西南交大大物B第九章
- 格式:pdf
- 大小:2.97 MB
- 文档页数:72
©西南交大物理系_2015_02《大学物理AI 》作业No. 09 磁感应强度班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“T ”和“F ”表示)[ F ] 1.穿过一个封闭面的磁感应强度的通量与面内包围的电流有关。
解:穿过一个封闭面的磁感应强度的通量为0。
[ F ] 2.磁感应线穿过磁场中单位面积上的磁感应线的条数等于磁感应强度的通量。
解:穿过垂直于磁场中单位面积上的磁感应线的条数等于磁感应强度的大小。
[ F ] 3.无限长载流螺线管内磁感应强度的大小由导线中电流的大小决定。
解:无限长载流螺线管内磁感应强度的大小为:nI B 0μ=,除了与电流的大小有关,还与单位上的匝数有关。
[ T ] 4.做圆周运动的电荷的磁矩与一个载流圆线圈的磁矩等效。
[ F ] 5.在外磁场中,载流线圈受到的磁力矩总是使其磁矩转向外场方向。
解:根据B P M m⨯=,可知上述叙述正确。
二、选择题:1.载流的圆形线圈(半径a 1)与正方形线圈(边长a 2)通有相同电流I 。
若两个线圈的中心O 1 、O 2处的磁感应强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 [D](A) 11:(B) 12:π (C)42:π(D)82:π解:圆电流在其中心产生的磁感应强度1012a I B μ=正方形线圈在其中心产生的磁感应强度2020222)135cos 45(cos 244a I a IB πμπμ=-⨯⨯=磁感强度的大小相等,8:2:22221201021ππμμ=⇒=⇒=a a a Ia IB B所以选D 。
2.若要使半径为m 1043-⨯的裸铜线表面的磁感应强度为T 100.75-⨯, 其铜线中需要通过的电流为(170A m T 104--⋅⋅⨯=πμ) [ B ](A) 0.14A (B) 1.4A (C) 14A(D) 2.8A解:由圆形电流磁场分布有铜线表面磁感应强度大小为RIB πμ20=,所以 铜线中需要通过的电流为()A 4.1104107104227530=⨯⨯⨯⨯⨯=⋅=---ππμπBR I3.一个载流圆线圈通有顺时针方向的电流,放在如图所示的均匀磁场中,则作用在该线圈上的磁力矩的方向[ D ] (A) 垂直纸面向里 (B) 垂直纸面向外(C) 向上(D) 向下 (E) 合力矩为零 解:m P 方向垂直于纸面朝里,即⊗,而B 向右,根据B P M m⨯=,判断出磁力矩M的方向向下。
习题99-1.杨氏双缝的间距为m m 2.0,距离屏幕为m 1,求:(1)若第一级明纹距离为2.5mm ,求入射光波长。
(2)若入射光的波长为6000A,求相邻两明纹的间距。
解:(1)由Lx k dλ=,有:xd k L λ=,将0.2mm d =,1m L =,1 2.5mm x =,1k =代入,有:3372.5100.210 5.0101m λ---⨯⨯⨯==⨯;即波长为:500nm λ=; (2)若入射光的波长为 A 6000,相邻两明纹的间距:73161030.210D x mm d λ--⨯⨯∆===⨯。
9-2.图示为用双缝干涉来测定空气折射率n 的装置。
实验前,在长度为l 的两个相同密封玻璃管内都充以一大气压的空气。
现将上管中的空气逐渐抽去,(1)则光屏上的干涉条纹将向什么方向移动;(2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉条纹移过N 条。
计算空气的折射率。
解:(1)当上面的空气被抽去,它的光程减小,所以它将 通过增加路程来弥补,条纹向下移动。
(2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉条纹移过N 条,可列出:λN n l =-)(1 得:1+=lN n λ。
9-3.在玻璃板(折射率为50.1)上有一层油膜(折射率为30.1)。
已知对于波长为nm 500和nm 700的垂直入射光都发生反射相消,而这两波长之间没有别的波长光反射相消,求此油膜的厚度。
解:因为油膜( 1.3n =油)在玻璃( 1.5n =玻)上,所以不考虑半波损失,由反射相消条件有:2(21)122n e k k λ=-= 油,,, 当12500700nm nmλλ==⎧⎪⎨⎪⎩时,11222(21)22(21)2n e k n e k λλ=⎧-=-⎪⎪⎨⎪⎪⎩油油⇒2121217215k k λλ-==-, 因为12λλ<,所以12k k >,又因为1λ与2λ之间不存在'λ以满足'2(21)2n e k λ=-油式,即不存在21'k k k <<的情形,所以1k 、2k 应为连续整数,可得:14k =,23k =; 油膜的厚度为:17121 6.73104k e m n λ--==⨯油。
