21 认识一元二次方程-第1课时
- 格式:docx
- 大小:3.45 MB
- 文档页数:2
21.3实际问题与一元二次方程第1课时解决代数问题教学目标知识技能1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题,百分率问题中的数量关系列一元二次方程并求解,熟悉解题解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.数学思考与问题解决1.通过列一元二次方程解决实际问题,培养学生的“模型思想”和对数学的“应用意识”.2.在病毒的传播问题中要弄清每一轮的传播源(即每一轮的感染者也是下一轮的传播者),同时要注意与细胞分裂、电脑病毒的传播等问题的区别与联系;在百分率问题中,注意弄清数量与百分率的关系,会归纳总结出增长率(降低率)问题的等量关系.情境态度通过列方程解决实际问题,让学生体会方程是刻画现实世界的一个有效的数学模型,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,感知数学与生活的密切联系,体会数学知识应用的价值,不断提高学生学习数学的兴趣.重点难点重点利用一元二次方程解决传播问题、百分率问题.难点如何理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题、百分率问题中的数量关系.教学设计活动1 创设情境一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共多少人?分析:设这个小组x人,那么每个人要送给除了他自己以外的人,共送张贺卡,由此可列方程: .提出问题:列一元二次方程解决实际问题的步骤有哪些?总结:(1)审:认真审题,分清题意,弄清已知量和未知量,寻找相等关系;(2)设:就是设未知数,分直接设未知数和间接设未知数,到底选择何种方式设未知数,要以有利于列出方程为准则;(3)列:就是根据题目中的已知量和未知量之间的关系列出方程;(4)解:就是求出所列方程的解;(5) 就是检验方程的解.首先检验计算是否正确,然后检验每个解是否复合问题的实际意义,再正确取舍;(6)答:就是对实际问题进行回答.提出问题:列一元二次方程解决实际问题的步骤与列一元一次方程解决实际问题的一般步骤有哪些相同点和不同点?活动2 探究新知例1 教材第19页探究2变化率问题.提出问题:(1)如何比较哪种药品成本的年平均下降率较大?(2)本题中应该如何设未知数?如何列方程?(3)讨论:在本题解方程的过程中,方程有两个解应该怎么办?(4)哪种药品成本的年平均下降率较大?哪种药品成本的年平均下降额较大?(5)讨论:经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?总结:变化率问题的公式若平均增长(或降低)的百分率为x ,增长(或降低)前的量是a ,增长(或降低)n 次后的量是b ,则它们的数量关系可表示为b x a n=±)1((其中增长取+,降低取-).例2 教材第19页探究1传播问题.提出问题:(1)本题中的已知量未知量分别是什么?(2)本题中我们设直接未知数还是间接未知数?(3)本题中的数量关系是什么?设每轮传染中平均一个人传染x 个人,那么①患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感.②在第二轮传染中传染源是 人,这些人中每一个人有传染了 人,第二轮传染后,共有 人患流感.(4)怎么列方程?(5)方程的解是多少?10和-12都是这个实际问题的解吗?(6)如果按这样的传染速度,三轮传染后有多少人患了流感?(7)请观察式子)1(1x x x +++与[])1(1)1(1x x x x x x x +++++++能不能化简?请在课后写出表示四轮传染、五轮传染后的患病人数的代数式,并猜测n 轮传染后的患病人数.活动3 练习巩固1.参加篮球联赛的每两队之间都进行了两次比赛(双双循环比赛),共要比赛90场,共有多少个队参加了比赛?2.某商场2014年的经营中,一月份的营业额为200万元.一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求平均每月营业额的增长率.3.某种细菌,一个细菌经过两轮繁殖后共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌? 活动4 课堂小结与作业布置课堂小结1. 列一元二次方程解决实际问题的一般步骤是哪些?2.列一元二次方程解决实际问题中,最关键是那一步?检验应该要注意什么?3.变化率问题和传播问题有什么规律?布置作业教材21-22页习题21.3第2—7题.。
《认识一元二次方程》第一课时教学设计作者:牛慧芳来源:《学校教育研究》2020年第02期教学内容:2.1 认识一元二次方程教材分析:(一)教材所处的位置认识一元二次方程是九年级《数学》上册第二章一元二次方程的第一节内容。
