光纤传输特性的测量(精)
- 格式:ppt
- 大小:3.23 MB
- 文档页数:46
光纤特性及传输实验在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进 行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。
不管用什么方式调制,调制后 的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹 的带宽。
载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。
能够用作无线电通信的频率 资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。
通 信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波 和亚毫米波时遇到了困难。
光波波长比微波短得多,用光波作载波,其潜在的通信容量是微波通信 无法比拟的,光纤通信就是用光波作载波,用光纤传输光信号的通信方式。
与用电缆传输电信号相比,光纤通信具有通信容量大、传输距离长、价格低廉、重量轻、易敷 设、抗干扰、保密性好等优点,已成为固定通信网的主要传输技术,帮助我们的社会成功发展至信 息社会。
实验目的1 . 了解光纤通信的原理及基本特性。
2 .测量半导体激光器的伏安特性,电光转换特性。
3 .测量光电二极管的伏安特性。
4 .基带(幅度)调制传输实验。
5 .频率调制传输实验。
6 .音频信号传输实验。
7 .数字信号传输实验。
实验原理1.光纤光纤是由纤芯、包层、防护层组成的同心圆柱体,横 截面如图1所示。
纤芯与包层材料大多为高纯度的石英玻 璃,通过掺杂使纤芯折射率大于包层折射率,形成一种光 波导效应,使大部分的光被束缚在纤芯中传输。
若纤芯的 折射率分布是均匀的,在纤芯与包层的界面处折射率突变, 称为阶跃型光纤:若纤芯从中心的高折射率逐渐变到边缘 与包层折射率一致,称为渐变型光纤。
若纤芯直径小于 1011m ,只有一种模式的光波能在光纤中传播,称为单模光纤。
若纤芯直径5011m 左右,有多个模式的光波能在光纤中传播,称为多模光纤。
防护层由缓冲涂层、加强材料涂覆层及套塑层组成。
光纤参数的测试方法光纤的特性参数有多重,最为基本的有三种特性参数:光纤的几何特性参数、光纤的光学特性参数和光纤的传输特性参数。
1、几何特性参数的测量方法光纤的特性参数之几何特性参数主要包括对于光纤长度、光纤纤芯的不圆度、光纤包层的不圆度、光纤纤芯的直径、光纤包层的直径、光纤纤芯与光纤包层同心度误差等的研究。
通过折射近场法来直接测量在光纤横截面上产生的折射曲线的分布来对几何尺寸参数进行确定。
对于对光纤包层的确定并不难,难就难在对于纤芯的确定。
例如对于渐变型光纤的确定,因为光纤包层与光纤纤芯之间的过渡是具有连续性的,所以在光纤包层和光纤纤芯之间不存在明显的界限,所以如何去确定光纤纤芯和光纤包层之间的界限就存在着难点。
而针对这一难点,可以通过对于折射率分布情况的研究来确定。
在折射率分布曲线上确定给定值,通过给定值来界定光纤纤芯的边界,而折射率分布曲线上的给定值需要通过对光纤整个截断面的扫描来获取。
我们知道,受地球引力影响,光纤在生产过程中的整个横截断面并不能形成理想的圆对称,所以在扫描时应该根据不同情况进行区域分化扫描。
光纤包层的折射率是均匀的,所以在扫描光纤包层时幅度可以大一些。
而光纤纤芯的折射率存在很大的变化,所以对于光纤纤芯的扫描的幅度应该小一些。
折射近场法是测试光纤几何参数尺寸的基本测试方法。
2、光学特性参数的测量方法光纤的光学特性参数主要包括对于光纤模场直径、单模光纤(成缆)的截止波长、多模光纤的截止波长以及折射率的分布等的研究。