《大学物理》作业 N0.1 运动的描述班级 ________________ 学号 __________ 姓名 _________ 日期 _______ 成绩 ________一、选择题:B D DC B B二、填空题:1. 8 m ,10 m2. m r s 042.023201.0=⨯⨯==πθ , s m vs r t r v po/0041.0/3==∆∆=3.s m l l r v v t /8.69cos sin sin sin sin 2=====θωθωθθωθ 或θωθθ22cos d d cos 1d d l t l t x v =⋅==4. 切向加速度的大小为 260cos g g a t -=-=法向加速度的大小为g g v a n 2330cos 2===ρ所以轨道的曲率半径gv a v n 33222==ρ5. 以地球为参考系,()⎪⎩⎪⎨⎧=+=2021gt y tv v x 消去t ,得炮弹的轨迹方程 ()202x v v gy +=同理,以飞机为参考系 222x vg y = 6. ()2s m 15.05.03.0-⋅=⨯==βr a t飞轮转过 240时的角速度为ω,由0,20202==-ωβθωω,得βθω22= 此时飞轮边缘一点的法向加速度大小为()22s m 26.123602405.023.02-⋅=⨯⨯⨯⨯===πβθωr r a n三、计算题:1.一个人自原点出发,25 s 内向东走30 m ,又10 s 内向南走10 m ,再15 s 内向正西北走18 m 。
求在这50 s 内,(1)平均速度的大小和方向,(2)平均速率的大小。
解:建立如图坐标系。
(1) 50 s 内人的位移为r ++=∆(ji j i j i73.227.1745cos 181030+=+-+-=平均速度的大小为)s m (35.05073.227.17122-⋅=+=∆∆=t r v与x 轴的夹角为)98.8(98.827.1773.2tg tg 11东偏北==∆∆=--x y ϕ(2) 50 s 内人走的路程为S =30+10+18=58 (m),所以平均速率为)s m (16.150581-⋅==∆=t S v2.如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动。
第九章 电磁感应 电磁场理论练 习 一一.选择题1. 在一线圈回路中,规定满足如图1所示的旋转方向时,电动势ε,磁通量Φ为正值。
若磁铁沿箭头方向进入线圈,则有( B )(A ) d Φ /dt < 0, ε < 0 ; (B ) d Φ /dt > 0, ε < 0 ; (C ) d Φ /dt > 0, ε > 0 ; (D ) d Φ /dt < 0, ε > 0。
2. 一磁铁朝线圈运动,如图2所示,则线圈内的感应电流的方向(以螺线管内流向为准)以及电表两端电势U A 和U B 的高低为( C )(A ) I 由A 到B ,U A >U B ; (B ) I 由B 到A ,U A <U B ; (C ) I 由B 到A ,U A >U B ; (D ) I 由A 到B ,U A <U B 。
3. 一长直螺线管,单位长度匝数为n ,电流为I ,其中部放一面积为A ,总匝数为N ,电阻为R 的测量线圈,如图3所示,开始时螺线管与测量线圈的轴线平行,若将测量线圈翻转180°,则通过测量线圈某导线截面上的电量∆q 为( A )(A ) 2μ0nINA /R ; (B ) μ0nINA /R ; (C ) μ0NIA /R ; (D ) μ0nIA /R 。
4. 尺寸相同的铁环和铜环所包围的面积中,磁通量的变化率相同,则环中( A ) (A )感应电动势相同,感应电流不同; (B )感应电动势不同,感应电流相同; (C )感应电动势相同,感应电流相同; (D )感应电动势不同,感应电流不同。
二.填空题1.真空中一长度为0l 的长直密绕螺线管,单位长度的匝数为n ,半径为R ,其自感系数L可表示为0220l R n L πμ=。
2. 如图4所示,一光滑的金属导轨置于均匀磁场B 中,导线ab 长为l ,可在导轨上平行移动,速度为v ,则回路中的感应电动势ε=θsin Blv ,a 、b 两点的电势a U < b U (填<、=、>),回路中的电流I=R Blv /sin θ,电阻R 上消耗的功率P=R Blv /)sin (2θ。
