A V E R A G E P O W E R D I S S I P A T I O N (W A T T S )I F , I N S T A N T A N E O U S F O R W A R D C U R R E N T (A M P S ), R E V E R S E C U R R E N T (A M P S )R 400R , REVERSE VOLTAGE (VOLTS)100E-310E-31.0E-3100E-610E-61.0E-6I 102030, M A X I M U M R E V E R S E C U R R E N T (A M P S )R 1403.0Figure 7. Capacitance Figure 8. Typical Operating Temperature Derating*Figure 9. Thermal Response Junction to LeadFigure 10. Thermal Response Junction to Ambient30V R , REVERSE VOLTAGE (VOLTS)100010010V R , DC REVERSE VOLTAGE (VOLTS)25401058575651000.10.00001T, TIME (s)0.10.01C , C A P A C I T A N C E (p F )T R 155.0102025354030355.0102015951151250.00010.0010.01 1.010, D E R A T E D O P E R A T I N G T E M P E R A T U R E ( C )J °, T R A N S I E N T T H E R M A L R E S I S T A N C E (N O R M A L I Z E D )(T )T, TIME (s)0.10.01R , T R A N S I E N T T H E R M A L R E S I S T A N C E (N O R M A L I Z E D )(T )* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any re-verse voltage conditions. Calculations of T J therefore must include forward and reverse power effects. The allowable operatingT J may be calculated from the equation:T J = T Jmax − r(t)(Pf + Pr) wherer(t) = thermal impedance under given conditions,Pf = forward power dissipation, and Pr = reverse power dissipationThis graph displays the derated allowable T J due to reverse bias under DC conditions only and is calculated as T J = T Jmax − r(t)Pr,where r(t) = Rthja. For other power applications further calculations must be performed.1000.10.000011,0000.00010.0010.01 1.010SMBCASE 403A−03ISSUE JDATE 19 JUL 2012SCALE 1:1cNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.DIMENSION b SHALL BE MEASURED WITHIN DIMENSION L1.XXXXX= Specific Device CodeA= Assembly LocationY= YearWW= Work WeekG= Pb−Free Package(Note: Microdot may be in either location)*This information is generic. Please refer todevice data sheet for actual part marking.Pb−Free indicator, “G” or microdot “ G”,may or may not be present.AYWWXXXXX GGGENERICMARKING DIAGRAM*ǒmminchesǓSCALE 8:1*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering andMounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*DIMAMIN NOM MAX MINMILLIMETERS1.952.30 2.470.077INCHESA10.050.100.200.002b 1.96 2.03 2.200.077c0.150.230.310.006D 3.30 3.56 3.950.130E 4.06 4.32 4.600.160L0.76 1.02 1.600.0300.0910.0970.0040.0080.0800.0870.0090.0120.1400.1560.1700.1810.0400.063NOM MAX5.21 5.44 5.600.2050.2140.220H E0.51 REF0.020 REFL1SCALE 1:1AYWWXXXXX GGPolarity Band Non−Polarity Band Polarity Band Non−Polarity BandMECHANICAL