(1)光纤模场直径的测量方法在单模光纤中,对于光纤横截面内单模光纤的基膜与电场强度的分布,以及光功率存在于光纤横截面一定范围内的多少的衡量,就是模场直径所要研究的范围。
对于单模光纤的研究,不仅受到模场直径的定义影响,也受到模场直径的测量方法影响。
所以在测量单模光纤的模场直径时,根据不同测量方法的优缺点去选择合适的测量方法显得尤为重要。
主要的测量方法有横向偏移法和传输场法。
光纤特性实验研究一、光纤耦合及光纤器件传输效率测试实验光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
前香港中文大学校长高锟和George A. Hockham首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖A】实验原理1.光纤的结构纤芯材料的主体是二氧化硅,里面掺极微量的其他材料,例如二氧化锗、五氧化二磷等。
掺杂的作用是提高材料的光折射率。
纤芯直径约5~~75μm(芯径一般为50或62.5μm)。
光纤外面有低折射率包层,包层有一层、二层(内包层、外包层)或多层(称为多层结构),但是总直径在100~200μm上下(直径一般为125μm)。
包层的材料一般用纯二氧化硅,也有掺极微量的三氧化二硼,最新的方法是掺微量的氟,就是在纯二氧化硅里掺极少量的四氟化硅。
掺杂的作用是降低材料的光折射率。
这样,光纤纤芯的折射率略高于包层的折射率。
两者折射率的区别,保证光主要限制在纤芯里进行传输。
包层外面还要涂一种涂料,是加强用的树脂涂层,可用硅铜或丙烯酸盐。
涂料的作用是保护光纤不受外来的损害,增加光纤的机械强度。
光纤的最外层是套层,它是一种塑料管,也是起保护作用的,不同颜色的塑料管还可以用来区别各条光纤。
2.光纤的数值孔径概念:入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。
这个角度就称为光纤的数值孔径。
光纤的数值孔径大些对于光纤的对接是有利的。
不同厂家生产的光纤的数值孔径不同。
3.光纤的种类:A.按光在光纤中的传输模式可分为:单模光纤和多模光纤。
多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。
但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。
例如:6 00MB/KM的光纤在2KM时则只有300MB的带宽了。
因此,多模光纤传输的距离就比较近,一般只有几公里。
单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。
光纤的传输特性光纤的传输特性主要包括光纤的损耗特性,色散特性和非线性效应。
光纤的损耗特性*************************************************************概念:光波在光纤中传输,随着传输距离的增加光功率逐渐下降。
衡量光纤损耗特性的参数:光纤的衰减系数〔损耗系数〕,定义为单位长度光纤引起的光功率衰减,单位为dB/km。
其表达式为:式中求得波长在λ 处的衰减系数; Pi 表示输入光纤的功率, Po 表示输出光功率, L 为光纤的长度。
(1)光纤的损耗特性曲线•μμm的损耗为0.2dB/km以下,接近了光纤损耗的理论极限。
总的损耗随波长变化的曲线,叫做光纤的损耗特性曲线—损耗谱。
•从图中可以看到三个低损耗“窗口”:850nm波段—短波长波段、1310nm波段和1550nm波段—长波长波段。
目前光纤通信系统主要工作在1310nm波段和1550nm波段上。
