分析化学中的误差与数据处理 (2)
- 格式:ppt
- 大小:811.50 KB
- 文档页数:68
分析化学中的误差及分析数据的处理第二章分析化学中的误差及分析数据的处理本章是分析化学中准确表达定量分析计算结果的基础,在分析化学课程中占有重要的地位。
本章应着重了解分析测定中误差产生的原因及误差分布、传递的规律及特点,掌握分析数据的处理方法及分析结果的表示,掌握分析数据、分析方法可靠性和准确程度的判断方法。
本章计划7 学时。
第一节分析化学中的误差及其表示方法一. 误差的分类1. 系统误差(systematic error ) ——可测误差(determinate error) (1) 方法误差: 是分析方法本身所造成的;如:反应不能定量完成;有副反应发生; 滴定终点与化学计量点不一致; 干扰组分存在等。
(2) 仪器误差: 主要是仪器本身不够准确或未经校准引起的;如:量器(容量平、滴定管等)和仪表刻度不准。
(3) 试剂误差: 由于试剂不纯和蒸馏水中含有微量杂质所引起; (4) 操作误差: 主要指在正常操作情况下,由于分析工作者掌握操作规程与控制条件不当所引起的。
如滴定管读数总是偏高或偏低。
特性:重复出现、恒定不变(一定条件下) 、单向性、大小可测出并校正,故有称为可定误差。
可以用对照试验、空白试验、校正仪器等办法加以校正。
2. 随机误差(random error) ——不可测误差(indeterminate error) 产生原因与系统误差不同,它是由于某些偶然的因素所引起的。
如: 测定时环境的温度、湿度和气压的微小波动,以其性能的微小变化等。
特性: 有时正、有时负,有时大、有时小,难控制(方向大小不固定,似无规律)但在消除系统误差后,在同样条件下进行多次测定,则可发现其分布也是服从一定规律(统计学正态分布) ,可用统计学方法来处理。
二. 准确度与精密度( 一) 准确度与误差(accuracy and error)准确度:测量值(X)与真值(,)之间的符合程度。
它说明测定结果的可靠性,用误差值来量度:绝对误差= 个别测得值- 真实值E=X- , (1) a但绝对误差不能完全地说明测定的准确度,即它没有与被测物质的质量联系起来。
第二章误差和分析数据的处理第一节误差及其产生的原因定量分析的任务是准确测定试样中各组分的含量,因此必须使分析结果具有一定的准确度。
不准确的分析结果将会导致生产上的损失、资源上的浪费和科学上的错误结论。
在定量分析中,由于受到分析方法、测量仪器、所用试剂和分析人员主观条件等方面的限制,故使测定的结果不可能和真实含量完全一致;即使是分析技术非常熟练的分析人员,用最完善的分析方法、最精密的仪器和最纯的试剂,在同一时间,同样条件下,对同一试样进行多次测定,其结果也不会完全一样。
这说明客观存在着难于避免的误差。
因此,人们在进行定量分析时,不仅要得到被测组分的含量,而且必须对分析结果进行评价,判断分析结果的准确性(可靠程度),检查产生误差的原因,采取减小误差的有效措施,从而不断提高分析结果的准确程度。
分析结果与真实结果之间的差值称为误差。
分析结果大于真实结果,误差为正;分析结果小于真实结果,误差为负。
一、误差的分类根据误差的性质与产生的原因,可将误差区分为系统误差和偶然误差两类。
(一)系统误差系统误差(systematic error)也叫可定误差(determination error),它是由某种确定的原因引起的,一般有固定的方向(正或负)和大小,重复测定可重复出现。
根据系统误差的来源,可区分为方法误差、仪器误差、试剂误差及操作误差等四种。
(1)方法误差:由于分析方法本身的缺陷或不够完善所引起的误差。
例如,在质量分析法中,由于沉淀的溶解或非被测组分的共沉淀;在滴定分析法中,由于滴定反应进行不完全,干扰离子的影响,测定终点和化学计量点不符合等,都会产生这种误差。
(2)仪器误差:由于所用仪器本身不够准确或未经校正所引起的误差。
例如,天平两臂不等长,砝码、滴定管刻度不够准确等,会使测定结果产生误差。
(3)试剂误差:由于试剂不纯和蒸馏水中含有杂质引入的误差。
(4)操作误差:由于操作人员的习惯与偏向而引起的误差。
例如,读取滴定管的读数时偏高或偏低,对某种颜色的变化辨别不够敏锐等所造成的误差。
