《反比例函数》中考总复习学习教育教案
- 格式:ppt
- 大小:4.02 MB
- 文档页数:41
反比例函数复习优秀教案一、教学目标:1. 知识与技能:(1)理解反比例函数的定义及其性质;(2)掌握反比例函数图象的特点及应用;(3)能够运用反比例函数解决实际问题。
2. 过程与方法:(1)通过复习,加深对反比例函数知识的理解;(2)培养学生的数学思维能力,提高解决问题的能力。
3. 情感态度与价值观:二、教学重点与难点:1. 教学重点:(1)反比例函数的定义及其性质;(2)反比例函数图象的特点及应用。
2. 教学难点:(1)反比例函数图象的绘制;(2)反比例函数在实际问题中的应用。
三、教学过程:1. 导入:通过复习反比例函数的定义及性质,引导学生回顾已学知识,为新课的学习做好铺垫。
2. 课堂讲解:(1)讲解反比例函数的定义:y = k/x(k为常数,k≠0);(2)分析反比例函数的性质:as x changes, y changes in the opposite direction;(3)展示反比例函数图象的特点:经过原点,双曲线形状,两分支分别趋向于x轴和y轴;(4)讲解反比例函数在实际问题中的应用:通过实例分析,让学生掌握反比例函数在实际问题中的解题方法。
3. 课堂练习:布置一些有关反比例函数的练习题,让学生在课堂上完成,检测学生对反比例函数知识的掌握程度。
四、课后作业:2. 绘制一个反比例函数的图象,并描述其特点;3. 选择一道实际问题,运用反比例函数解决。
五、教学反思:本节课通过复习反比例函数的知识,使学生巩固了反比例函数的定义、性质及应用。
在课堂讲解过程中,注重培养学生的数学思维能力,提高解决问题的能力。
通过课堂练习和课后作业,检测学生对反比例函数知识的掌握程度。
在今后的教学中,要继续关注学生的学习情况,针对性地进行辅导,提高教学质量。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究反比例函数的性质;2. 通过多媒体演示反比例函数图象的特点,增强学生的直观感受;3. 利用实际例子,让学生学会将反比例函数应用于解决实际问题;4. 注重个体差异,给予学生充分的思考时间和空间,鼓励学生提出问题;5. 采用小组合作学习的方式,培养学生的团队合作意识。
反比例函数复习课教案第一章:反比例函数的定义及性质1.1 反比例函数的定义引导学生回顾反比例函数的定义:形如y = k/x (k 为常数,k ≠0) 的函数,称为反比例函数。
强调反比例函数中x 和y 成反比例关系,即xy = k。
1.2 反比例函数的性质分析反比例函数的图像特征:反比例函数的图像是一条通过原点的曲线,称为双曲线。
探讨反比例函数的渐近线:当x 趋向于正无穷或负无穷时,y 趋向于0,x 轴和y 轴是反比例函数的渐近线。
讲解反比例函数的单调性:在第一象限和第三象限,反比例函数是减函数;在第二象限和第四象限,反比例函数是增函数。
第二章:反比例函数的图像与几何意义2.1 反比例函数的图像利用图形软件绘制反比例函数的图像,引导学生观察图像的形状和特点。
引导学生理解反比例函数图像的四个象限特点:当k > 0 时,图像位于第一象限和第三象限;当k < 0 时,图像位于第二象限和第四象限。
2.2 反比例函数的几何意义解释反比例函数表示的是点(x, y) 在坐标平面上的分布情况,且这些点满足xy = k。
引导学生思考反比例函数与面积的关系:反比例函数图像与坐标轴围成的封闭区域的面积等于k 的绝对值。
第三章:反比例函数的性质与应用3.1 反比例函数的性质引导学生利用反比例函数的性质解决问题,如判断两个函数是否为反比例函数、确定反比例函数的单调区间等。
3.2 反比例函数的应用举例说明反比例函数在实际问题中的应用,如物理学中的电流与电压的关系、化学中的浓度与体积的关系等。
引导学生运用反比例函数解决实际问题,培养学生的数学应用能力。
第四章:反比例函数的运算4.1 反比例函数的基本运算复习反比例函数的基本运算规则,如反比例函数的加减乘除、乘积和商的运算。
4.2 反比例函数的复合运算讲解反比例函数的复合运算,如反比例函数与一次函数、二次函数的复合运算。
引导学生运用反比例函数解决复合运算问题,提高学生的数学运算能力。
第26章-反比例函数复习教案一、【教材分析】
二、【教学流程】
2.双曲线y1、y2在第一象限的图象如
3.病人按规定的剂量服用某种药物,得服药后2小时,每毫升血液中的含药量达到最大值为4 毫克.已知服药后,2 小时前每毫升血液中的含药量y(单位:毫克)与时间x(单位:小时
2.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主
三、【板书设计】
四、【教后反思】
通过本节课的复习,有成功的地方,也有不足之处.
