启东中学届中考总复习电子教案 专题18:反比例函数
- 格式:ppt
- 大小:3.45 MB
- 文档页数:38
《反比例函数》复习教学设计横龙中学朱利艳复习目标1.知识与技能理解反比例函数定义、图象及其主要性质,能根据所给信息确定反比例函数表达式,能利用反比例函数的图象和性质解决问题,体会函数的应用价值。
.函数的相交问题,主要探究函数相交的交点个数及如何计算交点坐标,并进一步探究x取何值时,一次函数与反比例函数值的大小比较、相交时所围成的三角形的面积问题。
2.过程与方法利用回顾反比例函数的概念、性质、图象的过程,把数学与实际问题相结合,渗透数形结合思想。
3.情感、态度与价值观进一步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。
复习重点、难点【复习重点】能根据所给信息确定反比例函数表达式,掌握反比例函数的图象特点及性质,利用反比例函数的图象及性质解决问题;反比例函数中面积问题涉及题型的掌握。
【复习难点】对反比例函数图像及性质的理解和一次函数的综合应用,利用反比例函数解决实际问题。
反比例函数与一次函数结合出现的面积问题所涉及的解题方法的归纳。
复习过程一、知识梳理1.反比例函数的定义:一般地,形如y=kx (1y kx xy k或)(k为常数,k____0)的函数叫做反比例函数.2.反比例函数的性质:反比例函数y=kx(k≠0)的图象是___ ___.当k>0时,两分支分别位于第__ ___象限内,且在每个象限内,y随x的增大而_______;当k<0时,两分支分别位于第_______象限内,且在每个象限内,y随x的增大而_______.3.反比例函数的图象是中心对称图形,其对称中心为_______;反比例函数还是_______图形,它有两条_______,分别是直线__ _____.4.在双曲线y =kx上任取一点P 向两坐标轴作垂线,与两坐标轴围成的矩形的面积等于_______.5.因在反比例函数的关系式y =kx(k ≠0)中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数的关系式,因而一般只要给出一组x 、y 的值或图象上任意一点的坐标,然后代入y =k x中即可求出_______的值,进而确定出反比例函数的关系式.6.利用反比例函数中|k|的几何意义求解与面积有关的问题。
精选全文完整版(可编辑修改)《反比例函数》复习课简案【教学目标】1.熟练掌握反比例函数的定义,能应用其图像与性质解决相关问题,会用待定系数法求一次函数的表达式;2. 通过反比例函数知识的整理、归纳,感受数学思考过程的条理性,发展学生的收集、整理、小结、概括、运用的能力;3. 通过学生自主设计问题、教师引导的方式,提高学生自主分析问题、解决问题的能力,培养学生独立思考、合作交流的意识,提升学生学习数学的基本素养.【教学重难点】教学重点:能用反比例函数的图像与性质解决问题,会用待定系数法求反比例函数的表达式; 教学难点:能用反比例函数的知识解决综合问题,提高学生分析问题、解决问题的能力.【教学过程】一、 自主建构,梳理知识1、 反比例函数的定义:2、 反比例函数的图像:3、 反比例函数的图像特征:二、 自主设计,合作交流问题一:已知反比例函数的图像经过3(,4)2Q --(1)写出这个函数表达式;(2)若点Q (-1,m )在这个图像上,写出m 的值;(3)若P (-2,y 1) ,Q (3,y 2) 在这个图像上,你能比较y 1 ,y 2 的大小吗?(4)若P (x 1,y 1) , Q (x 2,y 2) 在这个图像上,且120x x <<,你还能比较y 1、y 2的大小吗?(5)如图,点P 是这个图像上任意一点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,你能求出矩形OAPB 的面积吗?在第(5)问的基础上你还能提出哪些问题?一轮复习研讨课三、 变题研究,提高能力 变式1:如图,A 、B 两点在双曲线6y x =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2= .变式2:如图,过点P (4,5)分别作PC ⊥x 轴于点C ,PD ⊥y 轴 于点D ,PC 、PD 分别交反比例函数6y x =(x >0)的图象于点 A 、B ,则四边形BOAP 的面积为 .变式3:如图,A 、B 是双曲线6y x=上的两点,过A 点作 AC⊥x 轴,交OB 于D 点,垂足为C.