动量守恒定律典型例题
- 格式:doc
- 大小:140.50 KB
- 文档页数:13
动量守恒定律的典型例题【例1】把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些?[] A.枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.车.枪和子弹组成的系统动量守恒 D.车.枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小【例2】一个质量M=1kg的鸟在空中v0=6m/s沿水平方向飞行,离地面高度h=20m,忽被一颗质量m=20g沿水平方向同向飞来的子弹击中,子弹速度v=300m/s,击中后子弹留在鸟体内,鸟立即死去,g=10m/s2.求:鸟被击中后经多少时间落地;鸟落地处离被击中处的水平距离. 【例3】一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为M,脱钩后牵引力不变,且每一部分所受摩擦力均正比于它的重力,则当最后一节车厢滑行停止的时刻,前部列车的速度为 [] 【例4】质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二个小球的质量为m2=50g,速率v2=10cm/s.碰撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大,方向如何?【例5】甲.乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg.游戏时,甲推着一质量为m=15km的箱子,和他一起以大小为v0=2m/s 的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免和乙相碰. 【例6】两辆质量相同的小车A和B,置于光滑水平面上,一人站在A 车上,两车均静止.若这个人从A车跳到B车上,接着又跳回A 车,仍与A车保持相对静止,则此时A车的速率 [] A.等于零B.小于B车的速率 C.大于B车的速率D.等于B车的速率【例7】甲.乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度v,水平向后方的乙船上抛一沙袋,其质量为m.设甲船和沙袋总质量为M,乙船的质量也为M.问抛掷沙袋后,甲.乙两船的速度变化多少?【分析】由题意可知,沙袋从甲船抛出落到乙船上,先后出现了两个相互作用的过程,即沙袋跟甲船和沙袋跟乙船的相互作用过程.在这两个过程中的系统,沿水平方向的合外力为零,因此,两个系统的动量都守恒.值得注意的是,题目中给定的速度选择了不同的参照系.船速是相对于地面参照系,而抛出的沙袋的速度v是相对于抛出时的甲船参照系. 【解】取甲船初速度V的方向为正方向,则沙袋的速度应取负值.统一选取地面参照系,则沙袋抛出前,沙袋与甲船的总动量为MV. 沙袋抛出后,甲船的动量为(M-m)v甲,沙袋的动量为m(v甲m)v 甲+m(v甲v)=(M+m)v乙 .(2)联立(l).(2)式解得则甲.乙两船的速度变化分别为【例8】小型迫击炮在总质量为1000kg的船上发射,炮弹的质量为2kg.若炮弹飞离炮口时相对于地面的速度为600m/s,且速度跟水平面成45°角,求发射炮弹后小船后退的速度?【例9】两块厚度相同的木块A和B,并列紧靠着放在光滑的水平面上,其质量分别为mA=2.0kg,mB=0.90kg.它们的下底面光滑,上表面粗糙.另有质量mC=0.10kg的铅块C(其长度可略去不计)以vC=10m/s的速度恰好水平地滑到A的上表面(见图),由于摩擦,铅块最后停在本块B 上,测得B.C的共同速度为v=0.50m/s,求木块A的速度和铅块C离开A时的速度. 【分析】C滑上A时,由于B与A紧靠在一起,将推动B一起运动.取C与A.B这一系统为研究对象,水平方向不受外力,动量守恒.滑上后,C在A的摩擦力作用下作匀减速运动,(A+B)在C的摩擦力作用下作匀加速运动.待C滑出A后,C继续减速,B在C的摩擦力作用下继续作加速运动,于是A与B分离,直至C最后停于B 上. 【解】设C离开A时的速度为vC,此时A.B的共同速度为vA,对于C刚要滑上A和C刚离开A这两个瞬间,由动量守恒定律知mCvC=(mA+mB)vA+mCv C(1)以后,物体C离开A,与B发生相互作用.从此时起,物体A 不再加速,物体B将继续加速一段时间,于是B与A分离.当C相对静止于物体B上时,C与B的速度分别由v C和vA变化到共同速度v.因此,可改选C与B为研究对象,对于C刚滑上B和C.B 相对静止时的这两个瞬间,由动量守恒定律知 mCvC+mBvA=(mB+mC)v(2)由(l)式得mCv C=mCvC-(mA+mB)vA 代入(2)式mCv C-(mA+mC)vA+mBvA=(mB+mC)v. 