CASE OUTLINEPACKAGE DIMENSIONSON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor thePUBLICATION ORDERING INFORMATIONTECHNICAL SUPPORTNorth American Technical Support:Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910LITERATURE FULFILLMENT :Email Requests to:*******************onsemi Website: Europe, Middle East and Africa Technical Support:Phone: 00421 33 790 2910For additional information, please contact your local Sales Representative。
常用二三极管品牌一、引言二三极管是电子元件中常用的一种器件,广泛应用于电子电路中的信号放大、整流、开关等功能。
常见的二三极管品牌有很多种,本文将介绍几个常用的二三极管品牌及其特点。
二、常用二三极管品牌及特点1. 三极管品牌A品牌A是一家知名的半导体元件制造商,其生产的三极管广泛应用于各种电子设备中。
该品牌的三极管具有以下特点:(1)高可靠性:品牌A的三极管采用优质材料和先进工艺制造,具有稳定的性能和长寿命。
(2)低功耗:品牌A的三极管在工作时能够有效降低功耗,提高电子设备的能效。
(3)高频特性:品牌A的三极管在高频电路中具有优异的性能,能够实现高频信号的放大和处理。
2. 二极管品牌B品牌B是一家专注于二极管研发和生产的公司,其产品在市场上享有很高的声誉。
该品牌的二极管具有以下特点:(1)低反向漏电流:品牌B的二极管在正向导通时具有低漏电流,能够有效减少能量损耗。
(2)快速开关速度:品牌B的二极管具有快速的开关速度,适用于高频开关电路的应用。
(3)温度稳定性好:品牌B的二极管能够在不同温度环境下保持稳定的性能,适用于各种工作条件。
3. 二三极管品牌C品牌C是一家国内知名的电子元件制造商,其二三极管产品在国内外市场上具有广泛的应用。
该品牌的二三极管具有以下特点:(1)多样化的型号:品牌C的二三极管产品线齐全,包括多种不同型号和规格的产品,满足不同应用需求。
(2)良好的性价比:品牌C的二三极管产品具有良好的性能和合理的价格,性价比较高。
(3)稳定的供货能力:品牌C具有稳定的供货能力,能够及时满足客户的需求。
4. 三极管品牌D品牌D是一家国际知名的电子元件制造商,其三极管产品在全球范围内广泛应用于各个行业。
该品牌的三极管具有以下特点:(1)高耐压能力:品牌D的三极管能够承受较高的电压,适用于高压电路的应用。
(2)低噪声:品牌D的三极管具有低噪声特性,适用于对噪声要求较高的电子设备。
(3)良好的温度特性:品牌D的三极管能够在不同温度下保持稳定的性能,适用于各种工作环境。
半导体厂商介绍MOSFET的定义与分类。
MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)在集成电路中叫做绝缘性场效应管。
中文名为金属-氧化物-半导体场效应管。
MOSFET分为增强型(N型)和耗尽型(P型)。
MOSFET的工作原理MOSFET的工作原理是在MOSFET G极上外加电压,金属电极相对于P型半导体的情况下,外加正电压,相对于N型半导体外加负电压,在氧化膜下会产生空乏层(depletion layer),若针对氧化膜下为P型半导体的情况,如果再提高电压,就会累积电子,若是N型半导体则会累计空穴,我们称此层为“反转层”(reversion layer)。
MOS型场效应管就是利用这个层,作为一个切换开关。
MOSFET是电压控制器件。
肖特基二极管的定义肖特基二极管是以其发明人肖特基博士(Schottky)命名的。
SBD(SchottkyBarrierDiode)即肖特基势垒二极管。
肖特基二极管的工作原理肖特基二极管的工作原理是以贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。
因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。
显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。
随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。
但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。
当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。
半导体厂商:国外,台湾,国内。
国外:AOS:万代半导体公司ST:意法半导体公司FAIRCHILD:仙童半导体公司(飞兆半导体公司)VISHAY:威世集团IR:国际整流器公司APT:美国先进功率技术公司(己被Microsemi公司收购)ONSEMI:安森美半导体公司Microsemi:美高森美公司TI:德州仪器Toshiba:东芝公司IXYS:艾赛斯公司RECTRON:美国伟创电子公司Diodes:美台二极体股份有限公司台湾:WTE:台湾Won-Top电子公司LITEON:敦南科技股份有限公司(光宝集团旗下)TSC:台湾半导体股份有限公司国内:MCC:中国深圳美微半导体股份有限公司LRC:中国乐山无线电股份有限公司JCST:江苏长电科技有限公司SUOERLTD:广州索尔半导体有限公司FASTSTAR:深圳市快星半导体电子有限公司乐山希尔电子有限公司广东风华高新科技股份有限公司AOS(Alpha & Omega Semiconductor)AOS中文名称为万代半导体公司。