成功之处:
一、定位较准,立足于本校学情。
由于是复习课,学生对知识点的掌握相对而言就稍微轻松些。
我目的是落实知识点和掌握一些基本的题型.
二、习题设计合理,立足于思维训练。
本节课每个知识点都设计了针对性的变式练习,通过练习,学生的解题技巧、方法、思维都得到了一定训练.
三、注重了数学思想方法的渗透。
在复习反比例函数的性质时,我紧紧抓住关键词语,突破难点.性质强调“在同一象限内”,几何意义强调k的绝对值,而我们学生往往忽略这些问题,对此,采用讨论的观点,结合图像观察,让学生不仅看到还要理解到.这样,非常明了的让学生把最容易混淆的知识分清了,突破难点的同时及时总结.这样来渗透数学思想方法:分类讨论和数形结合的思想方法.
不足之处:
一、讲的太多。
这主要体现在知识点回顾时,本来打算一点而过,结果学生的回答偏离了我的预想,让学生讲解我总怕学生不会,自己来讲从而浪费了学生练习的时间。
不能大胆放心把课堂交还给学生.
二、对学生的情感关注太少.在教学过程中对少数同学的回答能及时给予表扬和激励,对大部分学生关注太少.不能激大部分发学生的兴趣,坚定他们学习的信心.。
《反比例函数》复习教学设计横龙中学朱利艳复习目标1.知识与技能理解反比例函数定义、图象及其主要性质,能根据所给信息确定反比例函数表达式,能利用反比例函数的图象和性质解决问题,体会函数的应用价值。
.函数的相交问题,主要探究函数相交的交点个数及如何计算交点坐标,并进一步探究x取何值时,一次函数与反比例函数值的大小比较、相交时所围成的三角形的面积问题。
2.过程与方法利用回顾反比例函数的概念、性质、图象的过程,把数学与实际问题相结合,渗透数形结合思想。
3.情感、态度与价值观进一步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。
复习重点、难点【复习重点】能根据所给信息确定反比例函数表达式,掌握反比例函数的图象特点及性质,利用反比例函数的图象及性质解决问题;反比例函数中面积问题涉及题型的掌握。
【复习难点】对反比例函数图像及性质的理解和一次函数的综合应用,利用反比例函数解决实际问题。
反比例函数与一次函数结合出现的面积问题所涉及的解题方法的归纳。
复习过程一、知识梳理1.反比例函数的定义:一般地,形如y=kx (1y kx xy k或)(k为常数,k____0)的函数叫做反比例函数.2.反比例函数的性质:反比例函数y=kx(k≠0)的图象是___ ___.当k>0时,两分支分别位于第__ ___象限内,且在每个象限内,y随x的增大而_______;当k<0时,两分支分别位于第_______象限内,且在每个象限内,y随x的增大而_______.3.反比例函数的图象是中心对称图形,其对称中心为_______;反比例函数还是_______图形,它有两条_______,分别是直线__ _____.4.在双曲线y =kx上任取一点P 向两坐标轴作垂线,与两坐标轴围成的矩形的面积等于_______.5.因在反比例函数的关系式y =kx(k ≠0)中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数的关系式,因而一般只要给出一组x 、y 的值或图象上任意一点的坐标,然后代入y =k x中即可求出_______的值,进而确定出反比例函数的关系式.6.利用反比例函数中|k|的几何意义求解与面积有关的问题。
精选全文完整版(可编辑修改)《反比例函数》复习课简案【教学目标】1.熟练掌握反比例函数的定义,能应用其图像与性质解决相关问题,会用待定系数法求一次函数的表达式;2. 通过反比例函数知识的整理、归纳,感受数学思考过程的条理性,发展学生的收集、整理、小结、概括、运用的能力;3. 通过学生自主设计问题、教师引导的方式,提高学生自主分析问题、解决问题的能力,培养学生独立思考、合作交流的意识,提升学生学习数学的基本素养.【教学重难点】教学重点:能用反比例函数的图像与性质解决问题,会用待定系数法求反比例函数的表达式; 教学难点:能用反比例函数的知识解决综合问题,提高学生分析问题、解决问题的能力.【教学过程】一、 自主建构,梳理知识1、 反比例函数的定义:2、 反比例函数的图像:3、 反比例函数的图像特征:二、 自主设计,合作交流问题一:已知反比例函数的图像经过3(,4)2Q --(1)写出这个函数表达式;(2)若点Q (-1,m )在这个图像上,写出m 的值;(3)若P (-2,y 1) ,Q (3,y 2) 在这个图像上,你能比较y 1 ,y 2 的大小吗?