系统调用(精)
- 格式:ppt
- 大小:78.00 KB
- 文档页数:9
mips汇编语言指令MIPS(Microprocessor without Interlocked Pipeline Stages)是一种精简指令集(RISC)架构的计算机处理器。
它的指令集被广泛应用于各种领域,包括嵌入式系统、操作系统和编译器等。
本文将介绍一些常见的MIPS汇编语言指令。
1. 加载和存储指令MIPS提供了一系列用于数据传输的指令。
其中,lw(load word)指令用于从内存中加载一个字(32位数据)到寄存器中,sw(store word)指令用于将一个字存储到内存中。
例如,lw $t0, 0($s0)表示将从地址$s0偏移量为0的内存位置加载一个字到$t0寄存器中。
2. 算术和逻辑指令MIPS提供了一系列用于算术和逻辑运算的指令。
例如,add指令用于将两个寄存器中的值相加,并将结果存储到目标寄存器中。
而and 指令用于对两个寄存器中的值进行按位与操作,并将结果存储到目标寄存器中。
例如,add $t0, $s0, $s1表示将$s0和$s1中的值相加,并将结果存储到$t0寄存器中。
3. 分支和跳转指令MIPS提供了一系列用于控制程序流程的指令。
其中,beq(branch if equal)指令用于在两个寄存器中的值相等时跳转到目标地址。
而j (jump)指令用于无条件跳转到目标地址。
例如,beq $t0, $t1, label表示如果$t0和$t1中的值相等,则跳转到标签为label的位置。
4. 移位指令MIPS提供了一系列用于移位操作的指令。
其中,sll(shift left logical)指令用于将一个寄存器中的值左移指定的位数,并将结果存储到目标寄存器中。
例如,sll $t0, $s0, 2表示将$s0中的值左移2位,并将结果存储到$t0寄存器中。
5. 系统调用指令MIPS提供了一系列用于进行系统调用的指令。
其中,syscall指令用于触发系统调用,并根据不同的系统调用号执行相应的操作。
实验报告一、理论分析(分值:20%)【从操作系统原理(理论)的角度阐述系统功能调用的过程】1、函数声明中都有asmlinkage限定词,用于通知编译器仅从栈中提取该函数的参数。
2、系统调用getXXX()在内核中被定义为sys_getXXX()。
系统调用号:在linux中,每个系统调用都赋予一个系统调用号,通过这个独一无二的号就可以关联系统调用。
当用户空间的进程执行一个系统调用的时候,这个系统调用号就被用来指明到底要执行哪个系统调用;进程不会提及系统调用的名称。
系统调用号一旦分配就不能再有任何变更(否则编译好的应用程序就会崩溃),如果一个系统调用被删除,它所占用的系统调用号也不允许被回收利用。
Linux 有一个"未使用"系统调用sys_ni_syscall(),它除了返回-ENOSYS外不做任何其他工作,这个错误号就是专门针对无效的系统调用而设的。
内核记录了系统调用表中所有已注册过的系统调用的列表,存储在sys_call_table中。
它与体系结构有关,一般在entry.s中定义。
这个表中为每一个有效的系统调用指定了唯一的系统调用号。
3、Makefile控制着整个内核的编译,在每个子目录下调用编译.c 文件,生成.o文件,生成新的内核。
会把新编译的sys_hello内核加入到系统调用中。
系统调用表geditsyscall_32.tbl中加入354 i386 hello sys_hello,当系统调用时可以在调用表中找到系统调用的号。
4、在syscalls.h中添加定义的内容的引用函数。
5、编译执行结果。
二、设计与实现(分值:30%)【阐述在Linux中添加系统功能调用的方法】1、在内核目录下创建hello文件夹 mkdir hello2、进入hello文件夹 cd hello3、创建hello.c的文件 vim hello.c4、加入代码#include <linux/kernel.h>asmlinkage long sys_hello(void){printk(“Hello world\n”);return 0;}5、在hello文件夹下添加Makefile文件 vim Makefile在文件里添加 obj-y := hello.o6、返回内核的根目录中,打开Makefile文件,在842行添加代码 vim Makefile 将core-y += kernel/ mm/ fs/ ipc/ security/ crypto/ block/改为core-y += kernel/ mm/ fs/ ipc/ security/ crypto/ block/ hello/ 7、打开系统调用表 cd arch/x86/syscallsVim syscall_32.tbl在文件最后一行添加354 i386 hello sys_hello8、在调用函数名的文件中加入添加的函数cd include/linux/Vim syscalls.hasmlinkage long sys_hello(void);9、进行编译cd /usr/src/linux-3.16/sudo make menuconfigsudo make oldconfigmake -j410、安装编译好的内核sudo make modules_install installshutdown -r now重启后选择新的内核载入测试uname -r11、编写测试文件hello.c#include <stdio.h>#include <linux/kernel.h>#include <sys/syscall.h>#include <unistd.h>int main(){printf("%ld\n", syscall(354));return 0;}12、编译测试gcc -o hello.c hello./hello.outdmesg三、实验结果(分值:10%)【对实验结果进行简要分析和说明】测试文件调用系统调用号354,并且将返回结果0输出,dmesg可以将开机显示结果输出查看。
系统调用原理(最新版)目录1.系统调用的概念与作用2.系统调用的分类3.系统调用的实现原理4.系统调用的应用实例5.系统调用与用户程序的关系正文一、系统调用的概念与作用系统调用(System Call)是操作系统向用户程序提供的一种申请操作系统服务的接口。
用户程序通过系统调用请求操作系统的帮助,完成文件操作、进程管理、内存管理等任务。
系统调用是操作系统与用户程序之间的桥梁,使得用户程序可以更加高效地使用操作系统的功能。
二、系统调用的分类根据系统调用的功能,可以将其分为以下几类:1.文件操作:包括创建文件、打开文件、读取文件、写入文件、关闭文件等。
2.进程管理:包括创建进程、终止进程、切换进程、获取进程信息等。
3.内存管理:包括分配内存、释放内存、复制内存等。
4.设备管理:包括设备分配、设备回收、设备操作等。
5.其他系统服务:包括获取系统时间、随机数生成等。
三、系统调用的实现原理系统调用的实现原理可以分为以下几个步骤:1.用户程序调用库函数:用户程序调用库函数,如 C 语言的标准库函数,来实现文件操作、进程管理等功能。
2.库函数调用系统调用:库函数通过调用系统调用来请求操作系统提供相应的服务。
3.操作系统处理:操作系统根据系统调用的类型,执行相应的操作,如文件操作、进程管理等。
4.返回结果:操作系统将处理结果返回给库函数。
5.库函数返回结果给用户程序:库函数将操作系统返回的结果返回给用户程序。
四、系统调用的应用实例以下是一个简单的系统调用应用实例,使用 C 语言编写,通过系统调用实现文件的创建和写入功能:```c#include <stdio.h>#include <unistd.h>int main() {int fd = open("example.txt", O_CREAT | O_TRUNC | O_WRONLY, 0644);if (fd < 0) {perror("open");return -1;}write(fd, "Hello, system call!", 25);close(fd);return 0;}```五、系统调用与用户程序的关系系统调用是操作系统为用户程序提供的一种服务接口,用户程序通过系统调用来请求操作系统的帮助,实现文件操作、进程管理等功能。
系统调用原理摘要:一、系统调用简介1.系统调用的概念2.系统调用的重要性二、系统调用原理1.系统调用接口2.系统调用处理程序3.系统调用实现原理a.系统调用号b.参数传递c.返回值d.系统调用实现三、系统调用应用1.文件操作2.进程管理3.内存管理4.设备驱动四、系统调用与用户程序的关系1.用户程序调用系统调用2.系统调用将请求传递给内核3.内核处理请求并返回结果正文:一、系统调用简介系统调用是操作系统提供给用户程序的一组应用编程接口,它允许用户程序在需要时请求操作系统内核提供的服务。
系统调用为用户程序和操作系统内核之间提供了一个抽象层,使得用户程序无需关心底层的实现细节,只需通过调用相应的系统调用函数来完成所需功能。
