实验三 常见钢铁材料的显微组织观察.
- 格式:doc
- 大小:3.63 MB
- 文档页数:28
合金钢、铸铁、有色金属的显微组织观察与分析实验目的实验说明实验内容及方法指导实验报告要求思考题一:实验目的(1)观察各种常用合金钢、有色金属和铸铁的显微组织.(2)分析这些金属材料的组织和性能的关系及应用。
二:实验说明1.几种常用合金钢的显微组织一般合金结构钢、低合金工具钢都是低合金钢。
即合金元素总量小于5%的钢,由于加入了合金元素,使相图发生了一些变动,但其平衡状态的显微组织与碳钢没有质的区别。
热处理后的显微组织仍然可借助C曲线来分析,除了Co元素之外,合金元素都使C曲线右移,所以低合金钢用较低的冷却速度即可获得马氏体组织。
例如,除作滚动轴承外,还广泛用作切削工具、冷冲模具、冷轧辊及柴油机喷嘴的GCrl5钢,经过球化退火、840~C油淬和低温回火,得到的组织为隐针或细针回火马氏体和细颗粒状均匀分布的碳化物以及少量残余奥氏体.高速钢是一种常用的高合金工具钢.如W18Cr4V高速钢,因为含有大量合金元素,使Fe-Fe3C相图中点E 大大向左移动,所以它虽然只含有w(C)=0.7%~0.8%碳,但已经含有莱氏体组织。
在高速钢的铸态组织中可看到鱼骨状共晶碳化物,如图1所示。
这些粗大的碳化物,不能用热处理方法去除,只能用锻造的方法将其打碎.锻造退火后高速钢的显微组织是由索氏体和分布均匀的碳化物组成(图2)。
大颗粒碳化物是打碎了的共晶碳化物。
高速钢淬火加热时,有一部分碳化物未溶解,淬火后得到的组织是马氏体、碳化物和残余奥氏体(图3)。
碳化物呈颗粒状,马氏体和残余奥氏体都是过饱和的固溶体,腐蚀后都呈白色,无法分辨,但可看到明显的奥氏体晶界。
为了消除残余奥氏体,需要进行三次回火,回火后的显微组织为暗灰色回火马氏体、白亮小颗粒状碳化物和少量残余奥氏体,如图4所示。
图1 W18Cr4V钢铸态组织图2 W18Cr4V钢锻后退火组织图3 W18Cr4V钢的淬火组织图4 W18CNV钢的淬火回火组织2.铸铁的显微组织依铸铁在结晶过程中石墨化程度不同,可分为白口铸铁、灰口铸铁、麻口铸铁.白口铸铁具有莱氏体组织而没有石墨,碳几乎全部以碳化物形式(Fe3C)存在;灰口铸铁没有莱氏体,而有石墨,即碳部分或全部以自由碳、石墨的形式存在。
合金钢,铸铁,有色金属的显微组织观察实验报告以下是一份合金钢、铸铁、有色金属显微组织观察与分析的实验报告。
实验目的:通过观察和分析合金钢、铸铁、有色金属的显微组织,了解其组织特点,探究化学成分、制造工艺对组织的影响。
实验材料:合金钢、铸铁、有色金属样品。
实验步骤:1. 样品制备:将采购的合金钢、铸铁、有色金属样品切割成合适的形状,如薄片、条、块等。
2. 显微镜观察:将样品置于显微镜下,观察其显微组织,使用适当的染色方法增强样品的对比度。
3. 数据分析:通过对样品显微组织的观察和分析,记录其组织特点,如晶粒大小、分布、退火状态等。
4. 实验结果:根据实验数据和样品显微组织的观察结果,总结出合金钢、铸铁、有色金属的组织特点,并分析其影响因素。
实验结果:在实验中,我们观察到不同的合金钢、铸铁、有色金属样品有着不同的显微组织。
- 合金钢样品的显微组织一般为均匀的细珠光体 + 铁素体,晶粒大小均匀,未见大的退火状态差异。
- 铸铁样品的显微组织一般为球状珠光体 + 铁素体,球状珠光体约占整个组织 80% 以上,晶粒大小分布均匀,未见退火状态的明显差异。
- 有色金属样品的显微组织一般呈单相组织,晶粒大小均匀,未见退火状态的明显差异。