(4)若P (x 1,y 1) , Q (x 2,y 2) 在这个图像上,且120x x <<,你还能比较y 1、y 2的大小吗?(5)如图,点P 是这个图像上任意一点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,你能求出矩形OAPB 的面积吗?在第(5)问的基础上你还能提出哪些问题?一轮复习研讨课三、 变题研究,提高能力 变式1:如图,A 、B 两点在双曲线6y x =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2= .变式2:如图,过点P (4,5)分别作PC ⊥x 轴于点C ,PD ⊥y 轴 于点D ,PC 、PD 分别交反比例函数6y x =(x >0)的图象于点 A 、B ,则四边形BOAP 的面积为 .变式3:如图,A 、B 是双曲线6y x=上的两点,过A 点作 AC⊥x 轴,交OB 于D 点,垂足为C.若D 为OB 的中点,则△ADO 的面积为 .四、总结反思,提升素养问题二:1、如图,直线y kx =与反比例函数6y x =的图像交于P 、Q 两点. (1)若P(1,6),你能说出点Q 的坐标吗?(2)在(1)的条件下,结合图像,你能写出方程6kx x =的解吗? 你能写出不等式6kx x >中x 的取值范围吗?2、已知A (3,2)、B (-2,﹣3)两点是一次函数y kx b =+ 和反比例函数m y x =图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式0m kx b x+->的解集.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
复习反比例函数复习指导:反比例函数表达式的确定、反比例函数的图像和性质、反比例函数图像与一次函数图像的关系、利用反比例函数解决问题等都是中考的重要考点。
一、目标导航1、会根据反比例函数的主要性质解决问题2、能在实际问题中建立反比例函数模型,进而解决问题 复习重点1、反比例函数的性质2、综合反比例函数的知识解决综合问题 二、自主探究 考点链接:1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质反比例函数的图象是双曲线 3.k 的几何含义:反比例函数y=比kx(k ≠0)中例系数k 的几何 意义,即过双(k ≠曲线y =k x0)上任意一点P作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 . 考点剖析:1、反比例函数的概念例1:(2009柳州)反比例函数 xm y 1+=的图象经过点(2,1),则m 的值是 . 复练:1.(2010广西钦州市反比例函数xky =(k >0)的图象与经过原点的l 相交于A 、B 两点,已知A 点的坐标为(2,1),那么B 点的坐标为 .2、(2010四川南充市)如图,直线2y x =+与双曲线k y x=相交于A ,点A 的纵坐标为3,k 的值为( ).(A )1 (B )2 (C )3 (D )4 2、反比例函数的图象和性质 例2:(2008常州)若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( ) A.-1B.3C.0D.-3例3:(2008新疆)在函数1y x =的图象上有三个点的坐标分别为(1,1y )、(12,2y )、 (3-,3y ),函数值y 1、y 2、y 3的大小关系是( ) A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 2<y 1<y 3 D .y 3<y 1<y 2复练:1、 (2010厦门市)已知反比例函数ky x=,其图象所在的每个象限内y 随着x 的增大而增大,请写出一个符合条件的反比例函数关系式:__________________.2、(2010兰州) 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数xk y 12--=的图象上. 下列结论中正确的是( )A .321y y y >>B .231y y y >>C .213y y y >>D . 