双曲线的标准方程1公开课
- 格式:ppt
- 大小:3.76 MB
- 文档页数:44
《双曲线的标准方程》教学设计第一课时◆教学目标1. 掌握双曲线的定义,提升学生的数学抽象素养.2.掌握双曲线的标准方程的推导过程,提高学生的数学运算素养.◆教学重难点◆教学重点:双曲线的定义及其标准方程.教学难点:双曲线标准方程的推导过程.◆课前准备PPT课件.◆教学过程一、整体概览问题1:阅读课本,回答下列问题:(1)本节将要研究哪类问题?(2)本节要研究的对象在高中的地位是怎样的?师生活动:学生带着问题阅读课本,老师指导学生概括总结本节的内容.预设的答案:(1)本节课主要学习双曲线的标准方程第一课时.(2)学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步深化和提高.如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章.所以说本节课的作用就是纵向承接双曲线定义和标准方程的研究,横向加深对双曲线的标准方程及简单几何性质的理解与应用.设计意图:通过章引言内容的预习,让学生明晰下一阶段的学习目标,初步搭建学习内容的框架.二、探索新知1、探究新知问题2:如图所示,某中心O 接到其正西、正东、正北方向三个观测点A ,B ,C 的报告: A ,C 两个观测点同时听到一声巨响,B 观测点听到的时间比A 观测点晚4s ,已知各观测点到该中心的距离都是1020m ,假定当时声音传播的速度为340m /s ,且A ,B ,C ,O 均在同一平面内.你能确定该巨响发生的点的位置吗?师生活动:学生充分思考,并鼓励学生尝试给出答案.设计意图:通过实际问题,引导思考,引出双曲线的定义.发展学生数学抽象,直观想象的核心素养.上述情境中,因为观测点A 与C 同时听到响声,说明P 一定在AC 的垂直平分线上;因为观测点B 听到的时间比观测点A 晚4s ,这说明P 距离B 更远,而且13603404||||=⨯=-PA PB ,那么,满足上式的点P 可能的位置有哪些呢?这与本小节我们要讨论的双曲线有关.一般地:如果21,F F 是平面内的两个定点,a 是一个常数,且||221F F a >,则平面内满足a PF PF 2||||||21=-的动点P 的轨迹称为双曲线,其中,两个定点21,F F 称为双曲线的焦点,两个焦点之间的距离||21F F 称为双曲线的焦距.另外,可以看出,双曲线也可以通过用平面截圆锥面得到,因此双曲线是一种圆锥曲线.问题3:你能利用拉链等日常生活中的物品作出双曲线吗?师生活动:教师提示,学生自己尝试画出双曲线.预设的答案:画法:如图①所示,取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F 1,F 2上,把笔尖放在点M 处,随着拉链逐渐拉开或者闭拢,笔尖所经过的点就画出一条曲线,这就是双曲线的一支.把两个固定点的位置交换,如图②所示,类似可以画出双曲线的另一支.这两条曲线合起来叫做双曲线.设计意图:通过具体的操作,让学生更加清楚双曲线的形成过程.问题3:这种作双曲线的方法,请问双曲线上的点到两定点21,F F 的距离有何特点? 师生活动:通过实践操作,学生自己总结答案.预设的答案:可以看出拉链M 到21,F F 的距离的差的是一个常数.设计意图:通过观察实践.让学生自己总结结论,发展学生直观想象,数学抽象的核心素养.问题4:怎样从数学上证明满足双曲线定义的点一定是存在的?这样的点有多少个?你能想到什么办法来解决这两个问题?师生活动:学生充分思考,并由学生在练习本上写出过程,展台展示.预设的答案:以21,F F 所在直线为x 轴,线段21F F 的垂直平分线为y 轴,建立平面直角坐标系xOy ,设双曲线的焦点分别为)0,(),0,(21c F c F -.