若D 为OB 的中点,则△ADO 的面积为 .四、总结反思,提升素养问题二:1、如图,直线y kx =与反比例函数6y x =的图像交于P 、Q 两点. (1)若P(1,6),你能说出点Q 的坐标吗?(2)在(1)的条件下,结合图像,你能写出方程6kx x =的解吗? 你能写出不等式6kx x >中x 的取值范围吗?2、已知A (3,2)、B (-2,﹣3)两点是一次函数y kx b =+ 和反比例函数m y x =图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式0m kx b x+->的解集.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
课题:第十一讲反比例函数教学目标:1.理解反比例函数的概念,会求反比例函数解析式;2.理解并掌握反比例函数图象与性质,能运用反比例函数图象与性质解决有关函数值比较大小问题;3.会用反比例函数解决某些实际问题,体会函数的应用价值;4.在解决问题过程中,体会数形结合思想在解决函数问题中作用,提高利用函数思想探究问题的积极性.教学重点:反比例函数的图象性质与数形结合思想.教学难点:反比例函数增减性的理解,反比例函数的应用.※枣考解读:教法与学法指导:本节课主要采用题组复习学生通过自主学习,小组合作,展开互动性学习,让学生体会到学习数学的成就感.把全班分成6个小组(每小组6人)进行小组竞学,合作交流,培养学生的探究能力与合作交流意识,提高分析问题、解决问题的能力.教学准备:教师准备导学案、多媒体课件学生准备:(提前两天布置)①预习新课程初中复习指导丛书(枣庄版)50~51页反比例函数,完成填空;②完成新课程初中复习指导丛书(枣庄版)52~54页反比例函数的强化训练.设计意图:意在让学生提前预习(枣庄版初中复习指导丛书),提前做课后强化训练(枣庄版初中复习指导丛书),提高课堂教学效率,拒绝低效课堂.活动注意事项:落实“三讲三不讲”,即“学生不看书(枣庄版初中复习指导丛书)不讲;学生不做习题(枣庄版初中复习指导丛书)不讲,学生自己能学会的不讲”,只规X解题过程;稍加点拨学生就会做的习题,教师不讲,只启发诱导.总之,向课堂45分钟要质量,拒绝低效课堂.教学过程:一、中考命题分析﹪.常以选择题、填空题的形式考查反比例函数的图象与性质等基础知识,以解答题、探究题的形式考查综合应用反比例函数等知识解题的能力.所以在备考时,要深入探究反比例函数图象与性质的特殊性,掌握分析、解决反比例函数问题的基本方法,并重视与其他数学知识的联系,提高解决问题的能力及探究能力.设计意图:.活动注意事项:教师必须对近年的中考试题深入探究,才能做到有的放矢.二、考点聚焦考点一:反比例函数的概念例1(2012•滨州)下列函数:比例函数的有(填序号).处理方式:可让学生先自己独立完成,然后再选代表进行解答.教师可最后进行适当点评. 教师点评:此题主要考察了反比例函数的定义,关键是掌握反比例函数的定义:形如ky x=(k 是常数,0k ≠)叫做反比例函数. 对应训练一:1. (2013•某某)若2(1)a y a x-=+是反比例函数,则a 的取值为( ).1A .1B -.1C ±.D 任意实数考点二:反比例函数的图象与性质对称性 反比例函数的图象既是轴对称图形,又是 . 典型例题例2 (2014•某某)已知函数my x=的图象如图,以下结论: ①0m <;②在每个分支上y 随x 的增大而增大;③若点(1,)A a -、点(2,0)B 在图象上,则a b <;④若点(,)P x y 在图象上,则点1(,)P x y --也在图象上.其中正确的个数是( )A . 4个B . 3个C . 2个D .1个 处理方式:学生可适当在小组内交流,然后选代表来解答.教师可参与到学生中去,聆听学生的交流,以便知道学生掌握的情况.教师点拨:本题主要考查了反比例函数的图象的性质和一次函数图象的性质,要掌握它们的性质才能灵活解题.方法总结:解决反比例函数题,一般采用数形结合的思想,同时注意增减性的条件是“在每个象限内”.反比例函数是中心对称图形,故若(,)a b -在反比例函数my x=图象上,则(,)a b -也在反比例函数图象上.对应训练二:1.(2014•某某)在同一平面直角坐标系中,函数y mx m =+与(0)my m x=≠的图象可能是( )A .B .C .D .2.(2014•某某)已知反比例函数ky x=的图象经过点(1,2)P -,则这个函数的图象位于( )A . 