实验结论:通过实验结果,我们可以得出以下结论:1. 合金钢的组织特点一般为均匀的细珠光体 + 铁素体,晶粒大小均匀,未见大的退火状态差异。
2. 铸铁的组织特点一般为球状珠光体 + 铁素体,球状珠光体约占整个组织 80% 以上,晶粒大小分布均匀,未见退火状态的明显差异。
3. 有色金属的组织特点一般呈单相组织,晶粒大小均匀,未见退火状态的明显差异。
此外,我们还通过数据分析总结出了化学成分、制造工艺等对组织的影响。
例如,较高的碳含量可以提高合金钢的硬度和强度,而较高的硅含量可以提高铸铁的硬度和耐磨性。
在制造工艺方面,退火处理可以细化晶粒,改善组织均匀性,而淬火处理则可以增强金属材料的硬度和韧性。
工程材料学实验(常用金属材料的显微组织观察)何艳玲编写机电工程学院材料系常用金属材料的显微组织观察一、实验目的1.观察各种常用合金钢,有色金属和铸铁的显微组织。
2.分析这些金属材料的组织和性能的关系及应用。
二、概述1.几种常用合金钢的显微组织合金钢依合金元素含量的不同,可分为三种:合金元素总量小于5%的称为低合金钢;合金元素为5~10%的称为中合金钢;合金元素大于10%的称为高合金钢。
1)一般合金结构钢、合金工具钢都是低合金钢。
由于加入合金元素,铁碳相图发生一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有本质的区别。
低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同,差别只是在于合金元素都使C曲线右移(除Co外),即以较低的冷却速度可获得马氏体组织。
例如16Mn淬火后为马氏体组织,40Cr钢经调质处理后的显微组织是回火索氏体,如图1、2所示。
GCrl5钢(轴承钢)840℃油淬低温回火试样的显微组织,与T12钢780℃水淬低温回火试样的显微组织也是一样的,都得到回火马氏体+碳化物十残余奥氏体组织,如图3所示。
图1 16Mn淬火组织图2 40Cr钢调质后的组织图3 GCr15钢淬火低温回火后组织图4 W18Cr4V淬火三次回火后的组织2)高速钢是一种常用的高合金工具钢,例如W18Cr4V。
因为它含有大量合金元素,使铁碳相图中的E点大大向左移,以致它虽然只含有0.7~0.8%的碳,但也已经含有莱氏体组织,所以称为莱氏体钢。
高速钢的铸造状态下与亚共晶白口铸铁的组织相似。
其中莱氏体由合金碳化物和马氏体或屈氏体组成。
莱氏体沿晶界呈宽网状分布,莱氏体中的碳化物粗大,有骨架状,不能靠热处理消除,必须进行锻造打碎。
锻造退火后高速钢的显微组织是由索氏体和碳化物所组成的。
高速钢优良的热硬性及高的耐磨性,只有经淬火及回火后才能获得。
它的淬火温度较高,为1270~1280℃,以使奥氏体充分合金化,保证最终有高的热硬性。
合金钢、铸铁、有色金属的显微组织观察一、实验目的
二、使用的设备仪器
三、实验方法、步骤
四、实验结果
画出下列材料的显微组织示意图,并用箭头标明示意图中所示组织的名称
材料名称:W18C
r 4V材料名称:W18C
r
4V
处理状态:退火处理状态:淬火
组织:组织:
材料名称:灰口铸铁材料名称:球墨铸铁处理状态:铸造处理状态:铸造
组织:组织:
材料名称:LY102材料名称:可锻铸铁
组织:组织:
材料名称:蠕墨铸铁材料名称:H62
处理状态:铸造处理状态:退火
组织:组织:
五、回答问题
1.根据显微组织观察,分析高速钢不同的热处理条件下其
组织特点各是什么,并说明其性能差异有哪些?