Analytical chemistryErrors and data treatment(2)二、有效数字及运算法则2非测量所得的自然数测量次数、样品份数 计算中的倍数反应中的化学计量关系 各类常数测量所得的数字测量值数据计算的结果3数字位数应与分析方法的准确度及仪器测量的精度相适应4有效数字: 分析工作中实际能测得的数字1. 有效数字(significant figure)☐在记录测量数据时,只保留一位可疑数(欠准数)☐只有数据的末尾数欠准,误差是末位数的±1个单位☐有效数字位数反映了测量和结果的准确程度,决不能随意增加或减少5m ◇分析天平(称至0.1mg):12.8228g (6),0.2348g (4) , 0.0600g (3)◇千分之一天平(称至0.001g): 0.235g (3)◇1%天平(称至0.01g): 4.03g (3), 0.23g (2)◇台秤(称至0.1g): 4.0g (2), 0.2g (1)V ☆滴定管(量至0.01mL):26.32mL (4), 3.97mL (3)☆容量瓶:100.0mL (4),250.0mL (4)☆移液管:25.00mL (4);☆量筒(量至1mL或0.1mL):25mL (2), 4.0mL (2)重量分析和滴定分析允许的误差一般在±0.2%之内,各测量数据应保留四位有效数字,注意计算结果的有效数字位数6☐数字1~9均为有效数字☐数字前0不是有效数字,其他数字之间的0计入有效数字: 0.0304(3)☐数字后的0,在小数中,计入有效数字位数:0.03400(4)☐数字后的0,在整数中,含义不清楚时, 最好用指数形式表示: 1000 (1.0×103, 1.00×103, 1.000 ×103)☐很小的数字,也可以用指数形式表示,但有效数字位数需保持不变:0.000018 → 1.8 ×10-5☐变换单位时,有效数字位数需保持不变:0.0038g→3.8mg ☐数据的第一位数≥8的,可多计一位有效数字,如9.35×104(4), 95.2%(4), 8.65(4)☐对数的有效数字位数按小数部分数字的位数计,其整数部分的数字只代表原值的幂次,如pH=10.28(2), 则[H +]=5.2×10-11有效数字位数72. 有效数字运算中的修约规则尾数≤4时舍; 尾数≥6时入尾数=5时, 若后面无数,或后面数为0, 舍5成双;若5后面还有不是0的任何数皆入四舍六入五成双例下列值修约为四位有效数字0.3247 40.3247 6 0.3247 50.3248 50.3248 500.3248 510.32470.32480.32480.32480.32480.32498禁止分次修约0.57490.570.5750.58×9运算时可多保留一位有效数字进行5.3527+2.3+0.054+3.355.35+2.3+0.05+3.35=11.0511.010标准限度值0.03%测定值0.033%修约标准偏差对标准偏差的修约,应使准确度降低统计检验时,标准偏差可多保留1-2位数参与运算表示标准偏差和RSD时,一般取两位有效数字与标准限度值比较时不修约×不合格0.03%0.2130.2211加减法:结果的绝对误差应不小于各项中绝对误差最大的数。
分析化学中的误差与数据处理分析化学中的误差与数据处理分析化学是科学领域中的一门重要学科,主要涉及物质的定性、定量分析,其结果的准确性对于科研和实际应用具有重要意义。
然而,由于各种因素的影响,分析结果中不可避免地存在误差。
因此,了解误差的来源和处理方法是保证分析化学结果准确性的关键。
一、误差概念误差是指分析结果与真实值之间的差异。
在分析化学中,误差分为系统误差和随机误差。
系统误差是由固定因素引起的,如仪器校准偏差或试剂不纯等,通常需要进行补偿或校正。
随机误差则是由于随机因素引起的,如环境温度和湿度波动等,这种误差通常是无法避免的。
二、数据处理方法1、数据分析:对实验获取的数据进行统计分析,如平均值、标准差、置信区间等,以评估数据的集中程度和离散程度。
2、统计推断:通过样本数据推断总体特征,如假设检验和方差分析等,以判断实验条件是否满足分析要求。
3、数据处理技术:如平滑滤波、微分分析、积分分析等,用于消除数据中的噪声或提取特征信息。
三、减少误差的方法1、选择合适的试剂和设备:使用高纯度试剂和精确的测量设备,有助于降低系统误差。
2、增加重复次数:通过多次实验取平均值,能够降低随机误差,提高结果的准确性。
3、标准化:通过标准物质的测定以及与标准方法的比对,能够发现和纠正系统误差。
4、校准:对仪器进行定期校准,确保仪器性能稳定,从而降低误差。
四、结论误差与数据处理在分析化学中具有重要意义。
了解误差来源和处理方法有助于提高分析结果的准确性。
通过选择合适的试剂和设备、增加重复次数、标准化和校准等措施,可以有效地降低误差,提高分析结果的准确性。
未来,随着科学技术的不断发展,分析化学中的误差与数据处理方法将会更加完善。
研究人员将继续探索新的方法和技术,以进一步提高分析结果的准确性。
加强分析化学教育和实践,培养专业人才,对于推动分析化学的发展和应用具有重要意义。
总之,误差与数据处理是分析化学中不可或缺的环节。
通过了解误差来源和处理方法,采取有效措施降低误差,可以提高分析结果的准确性,为科学研究和实际应用提供可靠支持。