第二,三象限B .第一,三象限 C . 第三,四象限 D .第二,四象限 3.(2014•某某)已知一次函数y kx b =+的图象如图,那么正比例函数y kx =和反比例函数by x=在同一坐标系中的图象大致是( )A .B .C .D .考点三:反比例函数中k 的几何意义k 的几何意义反比例函数图象上的点(,)x y 具有两数之积xy 为这一特点,则过双曲线上任意一点,向两坐标轴作垂线,两条垂线与坐标轴围成的矩形的面积为常数 .结论的推导如图,过双曲线上任意一点P 作x 轴、y 轴的垂线,PM PN ,所得的矩形PMON 的面积S PM PN ===.,ky xy x=∴=,S ∴=.典型例题例3(2014•某某)如图,过点O 作直线与双曲线)0(≠=k xky 交于,A B 两点,过点B 作BC x ⊥轴于点C ,作BD y ⊥轴于点D .在x 轴上分别取点,E F ,使点E F A 、、在同一条直线上,且AE AF =.设图中矩形ODBC 的面积为1S ,EOF ∆的面积为2S ,则12S S 、的数量关系是( )A . S 1=S 2B . 2S 1=S 2C . 3S 1=S 2D .4S 1=S 2 处理方式:可让学生在小组中讨论交流,然后进行解答.教师点评:本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成矩形的面积就等于k 的绝对值.本知识点是中考的重要考点,同学们应高度关注.方法总结:此题主要考查反比例函数的比例系数的几何意义,关于原点对称轴的点的特征.此题也可利用三角形相似,面积比等于相似比的平方求解. 对应训练三:1.(2014•黔东南州)如图,正比例函数y x =与反比例函数1y x=的图象相交于,A B 两点,BC x ⊥轴于点C ,则ABC ∆的面积为( )A . 1B .2 C . D .2.(2014•东营)如图,函数1y x =和3y x=-的图象分别是1l 和2l .设点P 在1l 上,PC x ⊥轴,垂足为C ,交2l 于点A ,PD y ⊥轴,垂足为D ,交于2l 点B ,则PAB ∆的面积为.考点四:反比例函数的应用反比例函数解析式的确定确定反比例函数解析式的方法仍是待定系数法:k y x=; 1. 代入图象上一个点的坐标,即,x y 的一对对应值,求出k 的值; 2. 写出解析式.综合运用反比例函数的应用是指运用反比例函数的有关概念、性质去解决实际问题,它要求通过对题目的阅读理解,抽象出实际问题中的反比例函数关系,将文字转化为数学语言,再利用反比例函数的思想方法解决实际问题.典型例题例4(2014•威海)已知反比例函数12my x-=(m 为常数)的图象在一、三象限. (1)求m 的取值X 围;(2)如图,若该反比例函数的图象经过ABCD 的顶点D ,点A 、B 的坐标分别为(0,3),(﹣2,0). ①求出函数解析式;②设点P 是该反比例函数图象上的一点,若OD OP =,则P 点的坐标为;若以D 、O 、P 为顶点的三角形是等腰三角形,则满足条件的点P 的个数为个.处理方式:让学生在小组内积极讨论交流,教师可参与到学生中去,对有疑问的同学可适当点拨,然后由学生代表进行解答.考点:反比例函数的综合题,等腰三角形的性质,平行四边形的性质.教师点评:本题考查了反比例函数的综合题,掌握反比例函数图象的性质和其图象上点坐标特征、平行四边形性质和等腰三角形的性质,运用分类讨论的思想解决数学问题.方法总结:求函数解析式,一般先根据题意,找出或求出图象上的相关点,用待定系数法列方程求解.对应训练四:1.(2014•某某)已知:如图,反比例函数kyx=的图象与一次函数y x b=+的图象交于点(1,4)A、点(4,)B n-.(1)求一次函数和反比例函数的解析式;(2)求OAB∆的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值X围.设计意图:“授人以鱼,不如授人以渔”,引导学生开展小组竞学,积极探究解决问题的方法,培养学生创造性解决问题的思维意识和能力.提高学习效率.三、总结收获【师】谈谈你本节的收获?还有什么疑惑? (学生畅所欲言)设计意图:学生自由发言,可以相互补充;学生开心畅谈,无拘无束;谈收获,谈困惑;交流解题思路,留给思考空间. 四、达标检测()A 类1.(2014•某某)已知反比例函数ky x=的图象经过点(1,2)P -,则这个函数的图象位于( )A . 