得木块A的速度所以铅块C离开A时的速度【说明】应用动量守恒定律时,必需明确研究对象,即是哪一个系统的动量守恒.另外需明确考察的是系统在哪两个瞬间的动量.如果我们始终以(C+A+B)这一系统为研究对象,并考察C刚要滑上A 和C刚离开A,以及C.B刚相对静止这三个瞬间,由于水平方向不受外力,则由动量守恒定律知 mCvC=(mA+mB)vA+mCvC=mAvA+(mB+mC)v. 同样可得【例10】在静止的湖面上有一质量M=100kg的小船,船上站立质量m=50kg的人,船长L=6m,最初人和船静止.当人从船头走到船尾(如图),船后退多大距离?(忽略水的阻力)【例13】一个静止的质量为M的原子核,放射出一个质量为m的粒子,粒子离开原子核时相对于核的速度为v0,原子核剩余部分的速率等于 []。
物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
力学应用动量守恒定律解题力学是物理学的一个重要分支,研究物体在运动过程中所受的力及其变化规律。
动量守恒定律是力学中的一条基本定律,表明在一个封闭系统中,当没有外力作用时,系统的总动量保持不变。
应用动量守恒定律可以解决许多实际问题,下面我将以几个例子来说明。
例题一:弹性碰撞假设有两个质量相同的小球,在光滑的水平面上碰撞。
初始时,小球A以速度va向右运动,小球B以速度vb向左运动。
碰撞后,小球A以速度va'向左运动,小球B以速度vb'向右运动。
我们可以利用动量守恒定律来求解碰撞后的速度。
根据动量守恒定律,碰撞前的总动量等于碰撞后的总动量。
设小球A和小球B的质量都为m,速度va为正值,速度vb为负值,则可以写出以下方程:mva + mvb = mva' + mvb'根据题意,可以得到小球A碰撞前的速度va和小球B碰撞前的速度vb都已知,碰撞后的速度va'和vb'是未知的,通过解方程可以求解出碰撞后的速度。
例题二:炮弹问题假设有一个炮弹以速度v0发射出去,形成一个抛物线轨迹。
我们可以利用动量守恒定律来解决炮弹问题。
在潜射前和潜射后,系统的总动量保持不变。
当炮弹发射前,炮弹和大炮的总动量为零;当炮弹发射后,炮弹和大炮的总动量仍为零,只是动量的方向相反。
利用动量守恒定律,我们可以得到以下方程:m0v0 = (m+m0) v其中,m0是炮弹的质量,v0是炮弹的初速度,m是大炮的质量,v是大炮的速度。
通过解方程,我们可以求解出炮弹的速度v和射程等相关参数。
这样,我们就可以用动量守恒定律解答炮弹问题。
例题三:汽车追尾问题假设有两辆质量分别为m1和m2的汽车,汽车1以速度v1追尾汽车2,两车发生完全弹性碰撞。
求解碰撞后两车的速度。
根据动量守恒定律,我们可以得到以下方程:m1v1 + m2v2 = m1v1' + m2v2'其中,v1和v2是碰撞前两车的速度,v1'和v2'是碰撞后两车的速度。
物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。
(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。
设小车足够长,求:(1)木块和小车相对静止时小车的速度。
(2)从木块滑上小车到它们处于相对静止所经历的时间。
(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。
例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。
游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。
为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。
若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1. 分析:以物体和车做为研究对象,受力情况如图所示。
在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。
因此地面给车的支持力远大于车与重物的重力之和。
系统所受合外力不为零,系统总动量不守恒。
但在水平方向系统不受外力作用,所以系统水平方向动量守恒。
以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v ⇒Mv 0=(M+m)v⇒s m v m N M v /454140=⨯+=+= 即为所求。
动量典型例题及练习【例题1】两块高度相同的木块A 和B ,紧靠着放在光滑的水平面上,其质量分别为m A =2kg ,m B =0.9kg 。
它们的下底面光滑,但上表面粗糙。
