T12钢显微组织
- 格式:doc
- 大小:338.50 KB
- 文档页数:2
实验3 铁碳合金平衡组织观察一、实验目的1.认识铁碳合金的平衡组织。
2.了解含碳量对铁碳合金平衡组织的影响规律。
.二、概述铁碳合金的显微组织是研究和分析铁碳材料性能的基础,所谓平衡状态的显微组织是指合金在极为缓慢的冷条件下(退火状态,即接近平衡状态)所得到的组织。
因此我们可以根据Fe -Fe3C相图来分析铁碳合金在平衡状态下的显微组织(图1-1所示)。
图1-1 Fe-Fe3C相图铁碳合金的平衡组织主要是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广泛的金属材料,它们的性能与其显微组织密切有关。
此外,对碳钢和白口铸铁显微组织的观察和分析,有助于加深对Fe-Fe3C相图的理解。
从Fe-Fe3C相图上可以看出,所有碳钢和白口铸铁的室温组织均由铁素体(F)和渗碳体(Fe3C)这两个基本相组成。
但是由于含碳量不同,因而呈现各种不同的组织形态。
用侵蚀剂显露的碳钢和白口铸铁,在金相显微镜下具有下面几种基本组织。
1.工业纯铁(C<0.02%),显微组织是单相铁素体,如图11.1。
2.碳钢随含碳量不同可分为:亚共析钢(含C<0.8%);共析钢(含C:0.8%),过共析钢(0.8%<含C<2.06%)。
共析钢的显微组织是片状铁素体和渗碳体的机械混合物,由于试片浸蚀后表面具有珍珠的光泽,故称为珠光体,其显微组织如图11.2图11.1 图11. 2材料:工业纯铁材料:T8(0.8%C)处理方法:退火热处理方法;退火腐蚀剂:4%HNO3,酒精溶液腐蚀剂:4%HNO3,酒精溶液显微组织:铁素体(白亮块是晶显微组织:珠光体,(白亮基体粒,黑线是晶粒边界) 是铁素体,细夹条是渗碳体)放大倍数:100×放大倍数;400×图中的白亮基体是铁素体,细夹条是渗碳体,黑线是铁素体和渗碳体的相界面。
如放大倍数低或片层过薄时,则看不到片层结构,而呈暗黑色块状物。
亚共析钢的显微组织是由铁素体与珠光体组成。
实验二碳钢非平衡显微组织观察一、实验目的1. 观察和研究碳钢经不同形式热处理后显微组织的特点。
2. 研究和了解铁碳合金(碳钢)在非平衡状态下的显微组织形貌。
3. 了解热处理工艺对钢组织和性能的影响。
二、概述铁碳合金经缓冷后的显微组织基本上与铁碳相图所预料的各种平衡组织相符合。
但碳钢在不平衡状态,即在快冷条件下的显镜组织就不能用铁碳合金相图来加以分析,而应由过冷奥氏体等温转变曲线图—C曲线来确定。
图2-1为共析碳钢的C曲线图。
按照不同的冷却条件,过冷奥氏体将在不同的温度范围发生不同类型的转变。
通过金相显微镜观察,可以看出过冷奥氏体各种转变产物的组织形态各不相同。
共析碳钢过冷奥氏体在不同温度转变的组织特征及性能如表2-1所示。
表2-1 共析碳钢(T8)过冷奥氏体在不同温度转变的组织及性能图2-1 共析碳钢的C 曲线三、钢的退火的正火组织亚共析成分的碳钢(如40、45钢等)一般采用完全退火,经退火后可得到接近于平衡状态的组织,其组织特征已在实验一中加以分析和观察。
过共析成分的碳素工具钢(如T10、T12钢等)一般采用球化退火,T12钢经球化退火后组织中的二次渗碳体及珠光体中的渗碳体都将变成颗粒状,如图2-2所示。
图中均匀而分散的细小粒状组织就是粒状渗碳体。
45钢经正火后的组织通常要比退火的细,珠光体的相对含量也比退火组织中的多,如图2-3所示,原因在于正火的冷却速度稍大于退火的冷却速度。
图2-2 T12钢球化退火组织 图2-3 45钢正火后的组织四、钢的淬火组织将45钢加热到760℃(即1c A 以上,但低于3c A ),然后在水中冷却,这种淬火称为亚温淬火。
根据Fe-Fe 3C 相图可知,在这个温度加热,部分铁素体尚未溶入奥氏体中,经淬火后将得到马氏体和铁素体组织。