第二,三象限B .第一,三象限 C .第三,四象限 D .第二,四象限 2.(2014•某某)若反比例函数的图象位于第二、四象限,则k 的取值可以是( )A . 0B .1 C .2 D .以上都不是 3.(2014•某某)如图,反比例函数6y x=-在第二象限的图象上有两点A B 、,它们的横坐标分别为﹣1,﹣3,直线AB 与x 轴交于点C ,则AOC ∆的面积为( )A . 8B . 10C . 12D .24 4.(2014•某某)如图,A 、B 两点在双曲线4y x=上,分别经过A B 、两点向轴作垂线段,已知1S =阴影,则12S S +=( )A . 3B . 4C . 5D . 65.(2014•某某)若反比例函数ky x=的图象在其每个象限内,y 随x 的增大而增大,则k 的值可以是.(写出一个符合条件的值即可) 6.(2014•某某)如图,反比例函数4y x=的图象经过Rt OAB ∆的顶点,A D 为斜边OA 的中点,则过点D 的反比例函数的解析式为.(B 类)7.(2014•某某)如图,点A 是反比例函数6y x=的图象上﹣点,过点A 作AB x ⊥轴,垂足为点B ,线段AB 交反比例函数2y x=的图象于点C ,则OAC ∆的为.8.(2014•某某)如图,在直角梯形OABC 中,BC ∥AO ,090AOC ∠=,点,A B 的坐标分别为(5,0),(2,6),点D 为AB 上一点,且2BD AD =,双曲线(0)ky k x=>经过点D ,交BC 于点E . (1)求双曲线的解析式; (2)求四边形ODBE 的面积.设计意图:要求学生在10分钟内完成,规定时间和内容,一方面可以了解学生对本节课所word11 / 11 复习内容的掌握情况,同时也可培养学生解决问题的能力.并且让不同的学生有不同的发展,使每个学生都学得好,能力最大限度的得到提高.五、布置作业1、基础题:复习丛书中5254P 的习题.2、选做题:数学“中考备战”中反比例函数的部分.板书设计。
反比例函数复习课【中考知识点】1.反比例函数意义;2.反比例函数反比例函数图象;3.反比例函数性质;4.待定系数法确定函数解析式.【中考课标要求】考点课标要求知识与技能目标了解理解掌握灵活应用反比例函数理解反比例函数意义∨会画反比例函数的图象∨理解反比例函数的性质∨能根据实际问题中的反比例关系用待定系数法确定反比例函数的解析式∨∨【基础知识梳理】1.反比例函数的概念反比例函数y=中的是一个分式,自变量x≠0,函数与x轴、y轴无交点,y=也可写成y=kx-1(k≠0),注意自变量x的指数为-1, 在解决有关自变量指数问题时应特别注意系数k≠0这一限制条件.2.反比例函数的图象在用描点法画反比例函数y=的图象时,应注意自变量x的取值不能为0,应从1或-1开始对称取点.3.反比例函数y=中k的意义注意:反比例函数y= (k≠0)中比例系数k的几何意义,即过双曲线y=(k≠0)上任意一点引x轴、y轴垂线,所得矩形面积为│k│.4.反比例函数经常与一次函数、二次函数等知识相联系.【例题解析】1.反比例函数的图象例1函数y=(x>0)的图象大致是( )解析:函数y=的图象是双曲线,当k<0时双曲线两分支分别在第二、四象限内, 而已知中(x>0)表明横坐标为正,故双曲线位于第四象限.答案:D.点评:本题主要考查反比例函数的图象.但需注意的是y=中的限制条件(x>0), 即双曲线的横坐标为正.例2 函数y=kx+1与函数y=在同一坐标系中的大致图象是( )分析:明确一次函数y=kx+1中的k的含义与函数y=中k的含义是解题的关键.解:可用排除法,假设y=中k>0,双曲线过第一、三象限,则直线y=kx+1 也应过第一、第三象限且与y轴交于正半轴,故排除B、D.同理可排除C,故答案为A.点评:解决同一坐标系中两种函数共存问题,首先明确同一字母系数在不同函数解析式中的含义,切勿出现“张冠李戴”的错误.2.待定系数法确定函数解析式例3 已知y与x2成反比例,并且当x=-1时,y=2,那么当x=4时,y等于( )A.-2B.2C.D.-4分析:已知y与x2成反比例,∴y=(k≠0).将x=-2,y=2代入y=可求得k,从而确定双曲线解析式.解:∵y与x2成反比例,∴y= (k≠0).当x=-2时,y=2,∴2=,k=8∴y=,把x=4代入y=得y=.故答案为C.点评:此题主要考查反比例函数概念及待定系数法确定函数解析式.3.