PWM开关电源分类buck,boost介绍及主要元(精)
- 格式:doc
- 大小:1.81 MB
- 文档页数:16
直流BUCK 和BOOST 斩波电路一、 B UCK 电路降压斩波电路(Buck Chopper)Q 为开关管,其驱动电压一般为PWM(Pulse width modulation 脉宽调制)信号,信号周期为Ts ,则信号频率为f=1/Ts ,导通时间为Ton ,关断时间为Toff ,则周期Ts=Ton+Toff ,占空比Dy= Ton/Ts 。
负载电压的平均值为:式中t on 为V 处于通态的时间,t off 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比(α=t on /T)。
由此可知,输出到负载的电压平均值U O 最大为U i ,若减小占空比α,则U O 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
工作原理为:当在t on 状态时,电源为这个电路供电,并对电感和电容充电,负载电压缓慢上升到电源电压。
当t off 状态时,电源电压为断开状态,系统供电依靠电感和电容的储能供电。
所以是一个递减的电压。
所以系统的这个工作流程为,周期性的电源供电方式,而输出的负载的电源大小取决于周期中的占空比。
(a)电路图 (b)波形图(实验结果 )图1降压斩波电路的原理图及波形二、 B OOST 电路开关管Q 也为PWM 控制方式,但最大占空比Dy 必须限制,不允许在Dy=1的状态下工作。
电感Lf 在输入侧,称为升压电感。
Boost 变换器也有CCM 和DCM 两种工作方式升压斩波电路(Boost Chopper)U i I 1t on =(U O -U i ) I 1t offii on i off on on o aU U TtU t t t U ==+=U GE U D t t tU Ot on t of fT U iVDL C -+-+U EGC R 11U D +-上式中的T/t off ≥1,输出电压高于电源电压,故称该电路为升压斩波电路。
工作原理当开关S 在位置a 时,如图2(a)所示电流iL 流过电感线圈L ,电流线性增加,电能以磁能形式储在电感线圈L 中。
常见的开关电源拓扑结构本文主要讲述了常见的开关电源拓扑结构特点和优缺点对比。
常见的拓扑结构,包括Buck降压、Boost升压、Buck-Boost降压-升压、Flyback反激、Forward正激、Two-Transistor Forward双晶体管正激等。
上图是常见的基本拓扑结构。
基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:常见的基本拓扑结构1 Buck降压•把输入降至一个较低的电压。
•可能是最简单的电路。
•电感/电容滤波器滤平开关后的方波。
•输出总是小于或等于输入。
•输入电流不连续(斩波)。
•输出电流平滑。
2 Boost升压•把输入升至一个较高的电压。
•与降压一样,但重新安排了电感、开关和二极管。
•输出总是比大于或等于输入(忽略二极管的正向压降)。
•输入电流平滑。
•输出电流不连续(斩波)。
3 Buck-Boost降压-升压•电感、开关和二极管的另一种安排方法。
•结合了降压和升压电路的缺点。
•输入电流不连续(斩波)。
•输出电流也不连续(斩波)。
•输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入。
•“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
4 Flyback反激•如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
•输出可以为正或为负,由线圈和二极管的极性决定。
•输出电压可以大于或小于输入电压,由变压器的匝数比决定。
•这是隔离拓扑结构中最简单的。
•增加次级绕组和电路可以得到多个输出。
5 Forward正激•降压电路的变压器耦合形式。
•不连续的输入电流,平滑的输出电流。
•因为采用变压器,输出可以大于或小于输入,可以是任何极性。
•增加次级绕组和电路可以获得多个输出。
•在每个开关周期中必须对变压器磁芯去磁。
常用的做法是增加一个与初级绕组匝数相同的绕组。
•在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。
buck和boost电路的区别
BUCK电路和BOOST电路是两种不同类型的开关电源电路,它们的主要区别在于输出电压与输入电压的极性关系以及应用场景。
1.输出电压与输入电压的极性关系:
•BUCK电路是一种降压电路,其输出电压的极性与输入电压相同。
这意味着当输入电压为正时,输出电压也为正;当输入电压为负时,输出电压也为负。
•BOOST电路则是一种升压电路,其输出电压的极性与输入电压也相同。
这意味着无论输入电压为正还是负,输出电压的极性都与输入电压保持一致。
2.应用场景:
•BUCK电路通常用于需要将电源电压降低到适合设备工作的电压的情况。
例如,当设备的额定电压较低,而电源电压较高时,可以使用BUCK电路来降低电源电压,以满足设备的工作需求。
•BOOST电路则常用于需要将电源电压升高到高于输入电压的情况。
例如,在某些应用中,可能需要将低电压升高到更高的电压水平,以满足特定设备或系统的需求。
总之,BUCK电路和BOOST电路的主要区别在于输出电压与输入电压的极性关系以及应用场景。
在实际应用中,需要根据具体需求选择合适的电路类型。