这种设计使得用户程序和操作系统内核的开发与维护变得更加容易。
二、系统调用原理1.系统调用接口系统调用接口是用户程序与操作系统内核之间交互的桥梁,它定义了用户程序如何请求操作系统内核提供的服务。
通常,每种操作系统都有一组标准的系统调用接口,这些接口遵循一定的规范,以便用户程序能够方便地调用。
2.系统调用处理程序当用户程序调用一个系统调用时,操作系统内核会根据系统调用接口找到对应的系统调用处理程序。
系统调用处理程序负责处理用户程序的请求,并将其转换为内核可以理解和执行的指令。
3.系统调用实现原理系统调用的实现原理包括系统调用号、参数传递、返回值和系统调用实现。
a.系统调用号:每种系统调用都有一个唯一的编号,用户程序通过这个编号来请求相应的服务。
b.参数传递:用户程序调用系统调用时,需要传递所需的参数。
这些参数可以通过栈来传递,也可以通过寄存器来传递。
c.返回值:系统调用处理程序执行完成后,会返回一个结果值。
这个结果值可以通过栈来返回,也可以通过寄存器来返回。
d.系统调用实现:系统调用实现是操作系统内核中实际执行处理用户程序请求的部分。
它根据用户程序的请求执行相应的操作,如文件读写、进程创建等。
C语言系统调用详解在计算机编程中,C语言是一种常用的编程语言,它具备底层编程的能力,并且被广泛应用于操作系统和系统编程中。
在C语言中,系统调用是一种与操作系统交互的重要机制,它允许程序访问操作系统提供的各种服务和资源。
本文将详细介绍C语言中的系统调用,包括其概念、基本用法和常见示例。
一、概念解析系统调用是指程序通过调用操作系统提供的函数来访问操作系统功能的过程。
在C语言中,系统调用通常是以函数的形式存在,通过调用这些函数可以实现对底层资源和服务的访问。
系统调用提供了一种独立于具体硬件和操作系统的编程接口,使得程序可以在不同的操作系统和硬件平台上运行。
二、基本用法在C语言中,使用系统调用需要包含相应的头文件,并且通过函数调用来实现。
下面是一些常见的系统调用函数及其用法:1. 文件操作:a. 打开文件:使用open()函数可以打开一个文件,并返回一个文件描述符,用于后续对文件的读写操作。
b. 读取文件:使用read()函数可以从文件中读取数据,并将其存储到指定的缓冲区中。
c. 写入文件:使用write()函数可以将数据写入文件中。
d. 关闭文件:使用close()函数可以关闭已打开的文件。
2. 进程控制:a. 创建新进程:使用fork()函数可以创建一个新的进程,该新进程是父进程的副本。
b. 执行新程序:使用exec()函数族中的某个函数可以执行一个新的程序,替换当前进程的地址空间。
c. 等待子进程结束:使用wait()函数可以让父进程等待子进程的结束,并获取子进程的返回状态。
3. 网络通信:a. 创建套接字:使用socket()函数可以创建一个网络套接字,用于网络通信。
b. 绑定套接字:使用bind()函数可以将套接字与指定的IP地址和端口绑定。
c. 监听连接请求:使用listen()函数可以使套接字处于监听状态,等待其他程序的连接请求。
d. 接受连接:使用accept()函数可以接受其他程序的连接请求。
fork 系统调用和exec系统调用1.fork 系统调用fork系统调用是UNIX操作系统创建新进程的唯一方法,我们称新创建的进程为子进程,而调用fork的进程称为父进程。
子进程有唯一的进程号来标识。
子进程的用户级环境是父进程用户级的一个拷贝。
其调用格式是:int fork()参数和功能说明:fork系统调用没有参数。
如果执行成功,则创建一子进程,子进程继承父进程的某些属性。
当从该系统调用返回时,系统中已有两个用户级环境完全相同的进程存在。
这两个进程从fork 调用中得到的返回值不同,其中子进程得到返回值为零,父进程得到的返回值为新创建的子进程的进程标识号。
fork系统调用非常特殊,用户有时很难理解,因为子进程好象是从天而降,在程序的中间突然开始执行。
下面以实例来说明fork的使用。
[例]该进程说明fork系统调用执行后,生成的子进程从程序中间开始执行,此外还将说明父子进程不同的返回值。
程序如下:main(){int pid;printf(“Start of fork testing\n”);pid=fork();printf(“Return of fork s uccess:pid=%d\n”,pid);}运行结果如下:Start of fork testingReturm of fork success:pid=()Return of fork success:pid=3903该程序首先输出了一行信息,然后创建一个进程,当子进程成功创建后,子进程为就绪状态。