反比例函数的应用例4如图所示,已知一次函数y=kx+b(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于C点, CD垂直于x轴,垂足为D.若OA=OB=OD=1,(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.分析:(1)由OA=OB=OD=1可确定A、B、D三点坐标.(2)将A、B两点坐标分别代入y=kx+b,可用待定系数法确定一次函数的解析式, 由C点在一次函数的图象上可确定C点坐标,将C点坐标代入y=可确定反比例函数的解析式.解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(-1,0),B(0,1),C(1,0).(2)∵点A、B在一次函数y=kx+b(k≠0)的图象上,∴,解得,∴一次函数的解析式为y=x+1.∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2) .又∵点C在反比例函数y=(m≠0)的图象上,m=2.∴反比例函数的解析式为y=.【历年考点解析】考点1:反比例函数的概念例1近视眼镜的度数(度)与镜片焦距成反比例,已知400度近视眼镜镜片的焦距为0.25,则与的函数关系式为________.【方法导引】:形如()的函数叫反比例函数.确定反比例函数的解析式,关键是确定反比例系数.【解答】:设与的函数关系式为,把,代入上式,得,解得.因此,与的函数关系式为.【练习1】:已知点(1,2)在反比例函数的图象上,则该反比例函数的解析式为_________.(答案:)考点2:反比例函数的图象例2如图1,双曲线的一个分支为( )A. ①B.②C.③D.④图1【方法导引】:对于双曲线:当时,图象的两个分支在第一、三象限;当时, 图象的两个分支在第二、四象限.同时要注意,当越大,变化的趋势越快,反之越慢.【解答】:因为,所以双曲线的一个分支应在第一象限, 又知在双曲线上, 故选D.【练习2】函数与在同一坐标系中的图象可能是( ).A B C D(答案: A )考点3 .反比例函数的性质例3若、、三点都在函数的图象上,则的大小关系是()A. B. C. D..【方法导引】:对于反比例函数:当时,在每一个象限内,随的增大而减小;当时,在每一个象限内,随的增大而增大.【解答】:因为,A、B、C三点在同一个象限内,且所以,.故选B.想一想:此题还可以怎样解答?【练习3】:若,)三点都在函数的图象上,则的大小关系为()A.;B.;C.D.(答案:B)考点4:反比例函数的应用例4某种蓄电池的电压为定值,使用此电源时,电流与可变电阻之间的函数关系如图2所示,当用电器的电流为10A时,用电器的可变电阻为_____.【方法导引】:先据函数图象,利用待定系数法求出(A)与电阻)的函数关系式,再将代入所求的关系式求出电阻的值.图2 图3【解答】:观察图象可知,电流与电阻成反比例函数关系,于是,设, 把代入上式得:即.所以,当A时,.【练习4】在一个可以改变容积的密闭容器内,装有一定质量的某种气体,当改变容积时,气体的密度ρ也随之改变.ρ与在一定范围内满足ρ,它的图象如图3所示,则该气体的质量为( )A. B. C. D. 7.(答案:D)考点5.以反比例函数和一次函数为基架的综合题.例5.如图4,一次函数的图象与反比例函数图象交于A(-2,1)、B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.【方法导引】:先将交点A的坐标代入反比例函数中,求出反比例函数解析式;再将点B的坐标代入反比例函数关系式中,可求出B点的纵坐标,最后将A、B的坐标代入一次函数中求出,也即是求出一次函数解析式.求“使一次函数的值大于反比例函数的值的x的取值范围”,也就是求直线上的纵坐标大于双曲线上的纵坐标的横坐标的取值范围.O AB xy图4 图5【解答】:(1)将点A(-2,1)代入中得:,所以因此,反比例函数解析式为又将 B(1,n)代入得,所以B(1,-2)将A(-2,1),B(1,-2)分别代入求得因此,所求一次函数的解析式为y=-x-1(2)x<-2或0<x<1【练习5】直线y=k1x+b与双曲线y=只有—个交点A(1,2),且与x轴、y轴分别交于B,C 两点AD垂直平分OB,垂足为D,(如图5)求直线、双曲线的解析式.(答案:).。
课题----- 中考第一轮复习《反比例函数》主备人:金鑫一、【教学目标】 (一)知识与技能1、理解反比例函数的意义,能根据已知条件确定反比例函数的解析式。