另有一质量m =0.1kg的物体C(可视为质点)以v C =10m/s 的速度恰好水平地滑动A 的上表面,物体C 最后停在B 上,此时B 、C 的共同速度v =0.5m/s,求(1)C 刚离开A 时,木块C 的速度(2)木块A 最终的速度为多大?﹡练习1、如图,在光滑水平面上的两平板车的质量分别为M 1=2kg 和M 2=3kg ,在M 1光滑的表面上放有一质量为m =1kg 的滑块,与M 1一起以5m/s 的速度向右运动,M 2静止。
M 1 与M 2 相撞后以相同的速度一起运动,但没有连接。
m 最后滑上M 2,并因摩擦停在上M 2 ,求两车最终的速度。
﹡练习2、如图所示,在一光滑的水平面上有两块相同的木板B 和C 。
重物A (可以视为质点),位于B 的右端,A 的质量是2kg ,B 、C 的质量都是10kg 。
现A 和B 以2m/s 的速度滑向静止的C ,B 和C 发生正碰,碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 之间的摩擦因数μ=0.2。
已知A 滑到C 的右端而未掉下。
试问: C 至少多长A 不会掉下?【例题2】如图所示,在光滑水平面上有A 、B 两辆小车,水平面的左侧有一竖直墙,在小车B 上坐着一个小孩,小孩与B 车的总质量是A 车质量的10倍。
两车开始都处于静止状态,小孩把A车以相对于地面的速度v 推出,A 车与墙壁碰后仍以原速率返回,小孩接到A 车后,又把它以相对于地面的速度v 推出。
每次推出,A 车相对于地面的速度都是v ,方向向左。
则小孩把A 车推出几次后,A 车返回时小孩不能再接到A 车?﹡练习3、甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车的质量共为M =30kg ,乙和他的冰车的质量也是30kg 。
动量守恒定律应用的各种题型1.两球碰撞型【例题1】甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是P 1=5kgm/s ,P 2=7kgm/s ,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kgm/s ,则二球质量m 1与m 2间的关系可能是下面的哪几种?A 、m 1=m 2B 、2m 1=m 2C 、4m 1=m 2D 、6m 1=m 2。
★解析:甲乙两球在碰撞过程中动量守恒,所以有: P 1+P 2= P 1,+ P 2,即:P 1,=2 kgm/s 。
由于在碰撞过程中,不可能有其它形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加。
所以有:22'212'12221212222m P m P m P m P +≥+ 所以有:m 1≤5121m 2,不少学生就选择(C 、D )选项。
这个结论合“理”,但却不合“情”。
因为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有2211m P m P 〉,即m 1275m 〈;同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即2'21'1m P m P 〈,所以 2151m m 〉。
因此选项(D )是不合“情”的,正确的答案应该是(C )选项。
2、子弹打木块型(动量守恒、机械能不守恒)【例题2】质量为m 的子弹,以水平初速度v 0射向质量为M 的长方体木块。
(1)设木块可沿光滑水平面自由滑动,子弹留在木块内,木块对子弹的阻力恒为f ,求弹射入木块的深度L 。
并讨论:随M 的增大,L 如何变化?(2)设v 0=900m/s ,当木块固定于水平面上时,子弹穿出木块的速度为v 1=100m/s 。
若木块可沿光滑水平面自由滑动,子弹仍以v 0=900m/s 的速度射向木块,发现子弹仍可穿出木块,求M/m 的取值范围(两次子弹所受阻力相同)。
动量守恒定律·典型例题解析【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律.解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222∆∆∆∆v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1(v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒.点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化.【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是[ ]A .