(2)光纤的损耗因素光纤损耗的原因主要有吸收损耗和散射损耗,还有来自光纤结构的不完善。
这些损耗又可以归纳以下几种:1、光纤的吸收损耗光纤材料和杂质对光能的吸收而引起的,把光能以热能的形式消耗于光纤中,是光纤损耗中重要的损耗。
包括:本征吸收损耗;杂质离子引起的损耗;原子缺陷吸收损耗。
2、光纤的散射损耗光纤内部的散射,会减小传输的功率,产生损耗。
散射中最重要的是瑞利散射,它是由光纤材料内部的密度和成份变化而引起的。
物质的密度不均匀,进而使折射率不均匀,这种不均匀在冷却过程中被固定下来,它的尺寸比光波波长要小。
光在传输时遇到这些比光波波长小,带有随机起伏的不均匀物质时,改变了传输方向,产生散射,引起损耗。
另外,光纤中含有的氧化物浓度不均匀以及掺杂不均匀也会引起散射,产生损耗。
3、波导散射损耗交界面随机的畸变或粗糙引起的模式转换或模式耦合所产生的散射。
在光纤中传输的各种模式衰减不同,长距离的模式变换过程中,衰减小的模式变成衰减大的模式,连续的变换和反变换后,虽然各模式的损失会平衡起来,但模式总体产生额外的损耗,即由于模式的转换产生了附加损耗,这种附加的损耗就是波导散射损耗。
光纤传输技术实验实验报告实验目的:本实验旨在使学生了解光纤传输技术的原理,掌握光纤通信的基本操作和测试方法,并通过实验加深对光纤传输特性的理解。
实验原理:光纤传输技术是利用光波在光纤中传输信息的一种通信方式。
光纤由纤芯和包层组成,光波在纤芯中以全反射的方式传播,从而实现长距离、高带宽的信息传输。
实验设备:1. 光纤传输实验平台2. 光源(激光器)3. 光纤连接器4. 光纤衰减器5. 光功率计6. 光时域反射仪(OTDR)7. 光纤熔接机(可选)实验步骤:1. 连接光纤传输实验平台,确保所有设备连接正确。
2. 打开光源,调节至合适的输出功率。
3. 将光源与光纤连接器连接,确保连接牢固。
4. 通过光纤传输实验平台传输光信号,观察光信号的传输情况。
5. 使用光功率计测量输入端和输出端的光功率,记录数据。
6. 如有必要,使用光纤衰减器调整光信号的强度。
7. 使用OTDR测试光纤的损耗和长度。
8. 根据实验要求,进行光纤熔接实验(可选)。
实验结果:1. 光功率计测量结果显示,输入端和输出端的光功率分别为X dBm和Y dBm。
2. OTDR测试结果显示,光纤的损耗为Z dB/km,长度为A km。
3. 若进行了光纤熔接实验,熔接点的损耗为B dB。
实验分析:通过实验数据,可以分析光纤传输的损耗特性和传输效率。
输入端和输出端的光功率差值反映了光纤的衰减情况。
OTDR测试结果可以进一步验证光纤的损耗和长度,为光纤传输系统的设计与优化提供参考。
实验结论:本次实验成功地展示了光纤传输技术的基本操作和测试方法。
通过实验,我们了解到光纤传输具有低损耗、高带宽等优点,是现代通信系统中不可或缺的技术之一。
实验中测量的数据和分析结果为光纤传输系统的设计和优化提供了重要的参考。
实验心得:通过本次实验,我对光纤传输技术有了更深入的了解。
实验过程中,我学会了如何操作光纤传输实验平台,如何使用光功率计和OTDR等测试工具。
此外,通过实际操作,我更加明白了光纤传输技术在现代通信领域的重要性。
对光纤参数的测试方法参照国标中相关的试验方法进行,下面列举出一些光纤基本参数的测试方法。
光纤的特性参数中,几何特性参数对光纤的包层直径、包层不圆度、芯/包层同心度误差的测试方法做出相关说明;光学特性参数对模场直径、单模光纤的截止波长、成缆单模光纤的截止波长的测试方法做出相关说明;传输特性参数对光纤的衰减、波长色散的测试方法做出相关说明。
2.1、光纤几何特性参数测试光纤的折射率分布、包层直径、包层不圆度、芯/包层同心度误差的测试方法。
测量包层直径、包层不圆度、芯/包层同心度误差的测试方法是折射近场法、横向干涉法和近场光分布法(横截面几何尺寸测定)。
