基本事实与定理
- 格式:doc
- 大小:80.00 KB
- 文档页数:2
基本事实与定理高一知识点基本事实与定理:高一知识点在高中数学的学习中,我们经常接触到各种基本事实与定理,它们是我们学习数学的基石。
掌握了这些基本事实与定理,我们就能更好地理解数学知识的本质,提高解题能力。
本文将介绍几个高一阶段的基本事实与定理。
一、角的概念及基本性质角是数学中一个基本的概念,它是由两条射线(或称为半直线)共享一个公共端点形成的。
根据角的大小,可以分为锐角、直角、钝角和平角。
锐角的角度小于90°,直角的角度等于90°,钝角的角度大于90°,而平角的角度等于180°。
在角的基本性质中,我们常用到的有垂直角、对顶角和余角等。
垂直角是两条相交直线之间的角,它们的角度相等。
对顶角是两条平行直线被一条横切线所切割而形成的内角,它们的角度相等。
余角是与给定角相加等于90°的角,即互为余角的两个角的和等于90°。
二、三角形与相似三角形三角形是由三条线段(也称为边)所围成的一个封闭平面图形。
根据三条边的长短关系,三角形可以分为等边三角形、等腰三角形和普通三角形。
等边三角形的三条边长度相等,等腰三角形的两条边长度相等,而普通三角形的三条边长度都不相等。
相似三角形是指具有相似形状的三角形。
相似三角形有一个重要的性质:对应角相等。
也就是说,如果两个三角形的对应角度相等,则它们是相似的。
利用相似三角形的性质,我们可以解决很多实际问题,例如测量高楼的高度、测量无法直接到达的距离等。
三、平行线与比例定理在平面几何中,平行线是指在同一个平面上永远不会相交的两条直线。
在平行线的研究中,我们常用到两条平行线之间的夹角、平行线与横切线之间的关系等。
平行线的比例定理是指当有两组平行线与一条横切线相交时,各对应线段之间的比例相等。
我们可以利用这个定理求解各种实际问题,例如测量高楼的高度、计算图形的面积等。
四、勾股定理及其应用勾股定理是三角形中一个经典的定理,它描述了一个直角三角形的边的关系。
立体的四个基本事实四大公理『公理1』如果一条直线上的两点在同一个平面内,那么这条直线在这个平面内。
『公理2』过不在一条直线上的三点,有且只有一个平面。
换言之:不共线的三点决定一个平面。
『公理3』如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
『公理4』空间平行线的传递性:平行于同一直线的两直线相互平行。
线面垂直「定义」如果直线与平面内的任意一条直线都垂直,我们就说直线与平面互相垂直,记作 .「判定」如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.「性质」垂直于同—个平面的两条直线平行。
线面平行「定义」如果一条直线与某个平面没有公共点,则这条直线与该平面平行。
「判定」如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行。
「性质」一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
面面平行「定义」如果两个平面没有公共点,则我们说这两个平面平行。
「判定」如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
「性质」如果两个平行平面同时和第三个平面相交,则它们的交线平行。
面面垂直「定义」两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
「判定」如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
「性质」两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
三垂线定理及逆定理「定理1」在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直。
「定理2」在平面内的一条直线,若和这个平面的一条斜线垂直,则它和这条斜线的射影也垂直。
鲁教版数学七年级下册8.3《基本事实与定理》教学设计一. 教材分析《基本事实与定理》是鲁教版数学七年级下册第八章第三节的内容,主要介绍了几个重要的数学定理,包括勾股定理、平方差定理和完全平方定理。
这些定理是初中数学的基础,对于学生理解和掌握数学知识体系具有重要意义。
本节课的教学内容不仅要求学生掌握定理本身,还要学会如何运用这些定理解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于一些简单的数学概念和运算方法已经熟悉。
但是,对于较复杂的数学定理,学生可能还存在着理解上的困难。
因此,在教学过程中,需要教师耐心引导,帮助学生深入理解定理的含义和应用。
三. 教学目标1.了解勾股定理、平方差定理和完全平方定理的基本概念。
2.学会运用这些定理解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.勾股定理的证明和应用。
2.平方差定理和完全平方定理的理解和应用。
五. 教学方法采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣,培养学生的自主学习能力。
