弯曲正应力、切应力与强度条件讲解学习
- 格式:ppt
- 大小:6.62 MB
- 文档页数:155
第18讲教学方案——弯曲切应力、弯曲强度条件§7-3 弯曲切应力梁受横弯曲时,虽然横截面上既有正应力σ,又有剪应力 τ。
但一般情况下,剪应力对梁的强度和变形的影响属于次要因素,因此对由剪力引起的剪应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。
1.矩形截面梁对于图6-5所示的矩形截面梁,横截面上作用剪力Q 。
现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。
根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力Q 的方向一致。
由于对称的关系,横线1aa 中点处的剪应力也必与Q 的方向相同。
根据这三点剪应力的方向,可以设想1aa 线上各点剪应力的方向皆平行于剪力Q 。
又因截面高度h 大于宽度b ,剪应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。
基于上述分析,可作如下假设:1)横截面上任一点处的剪应力方向均平行于剪力 Q 。
2)剪应力沿截面宽度均匀分布。
基于上述假定得到的解,与精确解相比有足够的精确度。
从图6-6a 的横弯梁中截出dx 微段,其左右截面上的内力如图6-6b 所示。
梁的横截面尺寸如图6-6c 所示,现欲求距中性轴z 为y 的横线1aa 处的剪应力 τ。
过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图6-6d )。
根据剪应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。
微块左右侧面上正应力的合力分别为1N 和2N ,其中*1I 1**z zAzA S I M dA I My dA N ===⎰⎰σ (a ) *1II 2)()(**z z Az A S I dM M dA I y dM M dA N +=+==⎰⎰σ (b)式中,*A 为微块的侧面面积,)(II I σσ为面积*A 中距中性轴为 1y 处的正应力,⎰=*1*A z dA y S 。
第五章弯曲应力第五章 弯曲应力内容提要一、梁的正应力Ⅰ、纯弯曲和横力弯曲纯弯曲:梁横截面上的剪力为零,弯矩为常量,这种弯曲称为纯弯曲。
横力弯曲:梁横截面上同时有剪力和弯矩,且弯矩为横截面位置x 的函数,这种弯曲称为横力弯曲。
Ⅱ、纯弯曲梁正应力的分析方法:1. 观察表面变形情况,作出平面假设,由此导出变形的几何方程;2. 在线弹性范围内,利用胡克定律,得到正应力的分布规律;3. 由静力学关系得出正应力公式。
Ⅲ、中性层和中性轴中性层:梁变形时,其中间有一层纵向线段的长度不变,这一层称为中性层。
中性轴:中性层和横截面的交线称为中性轴,梁发生弯曲变形时横截面就是绕中性轴转动的,在线弹性范围内,中性轴通过横截面的形心。
中性层的曲率,平面弯曲时中性层的曲率为()()1zM x x EI ρ=(5-1) 式中:()x ρ为变形后中性层的曲率半径,()M x 为弯矩,z EI 为梁的弯曲刚度。
(5-1)式表示梁弯曲变形的程度。
Ⅳ、梁的正应力公式1. 横截面上任一点的正应力为zMyI σ=(5-2)正应力的大小与该点到中性轴z 的距离y 成正比,试中M 和y 均取其绝对值,可根据梁的变形情况判断σ是拉应力或压应力。
2. 横截面上的最大正应力,为maxmax z My I σ=(5-3) maxzz I W y =(5-4) z W 为弯曲截面系数,对于矩形、圆形和弯环截面等,z W 的公式应熟记。
3. 弯曲正应力公式的适用范围:1)在线弹性范围内()p σσ≤,在小变形条件下的平面弯曲弯。
2)纯弯曲时,平面假设成立,公式为精确公式。
横力弯曲时,平面假设不成立,公式为近似公式,当梁的跨高比5lh≥时,误差2%≤。
Ⅴ、梁的正应力强度条件 拉、压强度相等的等截面梁[]maxmax zM W σσ=≤ (5-5) 式中,[]σ为料的许用正应力。
当梁内,max ,max t c σσ≠,且材料的[][]t c σσ≠时,强度条件应为[],max t t σσ≤,[],max c σσ≤Ⅵ、提高梁正应力强度的措施1)设法降低最大弯矩值,而提高横截面的弯曲截面系数。