设P 的坐标为),(y x ,因为a PF PF 2||||||21=-,而且221)(||y c x PF ++=,222)(||y c x PF +-=,所以+++22)(y c x a y c x 2)(22±=+-, ①由①得a y c x y c x y c x y c x 2)()(])[()(22222222±=+-++++--++整理得x a c y c x y c x 2)()(2222±=+-+++,②①+ ②整理得)()(22x ac a y c x +±=++,③ 将③式平方再整理得2222222)(a c y ax a c -=-- ④因为0>>a c ,所以22a c >,设222b a c =-,且0>b ,则④式可化为的双曲线的标准方程.设计意图:类比双曲线的标准方程推导,运用双曲线定义推导其标准方程.发展学生数学抽象,数学运算,直观想象的核心素养.三、初步应用例1 求满足下列条件的双曲线的标准方程.两个焦点分别是)0,5(),0,5(21F F -,双曲线上的点P 到两焦点的距离之差的绝对值为8;师生活动:学生自行解答,由老师指定学生回答.预设的答案:由已知得82=a ,因此4=a ,又因为5=c ,所以9222=-=a c b ,因为双曲线的焦点在x 轴上,所以所求的双曲线的标准方程为191622=-y x 设计意图:通过典例解析,,帮助学生形成求解双曲线标准方程的基本解题思路,进一步体会数形结合的思想方法.发展学生数学运算,数学抽象和数学建模的核心素养.四、归纳小结,布置作业问题5:(1)什么是双曲线?焦点?焦距?(2)焦点在x 轴上的双曲线的标准方程是什么?师生活动:学生尝试总结,老师适当补充.预设的答案:(1)如果21,F F 是平面内的两个定点,a 是一个常数,且||221F F a >,则平面内满足a PF PF 2||||||21=-的动点P 的轨迹称为双曲线,其中,两个定点21,F F 称为双曲线的焦点,两个焦点之间的距离||21F F 称为双曲线的焦距.(2设计意图:通过梳理本节课的内容,能让学生理解双曲线的标准方程的有关知识. 布置作业:教科书上的练习题五、目标检测设计1.“11m -<<”是“方程22112x y m m +=+-表示双曲线”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件设计意图:本题主要考查充分条件和必要条件的判断,结合双曲线的定义是解决本题的关键.2.若方程221625x y k k+=--表示焦点在y 轴上的双曲线,则k 的取值范围是( ) A .(5,10)B .(3,5)C .(6,)+∞D .,35),()(∞⋃+∞-设计意图:考查学生双曲线的定义的认识. 3.过点(1,1),且b a=x 轴上的双曲线的标准方程是( ) A .22112x y -=B .22112y x -=C .22112y x -= D .22112x y -=或22112y x -= 设计意图:考查学生对双曲线的标准方程的求法.参考答案:1.【答案】A 若方程22112x y m m +=+-表示双曲线, 则(1)(2)0m m +-<,得12m -<<,则11m -<<能推出12m -<<,12m -<<不能推出11m -<<,“11m -<<”是“方程22112x y m m +=+-表示双曲线”的充分不必要条件, 故选:A .2.【答案】B 方程221625x y k k+=--表示焦点在y 轴上的双曲线 所以50620k k ->⎧⎨-<⎩,即35k << 故选:B3.【答案】D由b a=,知:222b a =. 当焦点在x 轴上时,设双曲线方程为222212x y a a-=,将点(1,1)代入可得212a =,则双曲线方程为22112x y -=. 故选:A。
