8 .3-1基本事实与定理
- 格式:ppt
- 大小:639.00 KB
- 文档页数:29
鲁教版数学七年级下册8.3《基本事实与定理》教学设计一. 教材分析《基本事实与定理》是鲁教版数学七年级下册第八章第三节的内容,主要介绍了几个重要的数学定理,包括勾股定理、平方差定理和完全平方定理。
这些定理是初中数学的基础,对于学生理解和掌握数学知识体系具有重要意义。
本节课的教学内容不仅要求学生掌握定理本身,还要学会如何运用这些定理解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于一些简单的数学概念和运算方法已经熟悉。
但是,对于较复杂的数学定理,学生可能还存在着理解上的困难。
因此,在教学过程中,需要教师耐心引导,帮助学生深入理解定理的含义和应用。
三. 教学目标1.了解勾股定理、平方差定理和完全平方定理的基本概念。
2.学会运用这些定理解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.勾股定理的证明和应用。
2.平方差定理和完全平方定理的理解和应用。
五. 教学方法采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣,培养学生的自主学习能力。
同时,结合实例讲解,让学生直观地理解定理的应用,提高学生的实际操作能力。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备一些实际问题,用于引导学生运用定理解决。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何运用数学定理解决问题。
例如,一个直角三角形,两条直角边的长度分别是3cm和4cm,如何求斜边的长度?2.呈现(15分钟)介绍勾股定理的概念和证明方法。
通过PPT展示勾股定理的证明过程,让学生直观地理解定理的含义。
同时,给出一些勾股定理的应用实例,让学生学会如何运用定理解决实际问题。
3.操练(15分钟)让学生分组讨论,尝试解决一些关于勾股定理的实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)通过一些练习题,让学生巩固对勾股定理的理解和运用。
教师及时批改学生的答案,给予反馈。
求证:同角(或等角)的补角相等。
五、【练习内化、达标促学】
【当堂检测】
1、下列说法中,错误的是()
A、所有的定义都是命题
B、所有的定理都是命题
C、所有的公理都是命题
D、所有的命题都是定理
2、下列命题中,属于公理的是()
A、同角的补角相等
B、邻补角的平分线互相垂直
C、两点之间,线段最短
D、直角三角形的两个锐角互余
3、在证明过程中,可以作为逻辑推理依据的是()
A、公理、定理
B、定义、公理、定理
C、公理、定理、题设(已知条件)
D、定义、公理、定理、题设(已知条件)
4、下面是证明“等角的余角相等”的过程,请在括号内填写各步推理的依据。
已知:∠1+∠3=90°,∠2+∠4=90°,且∠1=∠2。
求证:∠3=∠4。
证明:∵∠1+∠3=90°()
∴∠3=90—∠1()
∵∠2+∠4=90°()
∴∠4=90°—∠2()
∵∠1=∠2 90°—∠1=90°—∠2()∴∠3=∠4 即:等角的余角相等。
六、【自我总结、反思成学】
教学后记:
需要反正两面才符合备课要求的标准。
8.3基本事实与定理【基础须知】1.公理:如果一个命题的正确性是人们在长期实践中总结出来的,并把它作为判断其他命题真假的原始依据,这样的真命题叫公理.如:“两点之间,线段最短”,“经过直线外一点,有且只有一条直线和已知直线平行”等.2.如果一个命题可从公理或其他真命题出发,用逻辑推理的方法判断它是正确的,并且可以进一步作为判断其他命题真假的依据,这样的命题叫定理.如“三角形的内角和等于180°”等.定理是正确的命题,但正确的命题不一定是定理.3.定义、命题、公理和定理之间的联系与区别这四者都是句子,都可以判断真假,即定义、公理和定理也是命题,不同的是定义、公理和定理都是真命题,都可以作为进一步判断其他命题真假的依据,只不过公理是最原始的依据,而命题不一定是真命题,因而它不一定能作为进一步判断其他命题真假的依据.4.命题证明的步骤为:(1)审题:分清命题的题设与结论;(2)画图:依照题意画出图形,画图时要做到图形正确且具有一般性,切忌将图形特殊化;(3)写出“已知”“求证”,按照图形,将题设与结论“翻译”成“已知”“求证”;(4)探求证明思路.根据已知条件,用学过的定义、公理、定理进行分析、探求如何证得结论;(5)写出证明过程,证明的每一步都要做到叙述清楚,有理有据.【重点梳理】本节的重点是进一步了解证明的含义,理解证明的必要性,掌握证明的书写格式,能灵活地应用所学的公理、定理、定义进行逻辑推理,提高演绎推理的能力.【难点再现】本节的难点是推理依据的选择.【例题讲解】如图,b∥c,b⊥a,问a与c有何关系?为什么?证明:∵a⊥b(已知),∴∠1=90°( ).∵b∥c( ),∴∠2=∠1=90°( ).∴a⊥c( ).解析:结合图形,容易得到a⊥c,然后根据题意,说出其中的原因.答案:垂直定义已知两直线平行,同位角相等垂直定义点拨。