西南交大大学物理下第9次作业答案西南交大大学物理下第9次作业答案? 物理系u2022 u09《大学物理aii》作业no.9原子结构固体能带理论班级成绩_______一、判断题:(用“t”和“f”表示)[f] 一,。
量子力学中的“隧道效应”现象只有在粒子总能量高于势垒高度时才会出现。
解决方案:总能量低于势垒高度的粒子也可以通过势垒到达势垒另一侧的现象称为“隧穿”道效应”[f] 二,。
根据量子力学理论,氢原子中的电子在一定的轨道上运动,轨道被量子化。
解决方案:教科书中的227个电子不会在原子核外的特定轨道上移动。
量子力学不能断言电子必须出现在核外某个确定的位置,而只能给出电子在核外各处出现的概率。
[f] 三,。
本征半导体是同时参与传导的电子和空穴载流子,而n型半导体只传导电子。
[t]4.固体中能带的形成是由于固体中的电子仍然满足泡利不相容原理。
解:只要是费米子都要遵从泡利不相容原理,电子是费米子。
[t] 五,。
当p型和n型半导体材料接触时,由载流子扩散形成的PN具有单一导电性。
解决方案:教科书244二、选择题:1.以下哪组量子数可以描述原子中电子的状态?[d] (a)n=2,l=2,ml=0,ms?11(b)n=3,l=1,ml=-2,ms??2211(c)n=1,l=2,ml=1,ms?(d)n=3,l=2,ml=0,ms??解决方案22:根据原子中电子的四个量子数的取值规则和泡利不相容原理,我们知道D是正确的。
因此,选择D2.与绝缘体相比较,半导体能带结构的特点是[d](a)导带也是空带(b)满带与导带重合(c)在整个带中总是有空穴,在导带中总是有电子。
(d)带隙很窄解:教材241-242.3.在原子的L壳层中,一个电子可能具有的四个量子数(n,L,ML,MS)是1)21(3)(2,1,1,)2(1)(2,0,1,1)21(4)(2,1,-1,?)2(2)(2,1,0),上述四个值中哪一个是正确的?[](a)只有(1)、(2)是正确的(b)只有(2)、(3)是正确的(c)只有(2)、(3)、(4)是正确的(d)全部是正确的解决方案:原子的L壳层对应于主量子数n?2.角量子数可以是l?0,1,2,磁量子数可以是ml?0,?1,?2,自旋量子数可为ms??11,,根据原子中电子四个量子数取值规则22和泡利不相容原理知只有(2)、(3)、(4)正确。
习题9-5.在气垫导轨上质量为m 的物体由两个轻弹簧分别固定在气垫导轨的两端,如图所示,试证明物体m 的左右运动为简谐振动,并求其振动周期。
设弹簧的劲度系数为k 1和k 2. 解:取物体在平衡位置为坐标原点,则物体在任意位置时受的力为 根据牛顿第二定律有 化简得令212k k mω+=则2220d x x dt ω+=所以物体做简谐振动,其周期9-6 如图所示在电场强度为E 的匀强电场中,放置一电偶极矩P=ql 的电偶极子,+q 和-q相距l ,且l 不变。
若有一外界扰动使这对电荷偏过一微小角度,扰动消失后,这对电荷会以垂直与电场并通过l 的中心点o 的直线为轴来回摆动。
试证明这种摆动是近似的简谐振动,并求其振动周期。
设电荷的质量皆为m ,重力忽略不计。
解 取逆时针的力矩方向为正方向,当电偶极子在如图所示位置时,点偶极子所受力矩为 点偶极子对中心O 点的转动惯量为 由转动定律知 化简得当角度很小时有sin θθ≈,若令22qEmlω=,则上式变为 所以电偶极子的微小摆动是简谐振动。
而且其周期为 9-7 汽车的质量一般支承在固定与轴承的若干根弹簧上,成为一倒置的弹簧振子。
汽车为开动时,上下为自由振动的频率应保持在 1.3v Hz = 附近,与人的步行频率接近,才能使乘客没有不适之感。
问汽车正常载重时,每根弹簧松弛状态下压缩了多少长度?解 汽车正常载重时的质量为m ,振子总劲度系数为k ,则振动的周期为2T =频率为1v T == 正常载重时弹簧的压缩量为9-8 一根质量为m ,长为l 的均匀细棒,一端悬挂在水平轴O 点,如图所示。
开始棒在平衡位置OO ,处于平衡状态。
将棒拉开微小角度后放手,棒将在重力矩作用下,绕O 点在竖直平面内来回摆动。
此装置时最简单的物理摆。
若不计棒与轴的摩擦力和空气的阻力,棒将摆动不止。
试证明摆角很小的情况下,细棒的摆动为简谐振动,并求其振动周期。
解 设在某一时刻,细棒偏离铅直线的角位移为θ,并规定细棒在平衡位置向右时θ为正,在向左时为负,则力矩为负号表示力矩方向与角位移方向相反,细棒对O 点转动惯量为213J ml =,根据转动定律有 化简得当θ很小时有sin θθ≈,若令232glω=则上式变为 所以细棒的摆动为简谐振动,其周期为9-9 一放置在水平光滑桌面上的弹簧振子,振幅2210A m -=⨯,周期0.50T s =,当t=0时,求以下各种情况的振动方程。