《双曲线及其标准方程》教学设计第1课时“双曲线及其标准方程”是在讲完了“圆的方程”“椭圆及其标准方程”之后,学习的又一类圆锥曲线知识,也是中学解析几何的学习中最重要的内容之一,它在社会生产、日常生活和科学技术等领域有着广泛的应用,也是大纲中明确要求学生必须熟练掌握的重要内容.双曲线的定义、标准方程与椭圆类似,教科书的处理方法也相仿,也就是说,本小节在数学思想和方法上没有新内容,因此,这一小节的教学可以参照第2.2.1节进行.教学中要着重对比椭圆与双曲线的相同点和不同点,特别是它们的不同点.课时分配本节内容分两课时完成.第1课时讲解双曲线的定义,要求学生类比椭圆标准方程的推导过程推导双曲线的标准方程;第2课时讲解运用双曲线的定义及其标准方程解题.1.使学生掌握双曲线的定义,理解双曲线标准方程的推导过程,能根据条件确定双曲线的标准方程.2.在与椭圆的类比中,掌握双曲线的标准方程的推导方法,增强合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、数形结合思想解决问题的能力.教学重点:双曲线的定义和双曲线的标准方程.教学难点:双曲线标准方程的推导.复习引入1.椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆的标准方程(1)焦点在x 轴x 2a 2+y 2b 2=1,(a >b >0);(2)焦点在y 轴y 2a 2+x 2b 2=1,(a >b >0).3.a 、b 、c 之间有何种关系? a 2=c 2+b 2. 探究新知探究:如果把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?用几何画板演示拉链的轨迹:(A ) (B )活动成果:以上两条曲线合起来叫做双曲线,每一条叫做双曲线的一支. 下面请同学们思考以下问题:设问:①定点与动点不在同一平面内,能否得到双曲线? ②两条曲线中到“两定点的距离的差”有什么关系?③这个常数是否会大于或等于两定点间的距离?(几何画板演示当常数等于|F 1F 2|及常数大于|F 1F 2|时的点的轨迹,帮助学生理解)请学生回答:1.不能.指出必须“在平面内”.2.到两定点的距离的差的绝对值相等,否则只表示双曲线的一支,且到两定点的距离的差的绝对值为一个常数,即||MF 1|-|MF 2||=2a .3.应小于两定点间距离且大于零.当常数等于|F 1F 2|时,轨迹是以F 1、F 2为端点的两条射线;当常数大于|F 1F 2|时,无轨迹.活动设计:小组讨论,实验演示,通过提出问题,让学生讨论问题,并尝试解决问题.让学生了解双曲线的前提条件,并培养学生的全面思考能力.感受曲线,解读演示得到的图形是双曲线(一部分).提出问题:类比椭圆的定义,给出双曲线的定义.活动设计:学生先独立思考,教师加以引导,与椭圆有一个类比,允许学生自愿合作、讨论、交流.学情预测:学生的回答可能不全面、不准确,我们可以用几何画板演示学生的回答,让他们发现问题,然后不断补充、纠正,趋于完善.活动成果:师生共同概括出双曲线的定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.(在归纳定义时强调定义要满足三个条件:在平面内、任意一点到两个定点的距离的差的绝对值等于常数、常数小于|F1F2|且大于零)下面我们类比椭圆方程的推导,选择适当的坐标系,建立双曲线方程.为今后通过方程研究双曲线的性质做好准备.提出问题:求椭圆方程的步骤是什么?活动结果:建系、设点、列式、化简.(学生回答,教师板书)提出问题:和椭圆类似,我们应如何建立坐标系,使求出的方程更为简单?活动设计:学生先独立思考,类比椭圆找到两种简单的建系方法,并找学生到黑板板演,教师巡视指导其他学生,必要时给板演的学生给予指导.(推导过程以焦点在x轴上为例)学生板演,先请学生评讲,教师再评讲.以线段F1F2的中点为原点,直线F1F2为x轴,建立直角坐标系.设P(x,y)是双曲线上任意一点,双曲线的焦距为2c(c>0),那么,焦点F1,F2的坐标分别是(-c,0),(c,0),又设点P与F1,F2的距离的差的绝对值等于常数2a.则有:x-c2+y2-x+c2+y2=±2a,①移项,得x+c2+y2=x-c2+y2±2a.两边平方,得x-c2+y2=|a-ca x|.②②式再两边平方并整理得(c2-a2)x2-a2y2=a2(c2-a2),(※)根据双曲线的定义c>a,c2-a2>0.设b2=c2-a2,代入上式,得x2a2-y2b2=1.