2. 能画出反比例函数的图象,根据图像和表达式理解其性质。
2、能够将与反比例函数有关的实际问题转化为函数问题。
(二)过程与方法1、经历分析反比例函数与其它数学知识的内在联系,逐步提高学生分析和综合应用能力2、体会数形结合和转化的数学思想 (三)情感态度价值观通过学习活动激发学生得求知欲,培养学生勇于探索的精神 二、【教学重难点】1、重点:反比例函数图象与性质2、难点:反比例函数图象、性质的应用 三、教学过程: (一)考点知识精讲 1、反比例函数的概念一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 或xy=k 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零..实数。
2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质4、反比例函数解析式的确定确定反比例函数解析式的方法仍是待定系数法。
由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义 如下图,过反比例函数)0(≠=k xky 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM∙PN=xyx y =∙。
k S k xy xky ==∴=,, 。
【教师活动】:以提问的形式帮助学生梳理反比例函数有关知识点,并用多媒体课件展示复习内容【学生活动】:独立思考问题,个别学生回答问题 (二)、【中考典型精析】例1.(2013•天津)已知反比例函数y=(k 为常数,k≠0)的图象经过点A (2,3).(Ⅰ)求这个函数的解析式;(Ⅱ)判断点B (﹣1,6),C (3,2)是否在这个函数的图象上,并说明理由; (Ⅲ)当﹣3<x <﹣1时,求y 的取值范围. (3=,例2.(2013•广安)已知反比例函数y=(k≠0)和一次函数y=x﹣6.(1)若一次函数与反比例函数的图象交于点P(2,m),求m和k的值.(2)当k满足什么条件时,两函数的图象没有交点?(=x例3.(2013•湘西州)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象有一个交点A(m,2).(1)求m的值;(2)求正比例函数y=kx的解析式;(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.,即可求得2=,例4.(2013•玉林)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?中,进一步求解可得答案.y=600=(,得例5.(2013•内江)如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()==【教师活动】:出示问题,并分析问题,指导学生完成例题 【学生活动】:分组讨论并交流问题,个别学生回答问题 (三)【课堂练习】1、(2010年福州中考)已知反比例函数ky x=的图像过点P (1,3),则反比例函数图像位于( )A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限2、(2013•荆门)若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx ﹣k 的图象过( )A .021<<y yB .021>>y y C. 012<<y y D. 012>>y y 4、(2013•常州)下列函数中,图象经过点(1,﹣1)的反比例函数关系式是( )D .5、(2013•宜昌)如图,点B 在反比例函数xy 2=(x >0)的图象上,横坐标为1,过点B 分别向x 轴,y 轴作垂线,垂足分别为A ,C ,则矩形OABC 的面积为( )A.1B.2C.3D.46、(2013•三明)如图,已知直线y=mx 与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是( )7、(2011年福州中考)图7是我们学过的反比例函数图象,它的函数解析式可能是( )A.2y x =B.4y x =C.3y x =-D.12y x =8、(2012年福州质检)方程x 2+3x -1=0的根可看作是函数y =x +3的图象与函数y =1x的图象交点的横坐标,那么用此方法可推断出方程x 3-x -1=0的实数根x 0所在的范围是( )A .