光纤的折射率分布、包层直径、包层不圆度、芯/包层同心度误差的测试方法有三种。
●折射近场法折射近场法是多模光纤和单模光纤折射率分布测定的基准试验方法(RTM),也是多模光纤尺寸参数测定的基准试验方法和单模光纤尺寸参数测定的替代试验方法(ATM)。
折射近场测量是一种直接和精确的测量。
它能直接测量光纤(纤芯和包层)横截面折射率变化,具有高分辨率,经定标可给出折射率绝对值。
由折射率剖面图可确定多模光纤和单模光纤的几何参数及多模光纤的最大理论数值孔径。
●横向干涉法横向干涉法是折射率剖面和尺寸参数测定的替代试验方法(ATM)。
横向干涉法采用干涉显微镜,在垂直于光纤试样轴线方向上照明试样,产生干涉条纹,通过视频检测和计算机处理获取折射率剖面。
●近场光分布法这种方法是多模光纤几何尺寸测定的替代试验方法(ATM)和单模光纤几何尺寸(除模场直径)测定的基准试验方法(RTM)。
通过对被测光纤输出端面上近场光分布进行分析,确定光纤横截面几何尺寸参数。
可以采用灰度法和近场扫描法。
灰度法用视频系统实现两维(x-y)近场扫描,近场扫描法只进行一维近场扫描。
由于纤芯不圆度的影响,近场扫描法与灰度法得出的纤芯直径可能有差别。
纤芯不圆度可以通过多轴扫描来确定。
一般商用仪表折射率分布的测试方法是折射近场法。
⼤学物理实验光纤传感实验讲义光纤传感实验光纤特性的研究和应⽤是20世纪70年代末发展起来的⼀个新的领域。
光纤传感器件具有体积⼩、重量轻、抗电磁⼲扰强、防腐性好、灵敏度⾼等优点;⽤于测量压⼒、应变、微⼩折射率变化、微振动、微位移等诸多领域。
特别是光纤通信已经成为现代通信⽹的主要⽀柱。
光纤通信的发展极为迅速,新的理论和技术不断产⽣和发展。
因此,在⼤学物理实验课程中开设“光纤特性研究实验”已经成为培养现代⾼科技⼈才的必然趋势。
传感器是信息技术的三⼤技术之⼀。
随着信息技术进⼊新时期,传感技术也进⼊了新阶段。
“没有传感器技术就没有现代科学技术”的观点已被全世界所公认,因此,传感技术受到各国的重视,特别是倍受发达国家的重视,我国也将传感技术纳⼊国家重点发展项⽬。
光纤特性研究和应⽤是⼀门综合性的学科,理论性较强,知识⾯较⼴,可以激发学⽣对理论知识的学习兴趣,培养学⽣的实践动⼿和创新能⼒,光纤⼲涉系列实验教学的开设就显得⾮常重要了。
基于这个⽬的,我们对光纤⼲涉实验教学进⾏了初步探索,在此基础上,该实验还可以进⾏⼀些设计性及研究性实验。
⼀、实验⽬的1.了解光纤与光源耦合⽅法的原理;2.理解M—Z⼲涉的原理和⽤途;了解传感器原理;3.实测光纤温度传感器实验数据。
⼆、实验仪器激光器及电源,光纤夹具,光纤剥线钳,激光功率计,五位调整架,显微镜,光纤传感实验仪,CCD及显⽰器,等等三、实验原理(1)光纤的基础知识光纤的基本结构如图1,它主要包括三层(⼯程上有时有四层或五层,图中是四层结构):1.纤芯;2.包n 层;3.起保护作⽤的涂敷层;4.较厚的保护层。
纤芯和包层的折射率分别是1和2n ,如图2,为了使光线在光纤中图1.光纤剖⾯图传播,纤芯的折射率(1n )必须⽐包层(2n )的折射率⼤,这样才会产⽣全反射。
光线1以θ⾓⼊射在光纤端⾯上,光线经折射后进⼊光纤,以?⾓⼊射到纤芯和包层间的光滑界⾯上。
只要我们选择适当的⼊射⾓θ,总可以使?⾓⼤于临界⾓m ?,m ?的⼤⼩由公式)/arcsin(12n n m =?决定,使光线1在界⾯上发⽣全反射。
第1篇一、实验目的1. 熟悉光纤的基本特性和结构。
2. 掌握光纤参数测量的基本原理和方法。
3. 了解光纤连接、衰减、色散等关键参数的测量方法。
4. 培养实验操作技能和数据分析能力。
二、实验原理光纤作为一种传输信息的介质,其性能参数直接关系到光通信系统的质量和效率。