方程是刻画现实世界中数量关系的一个有效数学模型。
学生在七、八年级已经感受了利用方程解决实际问题的经验。
一元二次方程的知识是后续学习《二次函数》、解决函数及综合题的基础。
(二)教材结构本节通过丰富的实例“花边有多宽”“梯子的底端滑动多少米”等问题,建立一元二次方程,让学生通過观察归纳出一元二次方程的有关概念,并从中体会方程的模型思想。
(三)教学重点1.经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。
2.了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。
3.能准确说出一元二次方程的二次项,一次项、常数项。
(四)教学难点能准确运用一元二次方程解决现实生活中问题。
学情分析:学生在七年级上册《一元一次方程》一章中,已经结合丰富的现实情景,经历了方程概念的归纳过程,初步掌握了利用方程解决问题的基本步骤,为本节的深入学习奠定了基础。
素质目标:(一)知识点经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。
(二)能力训练点1.能利用去分母、去括号、移项、合并同类项等方法将一元二次方程转化为一般形式。
2.能准确确定一元二次方程的二次项,一次项、常数项。
(三)德育渗透点1.使学生在积极参与探索、交流的数学活动中,体验数学与实际活动的密切联系,感受与他人合作的重要性。
2.培养学生转化的数学思想。
教学策略:根据新教材的特点。
结合本班学生的实际情况,为了更好的突出本节重点,突破难点,圆满完成教学任务,取得良好的教学效果,本节采用“问题情景—建立模型—解释—应用与拓展的教学流程。
运用观察、比较、讨论、归纳、知识反馈等策略,引导学生多思善讲,在建立模型处适当给予点拨,以调动学生的自觉性、积极性,从而达到感知、归纳、应用、巩固和深化新知的目的。
九上数《2.1认识一元二次方程(第1课时)》教学流程
注:“H”指课件中的幻灯片,如“H4”指课件中的第4张幻灯片。
)
前面已学习了一元一次方程及其解
法。
提问学生,简单过。
学生齐读
通过此三题复习一元一次方程的概念及其解法。
(H3)3´
生2´,师1´
探究新知知识点1
通过此活动理解一元二
次方程的概念。
(H4、H5)①头天晚修自学完成;②生展示答案;③师精讲并归纳一元二次方程的概念。
2 通过此环节进一步掌握
一元二次方程的一般形
式及其相关概念。
(H6)
①分组+普做;②对答案,师点评;
③师傅再教徒弟小组合作学习。
内容二)
进一步掌握一元二次方
程的概念(H7)
对本节课所学知识的归
学生自由谈纳总结(H8)。
课题:§2.1 认识一元二次方程(第1课时)【北师大版九年级上学期】宁德市福安县(市、区)学校福安三中姓名罗清声内容分析:1. 课标要求北师大版九年级上学期“§2.1认识一元二次方程”一节包括一元二次方程的概念,一元二次方程的一般形式以及一元二次方程的解的概念.《义务教育数学课程标准》对一元二次方程一节相关的内容没有提出具体的教学要求,但可以参照对方程概念的要求,即能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型.2. 教材分析知识层面:教科书先以一个设计人体雕像的实际问题作为开篇,并在第一节中又给出两个实际问题,通过建立方程,并引导学生思考这些方程的共同特点,从而归纳得出一元二次方程的概念、一般形式,给出一元二次方程根的概念.在这个过程中,通过归纳具体方程的共同特点,定义一元二次方程的概念,体现了研究代数学问题的一般方法.一般形式也是对具体方程从“元”(未知数的个数)、“次数和“项数”等角度进行归纳的结果;a≠0的规定是由“二次”所要求的,这实际上也是从不同侧面理解一元二次方程概念的契机.本节以实际问题为背景,引出一元二次方程的概念,归纳出一元二次方程的一般形式,给出一元二次方程的根的概念,并指出一元二次方程的根不唯一。
本节内容实在前面所学方程的基础上进行学习,也是后面学习二次函数的一个基础。
这些概念是全章后继内容的基础。
能力层面:本章开篇,教科书利用花边有多宽这一典型的数学生活问题,通过建立数学模型得到一个一元二次方程,由此引发学习本章内容的需要.接着,通过五个连续整数,使前三个数的平方和等于后两个数的平方和的问题以及梯子的底端滑动距离的问题,又得到两个一元二次方程,然后引导学生从“未知数的个数”和“最高次数”两个方面进行归纳,抽象出一元二次方程的概念及其数学符号表示(一元二次方程的一般形式).这样编排,不仅可以使学生认识到学习一元二次方程是解决实际问题的需要,而且还可以使学生体验运用数学知识解决实际问题的基本过程,积累数学活动经验,从而培养模型思想,逐步形成应用意识.思想层面:引入一元二次方程概念的过程中,教科书在“边空”中多次安排提示性设问“方程中未知数的个数和最高次数各是多少?”再在“思考”栏目中提出归纳几个方程共同特点的学习任务;在给出一元二次方程概念、一般形式后,通过“为什么规定a≠0?”引导学生辨析概念;最后通过例题,让学生用概念做判断.这样安排,体现了概念学习的一般过程,教科书在归纳具体方程的共同特点、辨析概念的关键词等关键环节中设置问题,引导学生进行独立思考与发现.3. 学情分析本班为自己任课的班级,学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。