这个方程叫做双曲线的标准方程,它所表示的双曲线的焦点在x轴上,焦点坐标是F1(-c,0)、F2(c,0).学情预测:一般情况下,得到方程(※)后,学生会类比椭圆设b2=c2-a2,但要注意证明的严密性,帮助学生在证明过程中完善步骤.提出问题:设此方案中的双曲线与x 轴的交点分别为A 1,A 2,同学们都知道a ,c 的含义,你能从图形中找到长度分别等于a ,c 的线段吗?学情预测:估计得出c =|F 1F 2|2=|OF 1|=|OF 2|,a =|A 1A 2|2=|OA 1|=|OA 2|应当不会有问题.提出问题:你能在y 轴上找一点B ,使得|OB |=b 吗?学情预测:学生会发现在y 轴的正负半轴上各有一个这样的点,我们分别设为B 1,B 2,则|B 2A 1|=|B 2A 2|=c =|B 1A 1|=|B 1A 2|.这样,因为△B 2OA 2为直角三角形,且|B 2A 2|=c ,|OA 2|=a ,所以,c 2-a 2=|OB 2|2.因此,方程(※)中的c 2-a 2有明显的几何意义.提出问题:如果以F 1,F 2所在直线为y 轴,线段F 1F 2的垂直平分线为x 轴,建立直角坐标系,焦点是F 1(0,-c ),F 2(0,c ),双曲线的方程又如何呢?类比椭圆,如果双曲线的焦点在y 轴上,把方程x 2a 2-y 2b 2=1中的x 、y 互换,得到它的方程为y 2a 2-x 2b2=1,这也是双曲线的标准方程.双曲线的标准方程有两个.教师应指出:我们所得的两个方程x 2a 2-y 2b 2=1和y 2a 2-x 2b 2=1(a >0,b >0)都是双曲线的标准方程.提出问题:已知双曲线标准方程,如何判断焦点位置?活动设计:学生先独立思考,当然,学生自愿合作讨论的也允许. 活动结果:看x 2,y 2的系数,哪个系数为正就在哪一条轴上. 练习:写出以下双曲线的焦点坐标.1.x 216-y 29=1 2.x 29-y 216=1 F (±5,0) 3.y 216-x 29=1 4.y 29-x 216=1 F (0,±5) 理解新知1.观察双曲线的图形及其标准方程,师生共同总结归纳:(1)双曲线标准方程对应的双曲线中心在原点,以焦点所在轴为坐标轴; (2)双曲线标准方程形式:左边是两个分式的平方差,右边是1;(3)双曲线标准方程中三个参数a ,b ,c 的关系:c 2=a 2+b 2(a >0,b >0); (4)双曲线焦点的位置由标准方程中x 2,y 2的系数的正负确定; (5)求双曲线标准方程时,可运用待定系数法求出a ,b 的值.2.在归纳总结的基础上填下表.c2=a2+b2c2=a2+b2(±c,0)(0,±c)在x轴上在y轴上3.双曲线的标准方程与椭圆的标准方程有何区别与联系?运用新知例题研讨,变式精析1判断下列方程是否表示双曲线,若是,求出三个量a,b,c的值.①x24-y22=1,②x22-y22=1,③x24-y22=-1,④4y2-9x2=36.思路分析:双曲线标准方程的形式:平方差,x2项的系数是正的,那么焦点在x轴上,x2项的分母是a2;y2项的系数是正的,那么焦点在y轴上,y2项的分母是a2.解:①是双曲线,a=2,b=2,c=6;②是双曲线,a=2,b=2,c=2;③是双曲线,a=2,b=2,c=6;④是双曲线,a =3,b =2,c =13.2已知双曲线的焦点为F 1(-5,0),F 2(5,0),双曲线上一点P 到F 1、F 2的距离的差的绝对值等于6,求双曲线的标准方程.思路分析:巩固双曲线的标准方程,解题思路是寻找两个定值a ,c .用待定系数法求出双曲线的标准方程.解:∵双曲线的焦点在x 轴上,∴设它的标准方程为 x 2a 2-y 2b 2=1(a >0,b >0). 根据题意知2a =6,2c =10. ∴a =3,c =5 ∴b 2=52-32=16.∴所求双曲线的标准方程为x 29-y 216=1.点评:焦点定位,a 、b 、c 三者知二定形.变练演编提出问题:请解答下列问题:1.已知双曲线x 216-y 29=1,你可以得到哪些结论?(把你能得到的结论都写出来)2.