枪和子弹组成的系统动量守恒B .枪和车组成的系统动量守恒C .子弹、枪、小车这三者组成的系统动量守恒D .子弹的动量变化与枪和车的动量变化相同解析:正确答案为C点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关.【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来回碰撞n 次后,静止在车厢中,这时车厢的速度为_______,方向与v 0的方向_______.点拨:不论物体与车厢怎样发生作用,碰撞多少次,将物体与车厢作为系统,物体与车厢间作用力是内力,不改变系统的总动量,同时这一系统所受的合外力为零,系统的总动量守恒,以v 0为正方向,有mv 0=(M +m)v ′.【例4】 一辆列车的总质量为M ,在平直的水平轨道上以速度v 匀速行驶,突然最后一节质量为m 的车厢脱钩,假设列车所受的阻力与车的重量成正比,机车的牵引力不变,当脱钩的车厢刚好停止运动时,前面列车的速度为多大?点拨:以整列列车为系统,不管最后一节车厢是否脱钩,系统所受的外力在竖直方向上重力与轨道给系统的弹力相平衡,在运动方向上牵引力与系统所受的总的阻力相平衡,即系统所受的外力为零,总动量守恒.参考答案例,相同例-3 mv M +m 4 M M mv 0跟踪反馈1.在光滑水平面上有两个质量不等的物体,它们之间夹一被压缩的弹簧,开始时两物用细绳相连,烧断细绳后两物体[ ]A .在任何时刻加速度大小相等B .在任何时刻速度大小相等C .在任何时刻动量大小相等D .在任意一段时间内,弹簧对两物体的冲量相同2.沿一直线相向运动的甲、乙两质点,作用前动量分别是P 1=10kg ·m/s ,P 2=-18kg ·m/s ,作用后甲的动量为-1kg ·m/s ,不计任何外界阻力,则作用后乙的动量为[ ]A .-29kg ·m/sB.29kg·m/sC.-7kg·m/sD.7kg·m/s3.质量为490g的木块静止在光滑水平面上,质量为10g的子弹以500m/s 的速度水平射入木块并嵌在其中,从子弹刚射入木块至与木块相对静止的过程中,木块增加的动量为_______kg·m/s,它们的共同运动速度为_______m/s.4.质量为120t的机车,向右匀速滑行与静止的质量均为60t的四节车厢挂接在一起运动,由于四节车厢的挂接,使机车的速度减小了3m/s,求机车在挂接前的速度.参考答案1.C 2.C 3.4.9;10 4.4.5m/s;方向向右。
动量守恒定律的典型例题【例1】把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些?[]A.枪和子弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.车、枪和子弹组成的系统动量守恒D.车、枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小【分析】本题涉及如何选择系统,并判断系统是否动量守恒.物体间存在相互作用力是构成系统的必要条件,据此,本题中所涉及的桌子、小车、枪和子弹符合构成系统的条件.不仅如此,这些物体都跟地球有相互作用力.如果仅依据有相互作用就该纳入系统,那么推延下去只有把整个宇宙包括进去才能算是一个完整的体系,显然这对于分析、解决一些具体问题是没有意义的.选择体系的目的在于应用动量守恒定律去分析和解决问题,这样在选择物体构成体系的时候,除了物体间有相互作用之外,还必须考虑“由于物体的相互作用而改变了物体的动量”的条件.桌子和小车之间虽有相互作用力,但桌子的动量并没有发生变化.不应纳入系统内,小车、枪和子弹由于相互作用而改变了各自的动量,所以这三者构成了系统.分析系统是否动量守恒,则应区分内力和外力.对于选定的系统来说,重力和桌面的弹力是外力,由于其合力为零所以系统动量守恒.子弹与枪筒之间的摩擦力是系统的内力,只能影响子弹和枪各自的动量,不能改变系统的总动量.所以D的因果论述是错误的.【解】正确的是C.【例2】一个质量M=1kg的鸟在空中v0=6m/s沿水平方向飞行,离地面高度h=20m,忽被一颗质量m=20g沿水平方向同向飞来的子弹击中,子弹速度v=300m/s,击中后子弹留在鸟体内,鸟立即死去,g=10m/s2.求:鸟被击中后经多少时间落地;鸟落地处离被击中处的水平距离.【分析】子弹击中鸟的过程,水平方向动量守恒,接着两者一起作平抛运动。