21.1一元二次方程(第1课时)一、学习目标1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
二、学习重点、难点重点:建立一元二次方程的概念,认识一元二次方程的一般形式。
难点:在一元二次方程化成一般形式后,如何确定一次项和常数项。
三、学习过程(一)知识准备:(1) 多项式3x 2y-2x-1是次项式,其中最高次项是,二次项系数为,一次项系数为,常数项为 。
(2)叫方程,我们学过的方程类型有。
(3)解下列方程或方程组: ①1)1(2-=+x x ②⎩⎨⎧=+=-42y x y x ③211=-x(二)新课学习:1.自学教材P25——27,回答以下问题。
(1)一元二次方程的定义:等号两边都是,只含有个求知数(一元),并且求知数的最高次数是 (二次)的方程,叫做一元二次方程。
(2)一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式: (a ≠0),这种形式叫做一元二次方程的一般形式。
其中是二次项,是二次项系数,是一次项,是一次项系数,是常数项。
【注意】①方程ax 2+bx +c =0只有当a ≠0时才叫一元二次方程,如果a =0,b ≠0时就是方程了。
所以在一般形式中,必须包含a ≠0这个条件。
②二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号。
2.新课应用: 1、下列方程是一元二次方程的是有:(1),(2)(x+1)(x-1)=0, (3),(4)01122=-+xx ,(5),(6)05322=-+y x2、参照教材P 26例题,解答:①一元二次方程15242+-=x x x 化为一般形式是:;其二次项是:;一次项是:;常数项是:.②把方程()()11212=+-y y 化为一般形式为:;其二次项系数是;一次项系数是;常数项是. 3、若033)3(2=++--nx xm n 是关于x 的一元二次方程,则().A m ≠0,n=3B m ≠3,n=4C m ≠0,n=4D m ≠3,n ≠0 4、已知:关于x 的方程()()021122=-++-x k x k .(1)当k 取何值时,此方程为一元一次方程. (2)当k 取何值时,此方程为一元二次方程.四、达标过关测试1.下列方程中,是关于x 的一元二次方程的是().A.()()12132+=+x x B.02112=-+x x C.02=++c bx ax D.1222-=+x x x2.一元二次方程12)3)(31(2+=-+x x x 化为一般形式为:,二次项系数为: ___,一次项系数为: ____,常数项为: _____.3.关于x 的方程023)1()1(2=++++-m x m x m ,当m ________时为一元一次方程;当m___________时为一元二次方程.4.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为.5.如图所示,在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是()A .213014000x x +-= B .2653500x x +-=C .213014000x x --= D .0350652=+-x x21.1一元二次方程(第2课时)---- 一元二次方程的根一、学习目标1、会进行简单的一元二次方程的试解;理解方程解的概念。
21.1 解一元二次方程(1)【教学目标】知识与技能:1.会用开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程2.探索利用配方法解一元二次方程的一般步骤;能够利用配方法解一元二次方程.过程与方法:在探索配方法时,使学生感受前后知识的联系,体会配方的过程以及方法。