已知a =2,c =4,则你可以得到双曲线的哪些结论?(把你能得到的结论都写出来) 3.已知a =4,______________,可以求得双曲线的标准方程为y 216-x 29=1,则题中横线上需要添加什么样的条件?活动设计:学生先独立探索,允许互相交流成果.然后,全班交流. 学情预测:1.a =4,b =3,c =5,两焦点坐标为(-5,0),(5,0). 2.b =23,双曲线的标准方程为x 24-y 212=1或y 24-x 212=1等.3.b =3,且焦点在y 轴上;或c =5,且焦点在y 轴上;或一个焦点坐标为(0,5)(答案很多).设计意图:设置本组开放性问题,意在增加问题的多样性、有趣性、探索性和挑战性,训练学生思维的发散性、收敛性、灵活性和深刻性,长期坚持,不仅会加深学生对数学的理解、掌握,而且会潜移默化地学会编题、解题,更会把学生的基础知识巩固得更广、更深.达标检测1.求a =4,b =3,焦点在x 轴上的双曲线的标准方程.2.求a =25,经过点(2,-5),焦点在y 轴上的双曲线的标准方程. 3.证明椭圆9x 2+25y 2=225与双曲线x 2-15y 2=15的焦点相同.4.若方程x 2sinα+y 2cosα=1表示焦点在y 轴上的双曲线,则角α所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.设双曲线x 216-y 29=1上的点P 到点(5,0)的距离为15,则P 点到(-5,0)的距离是…( )A .7B .23C .5或23D .7或23 答案:1.x 216-y 29=1;2.y 220-x 216=1; 3.9x 2+25y 2=225 x 225+y 29=1 F (±4,0).x 2-15y 2=15x 215-y 2=1 F (±4,0);4.D x 2sinα+y 2cosα=1表示焦点在y 轴上的双曲线⎩⎨⎧sinα<0cosα>0α在第四象限,所以选D .5.D |d -15|=2a =8 d =7或23.课堂小结知识整理,形成系统(由学生归纳,教师完善) (1)双曲线的定义(与椭圆的区别) (2)标准方程(两种形式)(3)焦点位置的判断(与椭圆的区别) (4)a 、b 、 c 的关系(与椭圆的区别)让学生对本节课进行总结.目的是帮助他们认清这节课的知识结构, 培养他们的归纳总结能力.作业布置教材习题2.3 A 组第1题,第2(1)题. 补充练习 基础练习 1.填空题:(1) x 252-y 232=1,则a =______________ ,b =________________ ;(2)x 242-y 262=1,则a =______________ ,b =________________ ;(3)x 29-y 24=1,则a =______________ ,b =________________ .2.求下列椭圆的焦点坐标: ①x 29-y 24=1;②16x 2-7y 2=112. 拓展练习已知双曲线的一个焦点坐标为F 1(0,-13),双曲线上一点P 到两焦点距离之差的绝对值为24,求双曲线的标准方程.解:因为焦点坐标为F 1(0,-13). 所以c =13.又双曲线上一点P 到两焦点距离之差的绝对值为24. 所以2a =24,即a =12. 所以b 2=c 2-a 2=169-144=25.所以所求双曲线的标准方程为y 2144-x 225=1.1.在“双曲线的标准方程”的引入与推导中,充分利用几何画板演示,并运用“实验——观察——类比——证明——应用”的思想方法,逐步由感性到理性地认识定理.这样安排符合学生的认识规律,揭示了知识的发生、发展过程;也符合现代教育理论中的“要把学生学习知识当作认识事物的过程来进行教学”的观点.2.在教学的过程中始终本着:数学的学习过程是学生自己的“再创造”的原则,通过教师启发引导,让学生通过实验、观察、思考、类比、推理、交流、合作、反思等过程进行探究,构建新知识,真正做到将传授知识和培养能力融为一体,较好地体现“数学教学主要是数学活动的教学”这一教育思想.。