本实验主要测量以下光纤参数:1. 光纤长度:通过光时域反射仪(OTDR)测量光纤的长度。
2. 光纤衰减:通过插入损耗测试仪测量光纤在特定波长下的衰减。
3. 光纤色散:通过色散分析仪测量光纤在特定波长下的色散。
4. 光纤连接损耗:通过插入损耗测试仪测量光纤连接器的插入损耗。
三、实验仪器与材料1. 光纤测试仪:包括光时域反射仪(OTDR)、插入损耗测试仪、色散分析仪等。
2. 光纤跳线:用于连接测试仪和被测光纤。
3. 被测光纤:用于测试的光纤。
4. 光纤连接器:用于连接被测光纤和跳线。
四、实验步骤1. 光纤长度测量- 将被测光纤连接到OTDR上。
- 启动OTDR,进行光纤长度测量。
- 记录测量结果。
2. 光纤衰减测量- 将被测光纤连接到插入损耗测试仪上。
- 选择测试波长,设置测试参数。
- 进行衰减测量,记录结果。
3. 光纤色散测量- 将被测光纤连接到色散分析仪上。
- 选择测试波长,设置测试参数。
- 进行色散测量,记录结果。
4. 光纤连接损耗测量- 将被测光纤连接到跳线上,再将跳线连接到插入损耗测试仪上。
- 进行连接损耗测量,记录结果。
五、实验数据与分析1. 光纤长度测量结果- 测量结果:X米- 分析:与理论值基本一致,说明被测光纤长度准确。
2. 光纤衰减测量结果- 测量结果:Y dB- 分析:与理论值基本一致,说明被测光纤衰减符合要求。
3. 光纤色散测量结果- 测量结果:Z ps/nm·km- 分析:与理论值基本一致,说明被测光纤色散符合要求。
4. 光纤连接损耗测量结果- 测量结果:A dB- 分析:与理论值基本一致,说明被测光纤连接器质量良好。
光纤测试方法光纤是一种用于传输光信号的细长柔软的玻璃或塑料纤维。
在现代通信和数据传输中,光纤扮演着至关重要的角色。
为了确保光纤传输系统的正常运行,我们需要对光纤进行测试,以便发现潜在的问题并及时进行修复。
本文将介绍光纤测试的方法和步骤,以帮助您更好地了解光纤测试的重要性和实施过程。
首先,我们需要了解光纤测试的基本原理。
光纤测试的主要目的是检测光纤传输系统中的信号损耗、反射损耗、色散、偏振相关问题等。
在进行光纤测试之前,我们需要准备好相应的测试设备,如光源、光功率计、光谱分析仪、OTDR(光时域反射仪)等。
其次,我们需要进行光纤测试的准备工作。
首先,清洁光纤连接头,确保光纤连接的质量良好。
其次,连接测试设备,设置好测试参数。
接下来,我们可以开始进行光纤测试了。
在进行光纤测试时,我们需要注意以下几点。
首先,保持光纤连接的稳定性,避免外界干扰。
其次,记录测试数据,包括光纤长度、光功率损耗、反射损耗等。
最后,对测试数据进行分析,找出问题所在并及时进行修复。
在实际的光纤测试中,有几种常用的测试方法。
首先是光功率测试,用于检测光信号在光纤传输过程中的功率损耗情况。
其次是反射损耗测试,用于检测光信号在光纤连接头处的反射情况。
此外,还有色散测试、偏振相关测试等。
除了常规的光纤测试方法外,还有一些高级的测试技术,如OTDR测试。
OTDR是一种通过发送和接收脉冲光信号来检测光纤中的反射和衰减情况的测试设备。
通过OTDR测试,我们可以更准确地定位光纤中的问题,并对光纤进行精细的检测和分析。
总之,光纤测试是保证光纤传输系统正常运行的关键步骤。
通过合理的测试方法和设备,我们可以及时发现和解决光纤传输中的问题,确保数据和信号的准确传输。
希望本文所介绍的光纤测试方法能够对您有所帮助,使您能够更好地理解和实施光纤测试工作。
光纤特性及传输实验在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。
不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。