情感态度价值观:体会由未知向已知转化的思想方法.【教学重难点】重点:用直接开平方法和配方法解一元二次方程.难点:把一元二次方程通过配方转化为(x十m)2=n(n 0)的形式.【教学过程】一、复习引入【问题】1.求出下列各式中x的值,并说说你的理由.(1)x2=9 (2)x2=5 (3)x2=a(a>0).说明:复习平方根的意义,解形如x2=n的方程,为继续学习引入作好铺垫.2.什么是完全平方式?3. 填上适当的数,使下列各式成立.(1)x2+ 6x+ =(x+3)2(2) x2+8x+ =(x+ )2(3)a2+2ab+ =(a+ )2 (4)a2-2ab+=(a- )2二、探索新知【问题】一桶某种油漆可刷的面积为1 500 dm 2,李林用这桶油漆恰好刷完10个同样的正方体的盒子的全部外表,你能算出盒子的棱长吗?分析:学生独立分析题意,发现若设正方体的棱长为x dm ,则一个正方体的表面积为6x 2 dm 2,根据一桶油漆可以刷的面积,列出方程:10×6x 2=1500整理,得x 2=25x=±5x 1=5,x 2=-5棱长不能为负数,所以盒子的棱长为5 dm说明:在学生列出方程后,让学生讨论方程的解法,由于所列出的方程形式比较简单,可以运用平方根的定义(即开平方法)来求出方程的解.让学生感受开平方可以解一些简单的一元二次方程.归纳:一般地,对于方程2x p =(1)当P >0时,方程有两个不等的实数根(2)当P=0时,方程有两个相等的实数根(3)当P <0时,方程没有实数根【探究】你认为怎样解方程2(3)5x +=?学生独立分析问题,发现和【问题】中的方程形式类似,可以利用平方根的定义,直接开平方得到35x +=±,于是得到13x =-23x =-归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程. 说明:在学生讨论方程的解法时,注意引导学生根据降次的思想,利用配方的方法解决问题,进而体会配方法解方程的一般步骤.【探究】怎样解方程2640x x ++=?归纳:1.通过配成完全平方式的形式解一元二次方程的方法,叫作配方法;2.配方的目的是为了降次,把一元二次方程转化为两个一元一次方程说明:引导学生根据降次的思想,利用配方的方法把一元二次方程转化为两个一元一次方程来解方程.【例题讲解】例:解下列方程(1)x 2-8x + 1 = 0; (2)2213x x +=; (3)23640x x -+=.学生首先独立思考,自主探索,然后交流配方时的规律.经过分析得到(1)中经过移项可以化为281x x -=-,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到2228414x x -+=-+,得到(x -4)2=15;(2)中二次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即23122x x -=-,方程两边都加上23()4,方程可以化为231()416x -=; (3)按照(2)的方式进行处理.总结:利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式20ax bx c ++=; (2)把方程的常数项通过移项移到方程的右边;(3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.说明:在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理等),通过解几个具体的方程,归纳作配方法解题的一般过程.归纳:一般地,对于方程2()x n p +=(1)当P >0时,方程有两个不等的实数根,1x n =-+2x n =-(2)当P=0时,方程有两个相等的实数根12x x n ==-(3)当P <0时,方程没有实数根三、巩固练习教材9页第1、2题.说明:检查学生对基础知识的掌握情况,进一步掌握配方法四、小结作业小结:1. 要熟练直接开平方法和配方法的技巧,来解一元二次方程,2.掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。
22. 1 一元二次方程第一课时一、 教学内容一元二次方程概念及一元二次方程一般式及有关概念. 二、 教学目标了解一元二次方程的概念;一般式a/+bx+c 二0 (aHO )及其派生的概念;应用一元二 次方程概念解决一些简单题H .1. 通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2. 一元二次方程的一般形式及其有关概念.3. 解决一些概念性的题目.4. 通过生活学习数学,并用数学解决生活中的问题來激发学生的学习热情. 三、 重难点关键1. 重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概 念解决问题.2. 难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概 念迁移到一元二次方程的概念.四、 教学过程 (一、)复习引入 学牛活动:列方程.问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺•八寸,两隅相去适一 丈,问户高、广各儿何? ”人意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽 各是多少? 如果假设门的高为x 尺,那么,这个门的宽为 _________ 尺,根据题意,得 __________ 整理、化简,得: __________ ・问题(2)如图,一块四周镶冇宽度相等的花边的地毯, 毯中央的长方形图案的面积为18m2,求花边有多宽?