在金相显微镜中观察到的是呈暗色针状马氏体基底上分布有白色块状铁素体,如图2-4所示。
45钢经正常淬火后将获得细针状马氏体,如图2-5所示。
铸铁金相图谱赏析(一)时间:2010-01-23 08:05:02来源:作者:点击: 1次铸铁金相图谱赏析(二)时间:2010-01-23 10:59:27来源:作者:点击: 1次铸铁金相图谱赏析(三)时间:2010-01-23 11:01:59来源:中国金相网作者:点击: 1次金相组织解析时间:2009-12-01 19:36:11来源:作者:点击: 247次金相组织,用金相方法观察到的金属及合金的内部组织.可以分为:1.宏观组织.2.显微组织.金相即金相学,就是研究金属或合金内部结构的科学。
不仅如此,它还研究当外界条件或内在因素改变时,对金属或合金内部结构的影响。
所谓外部条件就是指温度、加工变形、浇注情况等。
所谓内在因素主要指金属或合金的化学成分。
金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。
1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。
晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处2.铁素体-碳与合金元素溶解在α-fe中的固溶体。
亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。
3.渗碳体-碳与铁形成的一种化合物。
在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。
过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。
铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。
4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。
珠光体的片间距离取决于奥氏体分解时的过冷度。
过冷度越大,所形成的珠光体片间距离越小。
在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。
在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。
实验七钢在不同热处理状态下的显微组织一、实验目的1. 观察碳钢经不同形式热处理后的显微组织特征。
2. 了解热处理工艺对钢的组织和性能的影响。
二、实验原理钢经退火处理后的显微组织基本上与Fe–FeC相图中的各种平衡组织相似,3但在快速冷却条件下的显微组织不能用铁碳相图来加以分析,而应由过冷奥氏体等温转变曲线(C曲线)或连续冷却转变曲线来确定,如图7-1所示共析钢奥氏体等温曲线。
随着冷却条件的不同,过冷奥氏体将发生不同类型的转变。
共析钢过冷奥氏体在不同温度条件下转变的组织特征及性能如表7-1所示。
图7-1 共析钢的奥氏体等温转变曲线珠光体型组织它包括有粗片状珠光体,如图7-2所示;索氏体(细片状珠光体),如图7-3所示;屈氏体(极细片状珠光体),如图7-4所示。
它们都是由铁素体和渗碳体两相组成的机械混合物,它们之间在组织形态上的差别只是片层厚薄不同。
在珠光体型组织中层片越细,强度及硬度则越高,而塑性和韧性则越好。
贝氏体组织贝氏体是过冷奥氏体在珠光体转变区以下,Ms点以上的中温转变产物。
它是由一定饱和度的铁素体和渗碳体组成的两相混合物,但其金相组织形态不像珠光体组织那样成片层相间排列。
根据过冷奥氏体的转变温度不同,贝氏体又分为上贝氏体和下贝氏体。
上贝氏本组织呈暗灰色羽毛状特征,其显微组织如图7-5所示;下贝氏体,组织呈黑色竹叶状特征,其显微组织如图7-6所示。