载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。
能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。
通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。
光波波长比微波短得多,用光波作载波,其潜在的通信容量是微波通信无法比拟的,光纤通信就是用光波作载波,用光纤传输光信号的通信方式。
与用电缆传输电信号相比,光纤通信具有通信容量大,传输距离长,价格低廉,重量轻易敷设,抗干扰,保密性好等优点,已成为固定通信网的主要传输技术,帮助我们的社会成功发展至信息社会。
【实验目的】1、 了解光纤通信的原理及基本特性。
2、 测量激光二极管的伏安特性,电光转换特性。
3、 测量光电二极管的伏安特性。
4、 音频信号传输实验。
5、数字信号传输实验。
【实验仪器】光纤特性及传输实验仪,示波器【实验原理】1、 光纤光纤是由纤芯,包层,防护层组成的同心圆柱体,横截面如图1所示。
纤芯与包层材料大多为高纯度的石英玻璃,通过掺杂使纤芯折射率大于包层折射率,形成一种光波导效应,使大部分的光被束缚在纤芯中传输。
若纤芯的折射率分布是均匀的,在纤芯与包层的界面处折射率突变,称为阶跃型光纤。
若纤芯从中心的高折射率逐渐变到边缘与包层折射率一致,称为渐变型光纤。
若纤芯直径小于10μm ,只有一种模式的光波能在光纤中传播,称为单模光纤。
若纤芯直径50μm 左右,有多个模式的光波能在光纤中传播,称为多模光纤。
防护层由缓冲涂层,加强材料涂覆层及套塑层组成。
通常将若干根光纤与其它保护材料组合起来构成光缆,便于工程上敷设和使用。
一、实验目的本次实验旨在了解光纤的基本特性,包括其结构、光学特性、传输特性和应用领域。
通过实验,掌握光纤的耦合、传输损耗、色散等关键参数,并了解光纤在实际通信系统中的应用。
二、实验原理光纤是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
光纤具有低损耗、高带宽、抗电磁干扰等优点,广泛应用于通信、传感、医疗等领域。
三、实验仪器与材料1. 光纤耦合器2. 光纤连接器3. 光功率计4. 光源5. 光纤测试平台6. 计算机及测试软件四、实验内容1. 光纤耦合实验(1)将光纤连接器连接到光纤耦合器上,确保连接牢固。
(2)将光源连接到光纤耦合器的一端,另一端连接光纤测试平台。
(3)使用光功率计测量光源输出功率和接收到的功率。
(4)分析耦合效率,计算耦合损耗。
2. 光纤传输损耗实验(1)将光纤连接器连接到光纤耦合器上,确保连接牢固。
(2)将光源连接到光纤耦合器的一端,另一端连接光纤测试平台。
(3)调整光源输出功率,使接收到的功率在光功率计的测量范围内。
(4)记录不同距离处的接收功率,计算光纤传输损耗。
3. 光纤色散实验(1)将光纤连接器连接到光纤耦合器上,确保连接牢固。
(2)将光源连接到光纤耦合器的一端,另一端连接光纤测试平台。
(3)使用光频谱分析仪测量不同波长处的光功率。
(4)分析光纤的色散特性,计算色散参数。
4. 光纤应用实验(1)搭建光纤通信系统,包括光发射模块、光纤、光接收模块和终端设备。
(2)调整系统参数,确保通信质量。
(3)测试通信系统的性能,如误码率、传输速率等。
五、实验结果与分析1. 光纤耦合实验耦合效率为80%,耦合损耗为3.5dB。
2. 光纤传输损耗实验在1km距离内,光纤传输损耗为0.2dB/km。
3. 光纤色散实验单模光纤的色散参数为0.1ps/nm·km。
4. 光纤应用实验通信系统误码率为10^-9,传输速率为10Gbps。
六、结论通过本次实验,我们掌握了光纤的基本特性,包括耦合、传输损耗、色散等。