设花边的宽为“ in ,那么地毯屮央长方形图案的 长为 m, 宽 为 _____________ m,根据题意, 得方程: ____________________________________ . 问题(3)观察下面等式:102+112+122=132+142你还能找到其他的五个连续整数,使前三个 数的平方和等于后两个数的平方和吗? 设五个连续整数中第一个为x,那么后四个___________________________________ ,根据题意, 得方程: ___________________________________________________________________ 老师点评并分析如何建立一元二次方程的数学模型,并整理. (二、)探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有儿个未知数?数为 __________ 它的长为8m,宽为5m,如果地(2)按照整式中的多项式的规定,它们最高次数是儿次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x; (2)它们的最高次数都是2次的;(3)都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.-般地,任何一个关于x的一元•二次方程,经过整理,都能化成如下形式ax2+bx+c=0 (aHO).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0 (aHO)后,其屮ax'是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.(阅读练习册P1例题)巩固练习1、下列方程中,一元二次方程冇( )个(1)/ = 3 (2)5酹=3(/・ 1) ⑶丄二/ (+)yz・ A2 =5 (5)5/ ・2x = 5(/ +2)(/ ・ 1)x 4A. 2B. 3 C・ 4 D. 5例1.将方程(8-2x) (5-2x)二18化成一元二次方程的一般形式,并写出其屮的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=O(8工0).因此,方程(8~2x) ( 5~2x)=18必须运用整式运算进行整理,包括去•括号、移项等.解:去扭号,得:40-16x-l 0X+4X2= 18移项,得:4x-26x+22=0其中二次项系数为4, 一次项系数为-26,常数项为22.(三、)巩固练习教材匕练习1、(四、)应用拓展例2.求证:关于x的方程(m2-8m+17) x2+2mx+l=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m収何值,该方程都是一元二次方程,只要证明m2-8m+17 H0即可. 证明:m2-8m+17= (m-4) 2+1•・• (m-4)空0・・・(m-4) 2+1>0, B|J (m-4) 2+1^0・・・不论m取何值,该方程都是一元二次方程.五、归纳小结(学生总结,老师点评)本节课要掌握:(1) 一元二次方程的概念;(2) 一元二次方程的一般形式ax'+bx+c二0 CaHO)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业1.练习册P H提升:(A组)2.选用作业设计.作业设计一、选择题1.在下列方程中,一元二次方程的个数是().①3x'+7二0 ②ax"+bx+c二0 ③(x-2) (x+5) =x2-l ④3x2-— =0XA. 1个B. 2个C. 3个D. 4个2.px2-3x+p2-q=0是关于x的一元二次方程,则().A. p=lB. p>0C. pHOD. p 为任意实数二、填空题1.____________________________________ 方程3x「3二2x+l的二次项系数为, 一次项系数为 ______________________________________________ ,常数项为2.一元二次方程的一般形式是__________ .3.关于x的方程(旷1) X2+3X=0是一元二次方程,则a的取值范围是 __________ .三、综合提高题1. a满足什么条件时,关于x的方程a (x2+x) =>/3x- (x+1)是一元二次方程?2.关于x的方程(2m2+m) x,,M+3x=6可能是一元二次方程吗?为什么?反思提高:。
第二章 一元二次方程
** 认识一元二次方程
第1课时 一元二次方程
1、知识与技能:理解一元二次方程的定义,会判断满足一元二次方程的条件。
2、能力培养:能根据具体情景应用知识。
3、情感与态度:体验与他人合作的重要性及数学活动中的探索和创造性。
自学指导 阅读教材第31至32页,并完成预习内容.