a—光学显微组织b—电子显微组织图7-2 珠光体的显微组织a—光学显微组织b—电子显微组织图7-3 索氏体a)光学显微镜500X b)电子显微15000X图7-4 屈氏体500X 500X图7-5 上贝氏体图7-6 下贝氏体马氏体碳在α-Fe中的过饱和固溶体叫做马氏体,它是淬火所得到的组织。
马氏体的组织形态可依马氏体含碳量的高低不同而形成两种形态。
一种是板条状马氏体,其显微组织如图7-7所示,主要出现在低碳钢,故又称为低碳马氏体;一种是针状马氏体,其显微组织如图7-8所示,主要出现在高碳钢,所以又叫高碳马氏体。
单元测试一题签〔四十三道题〕〔抽签答复〕题一是非题( )1.机器中的零件在工作时,材料强度高的不会变形,材料强度低的一定会产生变形;( )2.屈服点是表征材料抵抗断裂能力的力学性能指标;( )3.所有的金属材料均有明显的屈服现象。
题二请按铁碳合金中碳的质量分数和组织划分铁碳合金的种类。
题三以下情况应采用什么方法测定硬度?写出硬度值符号。
(1)锉刀(2)黄铜铜套题四请画出共晶白口铸铁的显微组织示意图,并说明在放大500倍的显微镜下观察其显微组织特征。
题五现有白口铸铁和碳的质量分数分别为0.1%、0.45%、0.8%、1.2%的钢计五块合金,试问用什么方法能迅速地将其区分出来?如果制作锉刀的话,用哪一种合金较为合适?题六根据铁碳相图,说明以下现象产生的原因:在进行热轧和锻造时,通常将钢材加热到1000~1250℃;题七填空题1.亚共析钢碳的质量分数为,其室温组织为;共析钢碳的质量分数为,其室温组织为;过共析钢碳的质量分数为,其室温组织为。
2.合金的晶体结构分为、、三种。
题八请画出亚共晶白口铸铁的显微组织示意图,并说明在放大500倍的显微镜下观察其显微组织特征。
题九判断题( )1.在铁碳合金中,只有共析成分点的合金结晶时,才能发生共析转变,形成共析组织。
( )2.在缓冷至室温的条件下,碳的质量分数为O.8%的钢比碳的质量分数为1.2%的钢硬度低。
( )3.共析钢由液态缓冷至室温时析出的二次渗碳体,在组织形态与晶体结构方面均与一次渗碳体不同。
题十在铁碳合金相图中有哪些相?他们各自的性能如何?题十一根据铁碳相图,说明以下现象产生的原因:绑扎物件一般用铁丝(镀锌低碳钢丝),而起重机吊重物时却用钢丝绳(60钢、65钢、70钢等制成)。
题十二请画出T8钢的显微组织示意图,并说明在放大500倍的显微镜下观察其显微组织特征。
题十三在钢的结晶过程中,都要经历共析转变,形成共析组织〔珠光体〕。
试分析共析转变发生的原因及条件。
金属材料显微组织图谱(共42个图谱)图谱01、不锈钢中的位错线:图谱02、铁碳合金的室温平衡组织(0.01%C ):(纯铁的室温平衡组织)铁素体 w ww .b zf x w .c om铁素体+珠光体图谱04、铁碳合金的室温平衡组织(0.77%C ):(T8钢的室温平衡组织)珠光体w ww .b zf xw .c om珠光体+二次渗碳体图谱06、球状珠光体:(T12钢的球化退火组织)球状珠光体w ww .b zf xw .c om图谱07、灰口铸铁的组织(一):(灰口铸铁的显微组织)铁素体+片状石墨 铁素体+珠光体+片状石墨 珠光体+片状石墨图谱08、灰口铸铁的组织(二):铁素体和团絮状石墨w ww .b zf xw .c om图谱09、灰口铸铁的组织(三):铁素体和球状石墨图谱10、陶瓷在室温下的组织:w ww .b zf xw .c om图谱11、W18Cr4V钢离子氮碳共渗+离子渗硫复合处理渗层组织:图谱12、共晶合金组织的形态:w ww .b zf xw .c om图谱13、亚共晶合金组织的形态:图谱14、过共晶合金组织的形态:w ww .b z f xw .c om图谱15、共析钢的室温组织:图谱16、共晶白口铸铁室温平衡组织:图谱17、亚共晶白口铸铁室温平衡组织:w