【解】把子弹和鸟作为一个系统,水平方向动量守恒.设击中后的共同速度为u,取v0的方向为正方向,则由Mv0+mv=(m+M)u,得击中后,鸟带着子弹作平抛运动,运动时间为鸟落地处离击中处水平距离为S=ut=11.76×2m=23.52m.【例3】一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为M,脱钩后牵引力不变,且每一部分所受摩擦力均正比于它的重力,则当最后一节车厢滑行停止的时刻,前部列车的速度为[]【分析】列车原来做匀速直线运动,牵引力F等于摩擦力f,f=k(m+M)g(k为比例系数),因此,整个列车所受的合外力等于零.尾部车厢脱钩后,每一部分所受摩擦力仍正比于它们的重力.因此,如果把整个列车作为研究对象,脱钩前后所受合外力始终为零,在尾部车厢停止前的任何一个瞬间,整个列车(前部+尾部)的动量应该守恒.考虑刚脱钩和尾部车厢刚停止这两个瞬间,由(m+M)v0=0+Mv得此时前部列车的速度为【答】B.【说明】上述求解是根据列车受力的特点,恰当地选取研究对象,巧妙地运用了动量守恒定律,显得非常简单.如果把每一部分作为研究对象,就需用牛顿第二定律等规律求解.有兴趣的同学,请自行研究比较.【例4】质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二个小球的质量为m2=50g,速率v2=10cm/s.碰撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大,方向如何?【分析】取相互作用的两个小球为研究的系统。
由于桌面光滑,在水平方向上系统不受外力.在竖直方向上,系统受重力和桌面的弹力,其合力为零.故两球碰撞的过程动量守恒.【解】设向右的方向为正方向,则各速度的正、负号分别为v1=30cm/s,v2=10cm/s,v'2=0.据动量守恒定律有m l v l+m2v2=m1v'1+m2v'2.解得v'1=-20cm/s.即碰撞后球m1的速度大小为20cm/s,方向向左.【说明】通过此例总结运用动量守恒定律解题的要点如下.(1)确定研究对象.对象应是相互作用的物体系.(2)分析系统所受的内力和外力,着重确认系统所受到的合外力是否为零,或合外力的冲量是否可以忽略不计.(3)选取正方向,并将系统内的物体始、末状态的动量冠以正、负号,以表示动量的方向.(4)分别列出系统内各物体运动变化前(始状态)和运动变化后(末状态)的动量之和.(5)根据动量守恒定律建立方程,解方程求得未知量.【例5】甲、乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg.游戏时,甲推着一质量为m=15km的箱子,和他一起以大小为v0=2m/s的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免和乙相碰.【分析】甲推出箱子和乙抓住箱子是两个动量守恒的过程,可运用动量守恒求解.甲把箱于推出后,甲的运动有三种可能:一是继续向前,方向不变;一是静止;一是方向改变,向后倒退.按题意要求.是确定甲推箱子给乙,避免跟乙相碰的最小速度.上述三种情况中,以第一种情况甲推出箱子的速度最小,第二、第三种情况则需要以更大的速度推出箱子才能实现.【解】设甲推出的箱子速度为v,推出后甲的速度变为v1,取v0方向为正方向,据动量守恒有(M+m)v0=Mv1+mv.(1)乙抓住箱子的过程,动量守恒,则Mv+mv0=(M+m)v2.(2)甲、乙两冰车避免相撞的条件是v2≥v1,取v2=v1.(3)联立(1)、(2)、(3)式,并代入数据解得v=5.2m/s.【说明】本题仅依据两个动量守恒的过程建立的方程还能求解,关键是正确找出临界条件,并据此建立第三个等式才能求解.【例6】两辆质量相同的小车A和B,置于光滑水平面上,一人站在A车上,两车均静止.若这个人从A车跳到B车上,接着又跳回A车,仍与A车保持相对静止,则此时A车的速率[]A.等于零B.小于B车的速率C.大于B车的速率D.等于B车的速率【分析】设人的质量为m0,车的质量为m.取A、B两车和人这一系统为研究对象,人在两车间往返跳跃的过程中,整个系统水平方向不受外力作用,动量守恒.取开始时人站在A车上和后来又相对A车静止时这两个时刻考察系统的动量,则0=(m0+m)v A+mv B,可见,两车反向运动,A车的速率小于B车的速率.【答】B.【说明】本题中两车相互作用前后动量在一直线上,但两者动量方向即速度方向均不甚明确,因此没有事先规定正方向,而是从一般的动【例7】甲、乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度v,水平向后方的乙船上抛一沙袋,其质量为m.设甲船和沙袋总质量为M,乙船的质量也为M.问抛掷沙袋后,甲、乙两船的速度变化多少?【分析】由题意可知,沙袋从甲船抛出落到乙船上,先后出现了两个相互作用的过程,即沙袋跟甲船和沙袋跟乙船的相互作用过程.在这两个过程中的系统,沿水平方向的合外力为零,因此,两个系统的动量都守恒.值得注意的是,题目中给定的速度选择了不同的参照系.船速是相对于地面参照系,而抛出的沙袋的速度v是相对于抛出时的甲船参照系.