开关电源五种PWM反馈控制模式摘要根据实际设计工作经验及有关参考文献,比较详细地依据基本工作原理图说明了电压模式、峰值电流模式、平均电流模式、滞环电流模式、相加模式等PWM反馈控制模式的基本工作原理、发展过程、关键波形、性能特点及应用要点。
关键词脉冲宽度调制反馈控制模式开关电源1 引言PWM开关稳压或稳流电源基本工作原理就是在输入电压变化、内部参数变化、外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源的输出电压或电流等被控制信号稳定。
PWM的开关频率一般为恒定,控制取样信号有:输出电压、输入电压、输出电流、输出电感电压、开关器件峰值电流。
由这些信号可以构成单环、双环或多环反馈系统,实现稳压、稳流及恒定功率的目的,同时可以实现一些附带的过流保护、抗偏磁、均流等功能。
现在主要有五种PWM反馈控制模式。
下面以VDMOS开关器件构成的稳压正激型降压斩波器为例,说明五种PWM反馈控制模式的发展过程、基本工作原理、详细电路原理示意图、波形、特点及应用要点,以利于选择应用及仿真建模研究。
2 开关电源PWM的五种反馈控制模式一般来讲,正激型开关电源主电路可用图1所示的降压斩波器简化表示,Ug 表示控制电路的PWM输出驱动信号。
根据选用不同的PWM反馈控制模式,电路中的输入电压Uin、输出电压Uout、开关器件电流(由b点引出)、电感电流(由c点引出或d点引出)均可作为取样控制信号。
输出电压Uout 在作为控制取样信号时,通常经过图2所示的电路进行处理,得到电压信号Ue,Ue再经处理或直接送入PWM 控制器。
图2中电压运算放大器(e/a)的作用有三:①将输出电压与给定电压Uref的差值进行放大及反馈,保证稳态时的稳压精度。
该运放的直流放大增益理论上为无穷大,实际上为运放的开环放大增益。
②将开关电源主电路输出端的附带有较宽频带开关噪声成分的直流电压信号转变为具有一定幅值的比较“干净”的直流反馈控制信号(Ue)即保留直流低频成分,衰减交流高频成分。
BUCK/BOOST电路原理分析Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。
图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。
Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。
开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。
电感Lf在输入侧,称为升压电感。
Boost变换器也有CCM和DCM两种工作方式Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。
Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。
Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。
LDO的特点:① 非常低的输入输出电压差② 非常小的内部损耗③ 很小的温度漂移④ 很高的输出电压稳定度⑤ 很好的负载和线性调整率⑥ 很宽的工作温度范围⑦ 较宽的输入电压范围⑧ 外围电路非常简单,使用起来极为方便DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。
其具体的电路由以下几类:(1)Buck电路——降压斩波器,其输出平均电压 U0小于输入电压Ui,极性相同。
(2)Boost电路——升压斩波器,其输出平均电压 U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
DC/DC电源指的是直流转直流的电路,有升压降压两种电路,按理来说,LDO也是DCDC 电源,但行业内只认为以开关形式实现的电源为DC/DC电源。
一、DC/DC基本拓扑一个功率变换器,当输入、负载和控制均为固定值时的工作状态,在开关电源中,被称为稳态。
稳态下,功率变换器中的电感满足电感电压伏秒平衡定律:对于已工作在稳态的DC/DC功率变换器,有源开关导通时加在功率电感上的正向伏秒一定等于有源开关截至时加在该电感上的反向伏秒。
1、BUCK降压型当PWM驱动高电平使得NMOS管S1导通,忽略MOS管的导通压降,电感电流呈线性上升,此时电感正向伏秒为:V*Ton=(Vin-Vo)*Ton当PWM驱动低电平使得NMOS管S1截至时,电感电流不能突变,经过续流二极管形成回路(忽略二极管压降),给输出负载供电,此时电感电流下降,此时电感反向伏秒为:V*Toff=Vo*(Ts-Ton)根据电感电压伏秒平衡定律可得:(Vin-Vo)*Ton=Vo*(Ts-Ton)即 Vo=D*Vin (D为占空比)2、BOOST升压型和BUCK电路类似的分析方法,当MOS管导通时,电感的正向伏秒为:Vin*Ton;当MOS 管截至时,电感的反向伏秒为:(Vo- Vin)*(Ts-Ton)根据电感电压伏秒平衡定律可得:Vin*Ton=(Vo- Vin)*(Ts-Ton)即 Vo=Vin/(1-D)3、同步整流技术由于二极管导通时至少存在0.3V的压降,因此续流二极管D所消耗的功率将会称为DC/DC电源主要功耗,从而严重限制了效率的提高。
为解决该问题,以导通电阻极小的MOS 管取代续流二极管。
然后通过控制器同时控制开关管和同步整流管,要保证两个MOS管不能同时导通,负责将会发生短路。
二、DC/DC电源调制方式DC/DC电源属于斩波类型,即按照一定的调制方式,不断地导通和关断高速开关,通过控制开关通断的占空比,可以实现直流电源电平的转换。