ww .b zf xw .c om图谱18、过共晶白口铸铁室温平衡组织:图谱19、珠光体型组织:图1 珠光体 放大3800倍图2 索氏体 放大8000倍w w w .b z f xw .c om图3 屈氏体 放大8000倍图谱20、上贝氏体形态:图1 光学显微照片 放大500倍图2 电子显微照片 放大5000倍w ww .b zf xw .c om图谱21、下贝氏体形态:图1 光学显微照片 放大500倍图2 电子显微照片 放大12000倍图谱22、低碳马氏体的组织形态:w ww .b zf xw .c om图谱23、高碳马氏体的组织形态:图谱24、铸锭结构:(1) 细晶区; (2)柱状晶区; (3)等轴晶区w ww .b z f xw .c om图谱25、回火索氏体:图谱26、低碳钢渗碳缓冷后的显微组织:图谱27、38CrMoAl 钢氮化层的显微组织:w ww .b zf x w .c om图谱28、球墨铸铁的显微组织:图谱29、蠕墨铸铁的显微组织:图谱30、可锻铸铁的显微组织:w ww .b z f xw .c om图谱31、ZL102合金的铸态组织(一):未变质处理图谱32、ZL102合金的铸态组织(二):变质处理后w ww .b zf xw .c om图谱33、铜锌合金的显微组织(一):单相黄铜图谱34、铜锌合金的显微组织(二):双相黄铜w ww .b zf xw .c om图谱35、Ti-6Al-4V 合金时效处理后的显微组织:图谱36、GCr15钢淬火、回火后的显微组织:w w w .b zf x w .c om图谱37、ZChSnSb11-6轴承合金的显微组织:图谱38、高速钢淬火、回火后的组织:()w ww .b z f xw .c om图谱39、钨纤维铜基复合材料中的裂纹在铜中扩展受阻:图谱40、碳纤维环氧树脂复合材料断裂时纤维断口电子扫描照片:图谱41、韧性断裂断口:(韧窝)w ww .b zf xw .c om图谱42、脆性断裂断口:(河流花样)(全文完)w ww .b zf xw .c om。
钢中常见显微组织的鉴别随着钢的成分不同以及处理工艺不同,钢中将出现:铁素体、渗碳体、珠光体、魏式组织、贝氏体(其中又分为上贝氏体、下贝氏体、和粒状贝氏体)、奥氏体、马氏体、回火马氏体、回火托氏体、回火李氏体。
现简单介绍一下这些组织的基本形态,以便在实践中加以区别。
属bcc结构,呈等轴多边形晶粒分布。
铁素体软而韧,硬度为30~100HB。
在碳钢中它是碳在α-Fe中的固溶体;在合金钢中,则是碳和合金元素在α-Fe中的固溶体。
碳在α-Fe中的溶解量很低,在A C 1温度,碳的最大溶解量为0.0218%,但随温度下降的溶解度则降至0.0084%,因而在缓冷条件下铁素体晶界处会出现三次渗碳体。
随钢中碳含量增加,铁素体量相对减少,珠光体量增加,此时铁素体则是网络状和月牙状。
铁素体铁素体200×铁素体铁素体铁素体500×轧制电工纯铁铁素体500×退火态是铁和碳的化合物,Fe 3C ,其含碳量为6.69%,在合金中形成(Fe,M)3C,渗碳体硬而脆,硬度为800HB。
在钢中常呈网络状、半网状、片状、针片状和粒状分布。
渗碳体网状渗碳体200×针状渗碳体(魏氏组织)200×网状、粒状、三次渗碳体500×粒状渗碳体500×T12 退火态500×珠光体是铁素体和渗碳体的机械混合物,它是钢的共析转变产物,其形态是铁素体和渗碳体彼此相间形如指纹,呈层状排列。
按碳化物分布形态又可分为片状珠光体和球状珠光体二种。
片状珠光体又可分为粗片状、中片状和细片状三种。
片状珠光体200 ×珠光体T8 退火态500×球状珠光体球状珠光体,经球化退火获得,渗碳体成球粒状分布在铁素体基体上;渗碳体球粒大小,取决于球化退火工艺,特别是冷却速度。