132y y y >> 3、反比例函数的关系式例4:(2008宁波)如图,正方形ABOC 的边长为2,反比例函数ky x=则k 的值是( ) A .2B .2-C .4D .4-例5:(2009天津)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么?(Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当OAB △的面积为4时,求点A 的坐标及反比例函数的解析式.(第2题)复练:1、(2010江苏淮安)若一次函数y=2x+l 交点横坐标为l ,则反比例函数关系式为.于点B ,点P2、(2010年山西)如图,A 是反比例函数图象上一点,过点A 在x 轴上,△ABP面积为2,则这个反比例函数的解析式为 。
中考复习——反比例函数专题复习第1课时一、课型:复习课二、学情分析:1、本课时是初三总复习中反比例函数专题复习第1课时,学生在复习反比例函数专题之前已经复习了函数专题、正比例函数专题、一次函数专题等内容。
具备学习本专题的基础和能力。
2、学生们容易忽略反比例函数概念的要点,在考试中混淆了将反比例函数和正比例函数的性质。
3、反比例函数是初三上期的内容,学生在不同程度上有所遗忘。
三、教学目标:引导学生对反比例函数的相关知识进行回顾与思考;进而梳理知识结构,形成知识体系,培养学生自建知识体系的能力。
四、教学重点:反比例函数的概念、反比例函数的增减性、反比例函数图象的对称性。
四、教学难点:反比例函数的增减性、反比例函数的对称性。
五、教学工具:三角板、几何画板。
六、教学过程:一、反比例函数的概念:一般地,形如y=k(k为常数,k≠0),x则称y是x的反比例函数,其中x是自变量,y是因变量。
要点诠释:(1)自变量x的取值范围是x≠0,因变量y 的取值范围是y≠0;(2)反比例函数解析式的另外两种形式:y=kx−1(k≠0),xy=k(k≠0)。
•例2 已知y=(k+3)x k2−10,y是x反比例函数,求k的值。
例5 为了预防“流感”,康定中学对教室采用药薰消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物5分钟燃毕, 此时室内空气中每立方米的含药量为10毫克.请根据题中所提供的信息,解答下列问题: (1)药物燃烧时y 关于x 的函数关系式为: ;自变量x 的取值范围是: 。
药物燃烧后y关于x的函数关系为: 。
(2)研究表明,当空气中每立方米的含药量低于2毫克时学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室?七、板书设计:白板:1、反比例函数的三种形式;2、反比例函数自变量和函数值的取值范围。
中考数学总复习反比例函数教案一、教学目标1.了解反比例函数的定义;2.掌握如何根据题目中的已知条件建立反比例函数;3.理解反比例函数图像的特点和性质;4.掌握反比例函数的运算和性质;5.能够解决与反比例函数相关的实际问题。
二、教学重点和难点1.理解反比例函数的定义;2.运用已知条件建立反比例函数;3.理解反比例函数图像的特点和性质;4.进行反比例函数的运算;5.解决与反比例函数相关的实际问题。
三、教学过程Step 1:导入新知1.引入与反比例函数相关的实际问题,如两车以不同的速度行驶,行驶时间和路程之间的关系等。
Step 2:反比例函数的定义1.引导学生回顾函数的概念,并介绍反比例函数的定义。
2.反比例函数的定义:当一个变量的值与另一个变量的值成反比例关系时,可以用反比例函数来表示,形如y=k/x(其中k不等于0)。
Step 3:反比例函数的图像1.让学生思考如何绘制反比例函数的图像。
2.引导学生发现反比例函数的图像是一个以原点为对称中心的平面曲线,且相似于双曲线的形状。
Step 4:根据题目中的条件建立反比例函数1.引导学生通过具体的实例,如题目中的两车行驶的问题,来建立反比例函数。
2.引导学生根据题目中给定的条件,如两车的速度和行驶时间,建立相应的反比例函数,并求解未知量。
Step 5:反比例函数的运算和性质1.反比例函数的运算:介绍反比例函数的加、减、乘、除运算,并进行相应的例题训练。
2.反比例函数的性质:引导学生总结反比例函数的基本性质,如对称性、渐近线等。
Step 6:解决与反比例函数相关的实际问题1.给学生提供一些实际问题,如两车的速度和行驶时间问题、材料的供需关系问题等,引导学生运用反比例函数解决问题。
2.让学生结合实际情境,分析并建立合理的数学模型,进而解决问题。