【解】取甲船初速度V的方向为正方向,则沙袋的速度应取负值.统一选取地面参照系,则沙袋抛出前,沙袋与甲船的总动量为MV.沙袋抛出后,甲船的动量为(M-m)v甲',沙袋的动量为m(v甲'-v).根据动量守恒定律有MV=(M-m)v甲'+m(v甲'-v).(1)取沙袋和乙船为研究对象,在其相互作用过程中有MV+m(v甲'-v)=(M+m)v乙'.(2)联立(l)、(2)式解得则甲、乙两船的速度变化分别为【例8】小型迫击炮在总质量为1000kg的船上发射,炮弹的质量为2kg.若炮弹飞离炮口时相对于地面的速度为600m/s,且速度跟水平面成45°角,求发射炮弹后小船后退的速度?【分析】取炮弹和小船组成的系统为研究对象,在发射炮弹的过程中,炮弹和炮身(炮和船视为固定在一起)的作用力为内力.系统受到的外力有炮弹和船的重力、水对船的浮力.在船静止的情况下,重力和浮力相等,但在发射炮弹时,浮力要大于重力.因此,在垂直方向上,系统所受到的合外力不为零,但在水平方向上系统不受外力(不计水的阻力),故在该方向上动量守恒.【解】发射炮弹前,总质量为1000kg的船静止,则总动量Mv=0.发射炮弹后,炮弹在水平方向的动量为mv1'cos45°,船后退的动量为(M-m)v2'.据动量守恒定律有0=mv1'cos45°+(M-m)v2'.取炮弹的水平速度方向为正方向,代入已知数据解得【例9】两块厚度相同的木块A和B,并列紧靠着放在光滑的水平面上,其质量分别为m A=2.0kg,m B=0.90kg.它们的下底面光滑,上表面粗糙.另有质量m C=0.10kg的铅块C(其长度可略去不计)以v C=10m/s的速度恰好水平地滑到A的上表面(见图),由于摩擦,铅块最后停在本块B上,测得B、C的共同速度为v=0.50m/s,求木块A的速度和铅块C离开A时的速度.【分析】C滑上A时,由于B与A紧靠在一起,将推动B一起运动.取C与A、B这一系统为研究对象,水平方向不受外力,动量守恒.滑上后,C在A的摩擦力作用下作匀减速运动,(A+B)在C的摩擦力作用下作匀加速运动.待C滑出A后,C继续减速,B在C的摩擦力作用下继续作加速运动,于是A与B分离,直至C最后停于B上.【解】设C离开A时的速度为v C,此时A、B的共同速度为v A,对于C刚要滑上A和C刚离开A这两个瞬间,由动量守恒定律知m C v C=(m A+m B)v A+m C v'C(1)以后,物体C离开A,与B发生相互作用.从此时起,物体A不再加速,物体B将继续加速一段时间,于是B与A分离.当C相对静止于物体B上时,C与B的速度分别由v'C和v A变化到共同速度v.因此,可改选C与B为研究对象,对于C刚滑上B和C、B相对静止时的这两个瞬间,由动量守恒定律知m C v'C+m B v A=(m B+m C)v(2)由(l)式得m C v'C=m C v C-(m A+m B)v A代入(2)式m C v'C-(m A+m C)v A+m B v A=(m B+m C)v.得木块A的速度所以铅块C离开A时的速度【说明】应用动量守恒定律时,必需明确研究对象,即是哪一个系统的动量守恒.另外需明确考察的是系统在哪两个瞬间的动量.如果我们始终以(C+A+B)这一系统为研究对象,并考察C刚要滑上A和C刚离开A,以及C、B刚相对静止这三个瞬间,由于水平方向不受外力,则由动量守恒定律知m C v C=(m A+m B)v A+m C v'C=m A v A+(m B+m C)v.同样可得【例10】在静止的湖面上有一质量M=100kg的小船,船上站立质量m=50kg的人,船长L=6m,最初人和船静止.当人从船头走到船尾(如图),船后退多大距离?(忽略水的阻力)[分析]有的学生对这一问题是这样解答的.由船和人组成的系统,当忽略水的阻力时,水平方向动量守恒.取人前进的方向为正方向,设t时间内这一结果是错误的,其原因是在列动量守恒方程时,船后退的速度考系的速度代入同一公式中必然要出错.【解】选地球为参考系,人在船上行走,相对于地球的平均速度为为【例11】一浮吊质量M=2×104kg,由岸上吊起一质量m=2×103kg的货物后,再将吊杆OA从与竖直方向间夹角θ=60°转到θ'=30°,设吊杆长L=8m,水的阻力不计,求浮吊在水平方向移动的距离?向哪边移动?【分析】对浮吊和货物组成的系统,在吊杆转动过程中水平方向不受外力,动量守恒.当货物随吊杆转动远离码头时,浮吊将向岸边靠拢,犹如人在船上向前走时船会后退一样,所以可应用动量守恒求解.【解】设浮吊和货物在水平方向都作匀速运动,浮吊向右的速度为v,货物相对于浮吊向左的速度为u,则货物相对河岸的速度为(v-u).由0=Mv+m(v-u),吊杆从方位角θ转到θ'需时所以浮吊向岸边移动的距离【说明】当吊杆从方位角θ转到θ'时,浮吊便向岸边移动一定的距离,这个距离与吊杆转动的速度,也就是货物移动的速度无关。