(1)如果设未铺地毯区域的宽为xm ,那么地毯中央长方形图案的长为 (8-2x ) m ,宽为为 (5-2x ) m.
根据题意,可得方程 (8 - 2x) (5 - 2x) = 18
(2)试再找出(10、11、12、13、14以外)其他的五个连续整数,使前三个数的平方和等于后两个数的平方和: ;
如果设五个连续整数中的第一个数为x ,那么后面四个数依次可表示为 x +1 、 x +2 、 x +3 、 x +4 ,根据题意可得方程: 22222
(x 1)(x 2)(x 3)(x 4)x ++++=+++ (3)根据图2-2,由勾股定理可知,滑动前梯子底端距墙 6 m ,如果设梯子底端滑动xm ,那么滑动后梯子底端
距墙 x+6 m ,梯子顶端距地面的垂直距离为 7 m ,根据题意,可得方程: 72+(x +6)2 =102
归纳总结:
观察上述三个方程,它们的共同点为:① 含有一个未知数x ;② 整式方程 ;这样的方程叫做 一
元二次方程 .其中我们把 ax 2+bx +c =0(a ,b ,c 为常数, a ≠0) 称为一元二次方程的一般形式,
ax 2,bx ,c 分别称为 二次项 、 一次项 、 常数项 ,a 、b 分别称为 二次项系数 、 一次项系数 .
活动1小组讨论
例1将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
解:2x 2-13x+11=0;2,-13,11.
将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.
例2判断下列方程是否为一元二次方程:
(1)1-x2=0 ; (2)2(x 2-1)=3y ; (3)2x2-3x-1=0;
(4)212x x
-=0 ; (5)(x+3)2=(x-3)2; (6)9x 2=5-4x. 解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.
(1)一元二次方程为整式方程;(2)类似(5)这样的方程要化简后才能判断.
活动2 跟踪训练
1.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
(1)5x 2-1=4x ; (2)4x 2=81;
(3)4x(x+2)=25 ; (4)(3x-2)(x+1)=8x-3.
解:(1)5x 2-4x-1=0; 5, -4, -1;
(2)4x 2-81=0; 4, 0, -81;
(3)4x 2+8x-25=0; 4, 8, -25;
(4)3x 2-7x+1=0; 3, -7, 1.
4.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:
(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;
(2)一个长方形的长比宽多2,面积是100,求长方形的长x;
(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.
解:(1)4x2=25;4x2-25=0;(2)x(x-2)=100;x2-2x-100=0;
(3)x=(1-x)2;x2-3x+1=0.
活动3课堂小结
1.一元二次方程的概念以及怎样利用概念判断一元二次方程.
2.一元二次方程的一般形式ax2+bx+c=0(a≠0)特别强调a≠0.
当堂训练
请使用《名校课堂》相应部分练习。