球状珠光体可分为粗球状、球状和细球状和点状四种珠光体球状珠光体500x球状珠光体球状珠光体1000x,冷却时又快,故铁素体除沿奥氏体晶界成网状析出外,还有一部分铁素体从晶界向晶内按切变机制形成并排成针状独自析出,这种分布形态的组织称为魏氏组织。
t12钢金相组织显微形成过程T12钢是一种常用的高强度低合金结构钢,其材料的性能与其金相组织密切相关。
在生产过程中,通过控制加热温度、保温时间、冷却速率等因素,可以得到不同的金相组织。
本文将详细介绍T12钢金相组织显微形成过程。
1. 脱碳过程T12钢在加热过程中,会遭受到氢气、氧气和水蒸气等气体的侵蚀,使得表面容易氧化和腐蚀。
脱碳反应是一个氧化还原反应,经过高温等因素的作用,T12钢内部的碳元素会被氧化,氧气就会转化为CO或CO2等气体释放出来。
当汽化的CO或CO2透过钢表面时,会导致钢内表面的炭层对细晶粒尺寸的影响,也能够改变金相组织的形成。
2. 相变过程T12钢中的相变过程主要是因为钢的加热和冷却引起的。
钢加热温度和保温时间的变化决定了相变的起点和尺寸以及相的成分和组成。
从凝固开始,钢在铸锭内部的枝晶在连续的铸造过程中逐渐长大并且形成凝固锡边。
当达到凝固锡边的大体尺寸则形成晶体结构。
晶体中细晶粒的性质将决定钢中相变的热力学和差异化的因素。
3. 冷却过程钢在高温的状态下形成的组织通过冷却过程得到固化。
组织变化的时间越长,在恒温条件下,固态的组织就越稳定。
T12钢的冷却速率与金相组织形成有很大关系。
快速冷却将会导致T12钢的硬度、强度以及塑性等力学性质的发生很大的变化。
综上所述,T12钢金相组织的显微形成过程受到多种因素的影响,包括加热温度、保温时间、冷却速率、脱碳过程等等。
在实际的生产过程中,要合理控制这些因素来得到理想的金相组织。
只有通过科学的方法来制备出德国异形预应力螺杆带螺纹的各种材质,才能满足现代化建筑的日益增长的需求。
碳钢热处理后的显微组织观察与分析实验目的实验说明实验内容实验方法指导实验报告要求思考题一:实验目的(1)观察和研究碳钢经不同形式热处理后显微组织的特点。
(2)了解热处理工艺对碳钢硬度的影响。
二:实验说明碳钢经热处理后的组织可以是接近平衡状态(如退火、正火)的组织,也可以是不平衡组织(如淬火组织)。
因此在研究热处理后的组织时,不但要用铁碳相图,还要用钢的C曲线来分析。
图1为共析碳钢的C曲线,图2为45钢连续冷却的CCT曲线。
图1 共析碳钢的c曲线图2 45钢的CCT曲线C曲线能说明在不同冷却条件下过冷奥氏体在不同温度范围内发生不同类型的转变过程及能得到哪些组织。
1.碳钢的退火和正火组织亚共析碳钢(如40、45钢等)一般采用完全退火,经退火后可得接近于平衡状态的组织,其组织形态特征已在实验l中加以分析和观察(图3)过共析碳素工具钢(如T10、T12钢等)则采用球化退火,T12钢经球化退火后,组织中的二次渗碳体和珠光体中的渗碳体都呈球状(或粒状),图中均匀分散的细小粒状组织就是粒状渗碳体。
2.钢的淬火组织含碳质量分数相当于亚共析成分的奥氏体淬火后得到马氏体。
马氏体组织为板条状或针状,20钢经淬火后将得到板条状马氏体。
在光学显微镜下,其形态呈现为一束束相互平行的细条状马氏体群。
在一个奥氏体晶粒内可有几束不同取向的马氏体群,每束条与条之间以小角度晶界分开,束与束之间具有较大的位向差,如图4所示。
图3 T12 钢球化退火组织图4 低碳马氏体组织45钢经正常淬火后将得到细针状马氏体和板条状马氏体的混合组织,如图5所示。
由于马氏体针非常细小,故在显微镜下不易分清。
45钢加热至860℃后油淬,得到的组织将是马氏体和部分托氏体(或混有少量的上贝氏体),如图6所示。
碳质量分数相当于共析成分的奥氏体等温淬火后得到贝氏体,如T8钢在550~350℃及350℃~ Ms温度范围内等温淬火,过冷奥氏体将分别转变为上贝氏体和下贝氏体。