-1<x 0<0B .0<x 0<1C .1<x 0<2D .2<x 0<3 9、(2013•沈阳)在同一平面直角坐标系中,函数1y x =-与函数1y x=的图象可能是( )图710、(2012•福州)如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=﹣x+6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是()A .2≤k≤9B .2≤k≤8C .2≤k≤5D .5≤k≤8 11、(2013•鄂州)已知正比例函数y=﹣4x 与反比例函数的图象交于A 、B两点,若点A 的坐标为(x ,4),则点B 的坐标为 (1,﹣4) . 12.(2010年福州质检)一次函数11+-=x y 与反比例函数xky =2的图象交于点A (2,m ),则k 的值是 .13、(2013•厦门)已知反比例函数y =m -1x 的图象的一支位于第一象限,则常数m 的取值范围是 .14、(2013•漳州)如图,反比例函数xk y =的图象经过点P ,则k = .15、(2008年福州中考)如图,在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++=.16、(2013•雅安)如图,在平面直角坐标系中,一次函数y=kx+b (k≠0)的图象与反比例函数y=(m≠0)的图象交于A 、B 两点,与x 轴交于C 点,点A 的坐标为(n ,6),点C 的坐标为(﹣2,0),且tan ∠ACO=2. (1)求该反比例函数和一次函数的解析式; (2)求点B 的坐标;(3)在x 轴上求点E ,使△ACE 为直角三角形.(直接写出点E 的坐标)17、(2008年福州质检)如图,已知一次函数b ax y +=(0≠a )的图象与反比例函数xky =(k >0)的图 象相交于A (1,3)、B 3(-,)33-两点,且与x 轴相交于点C .连接OA 、OB .(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积;(3)若点Q 为反比例函数xky =(k >0)图象上的动点,在x 轴的正半轴上2y x=xyOP 1P 2P 3P 4 12 3 4(第15题)第17题是否存在一点P ,使得以P 、Q 、O 为顶点的三角形与△AOC 相似?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.18.(2009年福州质检)已知直线y=x 与函数()0,0k y x k x=>>的图象交于点A ,以坐标原点O 为圆心,OA 长为半径画弧,交x 轴正半轴于点C ,直线AB 交x 轴负半轴于B 点,30ABC ∠=. (1)画出满足题意的示意图.(2)请用含π的代数式表示S T的值.(其中,S 为△AOB 面积,T 为扇形AOC 面积) (3)设k 取k 1时,△AOB 面积为S 1,扇形AOC 面积为T 1,k 取k 2时,△AOB 面积为S 2,扇形AOC 面积为T 2…求320082009124123420082009S S S S S S T T T T T T -+-+-+的值。
第十七章 《反比例函数》复习教案一、 课标要求1、结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式2、会画反比例函数的图像,探索并掌握掌握反比例函数的性质3、运用反比例函数解决某些实际问题 二、知识清单1、一般的,如果两个变量x 、y 之间的关系可以表示成 (k 为常数,且k ≠0)的形式,那么称y 是x 的反比例函数。
3、用待定系数法确定函数解析式的步骤:① ② ③ ④ 三、例题精讲 1、下列函数:(1)y x =(2)2x y = (3)1y x =-+ 1(4)1y x =+ 3(5)2y x=-, 其中反比例函数有 (填序号) 2、若函数210(3)k y k x -=-是反比例函数,则k3、如果双曲线y=kx经过点(-2,3),那么此双曲线也经过点( ) A .(-2,-3) B .(3,2) C .(3,-2) D .