同时,结合实例讲解,让学生直观地理解定理的应用,提高学生的实际操作能力。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备一些实际问题,用于引导学生运用定理解决。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何运用数学定理解决问题。
例如,一个直角三角形,两条直角边的长度分别是3cm和4cm,如何求斜边的长度?2.呈现(15分钟)介绍勾股定理的概念和证明方法。
通过PPT展示勾股定理的证明过程,让学生直观地理解定理的含义。
同时,给出一些勾股定理的应用实例,让学生学会如何运用定理解决实际问题。
3.操练(15分钟)让学生分组讨论,尝试解决一些关于勾股定理的实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)通过一些练习题,让学生巩固对勾股定理的理解和运用。
教师及时批改学生的答案,给予反馈。
八年级上册数学公式、基本事实及定理近年来,数学作为一门重要的学科,在中小学的教学中占据了越来越重要的地位。
在八年级上册数学学习中,数学公式、基本事实以及定理更是成为了学生们必须掌握的重要知识点。
本文将系统地介绍八年级上册数学中的一些重要公式、基本事实以及定理,希望对广大学生们的学习有所帮助。
一、常见数学公式1.1 圆的面积公式圆的面积公式为:$S = \pi r^2$, 其中$r$为半径。
1.2 圆的周长公式圆的周长公式为:$C = 2\pi r$, 其中$r$为半径。
1.3 直角三角形斜边公式直角三角形斜边公式为:$c^2 = a^2 + b^2$, 其中$a$、$b$分别为直角三角形的两条直角边,$c$为斜边。
1.4 二次函数顶点坐标公式二次函数$y = ax^2 + bx + c$的顶点坐标公式为:$(\frac{-b}{2a},\frac{-\Delta}{4a})$,其中$\Delta = b^2 - 4ac$。
1.5 等差数列前n项和公式等差数列前n项和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$,其中$S_n$为前n项和,$a_1$为首项,$a_n$为第n项。
二、基本事实2.1 直角三角形的性质直角三角形的性质包括:直角三角形的两个直角边的平方和等于斜边的平方。
2.2 圆的性质圆的性质包括:圆的直径是圆的最长直径,圆心到圆上任意一点的距离都相等。
2.3 二次函数的性质二次函数的性质包括:二次函数的抛物线开口方向由二次项系数$a$的正负决定,当$a>0$时抛物线开口向上,当$a<0$时抛物线开口向下。
2.4 函数的奇偶性函数的奇偶性包括:$f(-x) = f(x)$时为偶函数,$f(-x) = -f(x)$时为奇函数。
2.5 三角函数的基本关系三角函数的基本关系包括:$\sin^2x + \cos^2x = 1$,$1 +\tan^2x = \sec^2x$,$1 + \cot^2x = \csc^2x$等。
求证:同角(或等角)的补角相等。
五、【练习内化、达标促学】
【当堂检测】
1、下列说法中,错误的是()
A、所有的定义都是命题
B、所有的定理都是命题
C、所有的公理都是命题
D、所有的命题都是定理
2、下列命题中,属于公理的是()
A、同角的补角相等
B、邻补角的平分线互相垂直
C、两点之间,线段最短
D、直角三角形的两个锐角互余
3、在证明过程中,可以作为逻辑推理依据的是()
A、公理、定理
B、定义、公理、定理
C、公理、定理、题设(已知条件)
D、定义、公理、定理、题设(已知条件)
4、下面是证明“等角的余角相等”的过程,请在括号内填写各步推理的依据。
已知:∠1+∠3=90°,∠2+∠4=90°,且∠1=∠2。
求证:∠3=∠4。
证明:∵∠1+∠3=90°()
∴∠3=90—∠1()
∵∠2+∠4=90°()
∴∠4=90°—∠2()
∵∠1=∠2 90°—∠1=90°—∠2()∴∠3=∠4 即:等角的余角相等。
六、【自我总结、反思成学】
教学后记:
需要反正两面才符合备课要求的标准。
基本事实与定理的相同点与不同点
基本事实和定理在数学和逻辑推理中都起着重要的作用,它们都是经过验证和证明的真实陈述。
然而,它们也有一些不同之处。
相同点:
1. 真实性,基本事实和定理都是经过验证和证明的真实陈述。
它们都是可以被证明为真实的陈述,而不是主观的观点或假设。
2. 逻辑推理,基本事实和定理都可以用于逻辑推理。
它们可以作为推理的基础,帮助我们得出结论或解决问题。
不同点:
1. 证明,基本事实通常是已知的、不需要证明的真实陈述,而定理则需要经过严格的证明才能被接受。
定理是基于已知的事实和其他定理进行推导和证明的。
2. 普适性,定理通常具有更广泛的普适性,它们可以适用于更广泛的情况和范围。
而基本事实可能更多地局限于特定的情况或领
域。
总的来说,基本事实和定理都是经过验证和证明的真实陈述,它们都具有逻辑推理的作用。
然而,定理需要经过严格的证明才能被接受,而且通常具有更广泛的普适性。
基本事实则更多地是已知的真实陈述,可能更多地局限于特定的情况或领域。
2013-2014学年度第二学期数学导学案 主备: 审核人 签审人: 使用时间:
中学 编号:NSZX13-14-B 班级: 学生姓名:
导
学
案
装
订
线
8.3 基本事实与定理
【学习目标】
1.掌握九条基本事实作为证明的出发点和依据.