鲁教版数学七年级下册8.3《基本事实与定理》说课稿一. 教材分析鲁教版数学七年级下册8.3《基本事实与定理》这一节的内容,主要介绍了几个重要的数学定理,包括勾股定理、平方根的性质、相反数的性质等。
这些定理是初中数学的基础,对于学生后续的学习具有重要意义。
在教材中,这些定理通过具体的例子进行介绍,并且配有相应的练习题,帮助学生理解和掌握。
二. 学情分析在七年级的学生中,他们已经学习过一些基本的数学知识,对于一些简单的数学运算和概念已经有了一定的理解。
但是,对于一些抽象的数学定理,他们可能还存在着理解上的困难。
因此,在教学这一节的内容时,需要考虑到学生的实际情况,尽可能地用生动形象的例子和生活中的实际问题,帮助他们理解和掌握定理。
三. 说教学目标教学目标主要包括三个方面:知识与技能目标、过程与方法目标、情感态度与价值观目标。
1.知识与技能目标:通过本节课的学习,学生能够理解和掌握勾股定理、平方根的性质、相反数的性质等基本数学定理。
2.过程与方法目标:通过观察、思考、讨论等方式,学生能够掌握定理的证明过程,培养逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:通过学习数学定理,学生能够感受到数学的趣味性和实用性,增强对数学的兴趣和自信心。
四. 说教学重难点本节课的重点是让学生理解和掌握勾股定理、平方根的性质、相反数的性质等基本数学定理。
难点主要是让学生理解并能够运用这些定理解决问题。
五. 说教学方法与手段在教学过程中,我会采用讲授法、提问法、讨论法等多种教学方法,引导学生主动参与学习,培养他们的思维能力和解决问题的能力。
同时,我会利用多媒体教学手段,如PPT、视频等,帮助学生形象地理解定理,提高学习效果。
六. 说教学过程1.导入:通过一个实际问题,引发学生对数学定理的兴趣,导入新课。
2.讲解:讲解勾股定理、平方根的性质、相反数的性质等基本数学定理,并通过例题进行解释和应用。
3.讨论:引导学生进行小组讨论,让学生通过自己的思考和交流,理解和掌握定理。
8.3 基本事实与定理●教学目标(一)教学知识点1. 定理的概念2. 公理的概念3.了解数学史.(二)能力训练要求1. 能够用基本事实、定理证明一些命题.2. 通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值.(三)情感与价值观要求通过了解数学知识,拓展学生的视野,从而激发学生学习的兴趣.●教学重点用基本事实、定理进行证明.●教学难点用基本事实、定理进行证明.●教学过程回顾[师]每个命题都有条件(condition)和结论(conclusion)两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论.新授[师]一个正确的命题如何证实呢?大家来想一想:[生甲]用我们以前学过的观察、实验、验证特例等方法.[生乙]这些方法往往并不可靠.[生丙]能不能根据已经知道的真命题证实呢?[生丁]那已经知道的真命题又是如何证实的?[生戊]哦……那可怎么办呢?……[师]其实,在数学发展史上,数学家们也遇到过类似的问题,公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得(Euclid,公元前300前后)编写了一本书,书名叫《原本》(Elements),为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的起始依据.其中的数学名词称为原名,公认的真命题称为公理(axiom).除了公理外,其他真命题的正确性都通过推理的方法证实.推理的过程称为证明(proof).经过证明的真命题称为定理(theorem),而证明所需的定义、公理和其他定理都编写在要证明的这个定理的前面.《原本》问世之前,世界上还没有一本数学书籍像《原本》这样编排.因此,《原本》是一部具有划时代意义的著作.[生]老师,我知道了,除公理、定义外,其他的真命题必须通过证明才能证实.[师]对,我们这套教材选用九条基本事实作为证明的出发点和依据,我们已经认识了其中的八条,它们是:[师]同学们来朗读一次.[师]好.除这些以外,等式的有关性质和不等式的有关性质都可以作为证明的依据.在等式中,一个量可以用它的等量来代替.如:如果a=b,b=c,那么,a=c,这一性质也看做公理,称为“等量代换”.注意:(1)公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题.(2)公理可以作为判定其他命题真假的根据.好,下面我们通过“读一读”来进一步了解《原本》这套书,进而了解数学史.Ⅲ.课堂练习Ⅳ.课时小结说明一个命题是假命题只需举一个反例即可.而真命题除公理和性质外,必须通过推理得证.大家要会灵活运用本节课谈到的公理来证明一些题.Ⅴ.课后作业(一)课后习题(二)预习后面的内容。