(-3,-2)4、已知圆柱的侧面积是100πcm 2,若圆柱底面半径为r (cm 2),高线长为h (cm ),则h 关于r 的函数的图象大致是 ( )5、已知反比例函数m y 23-=,当______m 时,其图象的两个分支在第一、三象限内;6、已知直线y=kx+b 经过一、二、四象限,则对于双曲线kby x=其中的一个分支,y 随的x 的 而7、一次函数1+-=kx y 与反比例函数xky =在同一坐标系中的图像大致是( )8、 在函数a x a y (12--=为常数)的图象上有三点),1(1y -,),41(2y -,),21(3y ,则1y ,2y ,3y 的大小关系是9、如图,已知一次函数)0(≠+=k b kx y 的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数)0(≠=m xmy 的图象在第一象限交于点C ,CD 垂直于x 轴,垂足为D .若OA =OB =OD =1.(1)求点A 、B 、D 的坐标;(2)一次函数和反比例函数的解析式.10、为了预防“非典”,某学校对教室采用药薰消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y 与x 成反比例(如图所示),现测得药物8分钟燃毕, 此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息,解答下列问题:(1)药物燃烧时y 关于x 的函数关系式为: _____________, 自变量x 的取值范围是:________________;药物燃烧后y 关于x 的函数关系式为:___________________. (2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?x(分钟)y(豪克)86O反比例函数达标检测试卷一.选择题(每题3分,共计30分)1.面积为4的矩形一边为x ,另一边为y ,则y 与x 的变化规律用图象大致表示为 ( )2.下列各点中,在函数xy 2-=的图像上的是( ) A 、(2,1) B 、(-2,1) C 、(2,-2) D 、(1,2) 3.反比例函数y =x n 5+图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、14.若反比例函数y =xk (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2) 5.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )6.若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ).A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定 7.一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限 8.已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,))) A . B . C . .A 、m <0B 、m >0C 、m <21D 、m >21 9.如图,关于x 的函数y=k(x-1)和y=-k(k ≠0), 它们在同一坐标系内的图象大致是10.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ). A 、x <-1 B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2二.填空题(每题3分,共计21分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天 使用的小时数x 之间的函数关系式为 . 12.已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”).13.若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = .14.反比例函数22)12(-+=kxk y 在每个象限内y 随x 的增大而增大,则k= .15.已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2,12),则8k 1+5k 2的值为________. 16. 若m <-1,则下列函数:①()0 x xmy =;② y =-mx+1; ③ y = mx; ④ y =(m + 1)x 中,y 随x 增大而增大的是___________。