Step 7:拓展与应用1.引导学生思考反比例函数在实际生活中的应用,如电阻与电流的关系、药物剂量与体重的关系等。
2.让学生尝试寻找更多与反比例函数相关的实际问题,并用所学知识解决。
《反比例函数》复习教学设计冷水江市中连中心学校邓求姣一、复习目标【知识与技能】理解反比例函数、图象及其主要性质,能根据所给信息确定反比例函数表达式,能画出反比例函数的图象,并利用它们解决简单的实际问题,体会函数的应用价值。
【过程与方法】回顾反比例函数的概念、性质、图象的过程,把数学与实际问题相结合。
【情感、态度与价值观】进一步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。
二、复习重点、难点【复习重点】1、能根据所给信息确定反比例函数表达式,画出反比例函数的图象,并利用它们解决简单的实际问题;2、掌握反比例函数的图象特点及性质。
【复习难点】1、理解反比例函数的概念;2、画反比例函数的图像,并从图像中获取信息;3、对从反比例函数增减性的理解;4、反比例函数的应用。
三、知识回顾1、反比例函数的概念:一般地,如果两个变量x,y之间的关系k(k为常数,k不等于0)的形式,那么称y是x的可以表示成y=xk中可知,x作为分母,所以不能为零。
反比例函数。
从y=x2、画反比例函数图象时要注意以下几点:⑴列表时自变量的取值应取绝对值相等而符号相反的一对数值,这样既可以简化计算,又便于标点;⑵列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线;⑶在连线时要用“光滑的曲线”,不能用折线。
3反比例函数()0≠=k xky k 的取值范围0>k 0<k图象性质①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图象的两个分支分别在第一、三象限,在每一个象限内y 随x 的增大而减小①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图象的两个分支分别在第二、四象限,在每一个象限内y 随x 的增大而增大注意:(1)反比例函数是轴对称图形和中心对称图形;(2)双曲线的两个分支都与x 轴、y 轴无限接近,但永远不能与坐标轴相交;(3)在利用图象性质比较函数值的大小时,前提应是“在同一象限”内。
中考复习教案_反比例函数_附练习试卷(含答案)教案章节:一、反比例函数的定义及性质教学目标:1. 理解反比例函数的定义;2. 掌握反比例函数的性质;3. 能够运用反比例函数解决实际问题。
教学内容:1. 反比例函数的定义:如果两个变量x和y之间的关系可以表示为y = k/x(其中k是常数,k≠0),函数y = k/x称为反比例函数;2. 反比例函数的性质:a. 反比例函数的图像是双曲线;b. 反比例函数的渐近线是x轴和y轴;c. 反比例函数的单调性:在第一象限和第三象限,函数随着x的增大而减小;在第二象限和第四象限,函数随着x的增大而增大;d. 反比例函数的顶点是原点(0,0)。
教学步骤:1. 引入反比例函数的概念,引导学生理解反比例函数的定义;2. 通过示例,引导学生掌握反比例函数的性质;3. 练习题:巩固反比例函数的定义和性质。
教学评估:1. 课堂提问:检查学生对反比例函数定义的理解;2. 练习题:评估学生对反比例函数性质的掌握程度。
教案章节:二、反比例函数的图像和性质教学目标:1. 理解反比例函数的图像特点;2. 掌握反比例函数的单调性;3. 能够分析反比例函数的实际应用。
教学内容:1. 反比例函数的图像:双曲线;2. 反比例函数的单调性:在第一象限和第三象限,函数随着x的增大而减小;在第二象限和第四象限,函数随着x的增大而增大;3. 反比例函数的实际应用:examples。
教学步骤:1. 通过示例,引导学生掌握反比例函数的图像特点;2. 通过示例,引导学生掌握反比例函数的单调性;3. 练习题:巩固反比例函数的图像和性质。
教学评估:1. 课堂提问:检查学生对反比例函数图像特点的理解;2. 练习题:评估学生对反比例函数单调性的掌握程度。
教案章节:三、反比例函数的图像和性质(续)教学目标:1. 掌握反比例函数的渐近线;2. 理解反比例函数的顶点;3. 能够分析反比例函数的实际应用。
教学内容:1. 反比例函数的渐近线:x轴和y轴;2. 反比例函数的顶点:原点(0,0);3. 反比例函数的实际应用:examples。