当父、子进程都从fork系统调用返回时,父、子进程都有可能被调用。
如果子进程先被调用,则运行结果与上述相同;如果父进程先被调用,则运行结果与上述就有些不同(自己观察比较)。
另外,子进程继承了父进程的执行环境,即父进程中变量、fork语句后面的代码等。
因此它输出了“R eturn of fork success:pid=0”。
假设如果子进程先被调用,子进程执行完毕后,父进程被调用就输出了“Return of fork success:pid=3903”(这时fork的返回值就是子进程的标识号)。
了解各种系统调用助你成为一名Linux下编程高手什么是系统调用?Linux内核中设置了一组用于实现各种系统功能的子程序,称为系统调用。
用户可以通过系统调用命令在自己的应用程序中调用它们。
从某种角度来看,系统调用和普通的函数调用非常相似。
区别仅仅在于,系统调用由操作系统核心提供,运行于核心态;而普通的函数调用由函数库或用户自己提供,运行于用户态。
随Linux核心还提供了一些C语言函数库,这些库对系统调用进行了一些包装和扩展,因为这些库函数与系统调用的关系非常紧密,所以习惯上把这些函数也称为系统调用。
为什么要用系统调用?实际上,很多已经被我们习以为常的C语言标准函数,在Linux平台上的实现都是靠系统调用完成的,所以如果想对系统底层的原理作深入的了解,掌握各种系统调用是初步的要求。
进一步,若想成为一名Linux下编程高手,也就是我们常说的Hacker,其标志之一也是能对各种系统调用有透彻的了解。
即使除去上面的原因,在平常的编程中你也会发现,在很多情况下,系统调用是实现你的想法的简洁有效的途径,所以有可能的话应该尽量多掌握一些系统调用,这会对你的程序设计过程带来意想不到的帮助。
系统调用是怎么工作的?一般的,进程是不能访问内核的。
它不能访问内核所占内存空间也不能调用内核函数。
CPU 硬件决定了这些(这就是为什么它被称作"保护模式")。
系统调用是这些规则的一个例外。
其原理是进程先用适当的值填充寄存器,然后调用一个特殊的指令,这个指令会跳到一个事先定义的内核中的一个位置(当然,这个位置是用户进程可读但是不可写的)。
在Intel CPU中,这个由中断0x80实现。
硬件知道一旦你跳到这个位置,你就不是在限制模式下运行的用户,而是作为操作系统的内核--所以你就可以为所欲为。
进程可以跳转到的内核位置叫做sysem_call。
这个过程检查系统调用号,这个号码告诉内核进程请求哪种服务。
然后,它查看系统调用表(sys_call_table)找到所调用的内核函数入。
Linux系统调用系统调用指操作系统提供给用户程序调用的一组“特殊”接口,用户程序可以通过这组“特殊”接口来获得操作系统内核提供的服务。
为什么用户程序不能直接访问系统内核提供的服务呢?这是由于在Linux中,为了更好地保护内核空间,将程序的运行空间分为用户空间和内核空间(也就是常称的用户态和内核态),它们分别运行在不同的级别上,逻辑上是相互分离的。
因此,用户进程通常情况下不允许访问内核数据,也无法使用内核函数,它们只能在用户空间操作用户数据,调用用户空间的函数。
但是,在有些情况下,用户空间的进程需要获得一定的系统服务(调用内核空间程序),这时操作系统就必须利用系统提供用户的“特殊接口”———系统调用规定用户进程进入内核空间的具体位置。
在进行系统调用时,程序运行空间需要从用户空间进入内核空间,处理完成后再返回用户空间。
Linux系统调用还算精简(只有250个左右),它继承了UNIX系统调用中最基本和最有用的部分。
这些系统调用按照功能逻辑大致可分为进程控制、进程间通信、文件系统控制、存储管理、网络管理、套接字控制、用户管理等几类。
用户编程接口(API)前面讲到的系统调用并不直接与程序员进行交互,它仅仅是一个通过软中断机制向内核提交请求以获取内核服务的接口。
实际使用中,程序员调用的通常都是用户编程接口(API)。
例如,创建进程的API函数fork()函数对应于内核空间的sys_fork()系统调用,但并不是所有的函数都对应一个系统调用。
有时,一个API函数会需要几个系统调用来共同完成函数的功能,甚至还有一些API函数不需要调用相应的系统调用(因此它所完成的不是内核提供的服务)。
系统命令系统命令相对于API更高了一层,它实际上是一个可执行程序,它的内部引用了用户编程接口(API)来实现相应的功能,它们之间的关系如下图1:。