之后剩下的那些向量,则
1 i1
k ik
0 ik 1
0im
0
其 说中 明各i1向,量, 的ik ,系ik数1 , λ1,,…im,λk,0,…线,性0不相全关为,0也,就这
是α1,…, αm 线性相关. 由于﹛ α1,…, αm ﹜的任何一个子集线
性相关都将导致﹛ α1,…, αm ﹜线性相关,
要使﹛ α1,…, αm ﹜线性无关,必须它的所
有子集线性无关.
□
机动 目录 上页 下页 返回 结束
利用解线性方程组判定线性相关
定义向量组u1,…,um的线性相关或线性无关所 用的等式
(2.2.3)
可以看成以λ1 , … , λm为未知数的一个方程. 这个 方程至少有一组解 (λ1 , … , λm)=(0,…,0)
有唯一解的条件。
其中
机动 目录 上页 下页 返回 结束
定义 将任意数域F上的 n维数组(x1,x2,…,xn)
看成向量,将这些数组的全体组成的集合Fn
看成向量空间,称为n维数组空间。
机动 目录 上页 下页 返回 结束
• n维数组空间中的向量的加法
设 ( a1 , a 2 ,, a n ), (b1 , b2 ,bn )
机动 目录 上页 下页 返回 结束
因此, 线性相关和线性无关的定义可这样来理解:
(1)u1,…,um线性相关等价于方程 (2.2.3)有非零解
(λ1 , … , λm) (0,…,0) (2)u1,…,um线性无关等价于方程 (2.2.3)只有一 组 解(λ1 , … , λm)=(0,…,0) 设u1,…,um都是n维数组向量, 不妨将其中每个 向量uj (1 j m)写成列向量的形式