2.会用这九条证明其他定理 【教学重、难点】
1.掌握九条公理
2.学会书写证明过程
【导学流程】
一、自主预习(明白什么是公理、定理。
,用时15分钟)————宋体五号加粗
1.创设教学情境
(1)同学们举出我们学过的一些真命题的例子. 2.出示学习目标
(1).掌握九条基本事实作为证明的出发点和依据. (2).会用这九条证明其他定理 3.学生自主学习,完成预习题 自主学习41---43,预习例题 4.组内交流质疑
归纳:一、定理的概念
一些命题的正确性是经过推理证实的,这样得到的真命题叫做定理. 问题:
你能再举出一些基本事实或定理的例子吗?
命题“在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条”是真命题吗?如果是,说明理由,如果不是,请举出反例 证明的概念
一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明. 二、展示交流(用时15分钟) 5.小组汇报交流
1、两点确定一条直线。
2、两点之间,线段最短。
3、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
4、经过已知直线外一点,有且只有一条直线与已知直线平行。
5、同位角相等,两直线平行。
6、如果两个三角形的三条边分别对应相等,那么这两个三角形全等(SSS ).
7、如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.(SAS )
8、如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(ASA).
9、两条直线被一组平行线所截,所得的对应线段成比例。
6.教师精讲点拨
例1在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条. 1)命题是真命题还是假命题?
2)你能将命题所叙述的内容 用图形语言来表达吗?
命题 在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条. (3)这个命题的题设和结论分别是什么呢?
题设:在同一平面内,一条直线垂直于两条平行线中的一条; 结论:这条直线也垂直于两条平行线中的另一条.
命题 在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条. (4)你能结合图形用几何语言表述命题的题设和结论吗? 已知:b ∥c , a ⊥b 求证:a ⊥c .
三、反馈拓展(用时15分钟)
请同学们思考如何利用已经学过的定义定理 来证明这个结论呢? 已知:b ∥c ,a ⊥b .
求证:a ⊥c .
注:证明中的每一步推理都要有根据,不能“想当然”,这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等. 7.课堂巩固训练
1.在下面的括号内,填上推理的依据. 如图3,∠A +∠B =180º, 求证∠C +∠D =180º.
证明:∵∠A +∠B =180º(已知),
∴AD ∥BC ( ). 又∵ AD ∥BC ( ). ∴∠C +∠D =180º( ).
8.教学小结提升 填空 已知:如图1,∠1=∠2,∠3=∠4, 求证:EG ∥FH . 证明:∵∠1=∠2(已知) ∠AEF =∠1 ( ); ∴∠AEF =∠2 ( ). ∴AB ∥CD ( ).
∴∠BEF =∠CFE ( ).
∵∠3=∠4(已知);
∴∠BEF -∠4=∠CFE -∠3.
即∠GEF =∠HFE ( ).
∴EG ∥FH ( ).
9.课堂达标检测
在下面括号内,填上推理的根据.
已知:如图6,AB ⊥BC ,BC ⊥CD ,且∠1=∠2. 求证:BE ∥CF.
证明:
∵AB ⊥BC ,BC ⊥CD (已知),
∴ = =90°( ).
∵∠1=∠2(已知),
∴ = (等式性质).
∴BE ∥CF ( ).
9.课堂达标检测
如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据: (1)∵a ∥b,∴∠1=∠3(_________________); (2)∵∠1=∠3,∴a ∥b(_________________);
(3)∵a ∥b,∴∠1=∠2(__________________);
(4) ∵a ∥b,∴∠1+∠4=180º (_____________________) (5)∵∠1=∠2,∴a ∥b(__________________); (6)∵∠1+∠4=180º,∴a ∥b(_______________).
D
C
B
A
a b
1
2 3 c 4。