2.将灰口铸铁的组织与性能同球墨铸铁进行比较,分析它
们的组织差别和性能差别。
3.试分析变质处理对硅铝明合金的作用。
常用金属材料显微组织观察实验报告- 图文常用金属材料的显微组织观察一、实验目的1.观察各种常用合金钢,有色金属和铸铁的显微组织。
2.分析这些金属材料的组织和性能的关系及应用。
二、金属材料的显微组织观察及分析1.几种常用合金钢的显微组织合金钢依合金元素含量的不同,可分为三种:合金元素总量小于5%的称为低合金钢;合金元素为5~10%的称为中合金钢;合金元素大于10%的称为高合金钢。
1)一般合金结构钢、合金工具钢都是低合金钢。
由于加入合金元素,铁碳相图发生一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有本质的区别。
低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同,差别只是在于合金元素都使C曲线右移(除Co外),即以较低的冷却速度可获得马氏体组织。
40Cr钢经调质处理后的显微组织是回火索氏体。
GCrl5钢(轴承钢)840℃油淬低温回火试样的显微组织,与T12钢780℃水淬低温回火试样的显微组织也是一样的,都得到回火马氏体+碳化物十残余奥氏体组织。
图1、16Mn-淬火-x400马氏体16Mn钢属于碳锰钢,碳的含量在0.16%左右。
16Mn钢的合金含量较少,焊接性良好,焊前一般不必预热。
加入合金元素锰,使C曲线右移,在淬火处理后,组织为马氏体组织。
但由于16Mn钢的淬硬倾向比低碳钢稍大,所以在低温下(如冬季露天作业)或在大刚性、大厚度结构上焊接时,为防止出现冷裂纹,需采取预热措施。
图2、16Mn-正火-x400铁素体索氏体16Mn属于低碳钢,碳含量<0.16%,正火后组织为F+S。
在400倍显微镜下,索氏体基本上不可分辨。
16Mn钢是目前我国应用最广的低合金钢。
广泛应用于各种板材、钢管。
图3、65Mn-等温淬火-400下贝氏体65Mn,锰提高淬透性,但Mn含量过大会导致过热现象。
特性:经热处理后的综合力学性能优于碳钢,65Mn 钢板强度、硬度、弹性和淬透性均比65号钢高。
但有过热敏感性和回火脆性。
实验3 常见钢铁材料的显微组织观察一、实验目的1、观察碳钢经不同热处理后的基本组织。
2、了解热处理工艺对钢组织和性能的影响。
3、熟悉碳钢几种典型热处理组织——M、T 、S 、M 回火、T 回火、S 回火等的形态及特征。
4、观察和分析常用碳钢以及几种合金钢(45、T12、20、GCr15、W18Cr4V 、1Cr18CrNi9Ti 、9CrSi 等)的显微组织。
5、了解常用合金钢的成分、组织和性能的特点,以及它们的主要应用。
二、概述(一)碳钢热处理后的显微组织观察碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。
因此,研究热处理后的组织时,不仅要参考铁碳相图,更主要的是参考钢的等温转变曲线(C曲线。
铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及各相的相对含量,C 曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。
C 曲线适用于等温冷却条件;而CCT 曲线(奥氏体连续冷却曲线)适用于连续冷却条件。
在一定的程度上用C 曲线,也能够估计连续冷却时的组织变化。
1、共析钢等温冷却时的显微组织共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表3-1中。
2、共析钢连续冷却时的显微组织为简便起见,不用CCT 曲线,而用C 曲线(图3-1)来进行分析。
例如共析钢奥氏体,在慢冷时(相当于炉冷,见图3-1中的v 1)应得到100%的珠光体;当冷却速度增大到v 2时(相当于空冷),得到的是较细的珠光体,即索氏体或图3-1 共析钢的C 曲线,得到的为屈氏体和马氏体;当冷却速度增屈氏体;当冷却速度增大到v 3时(相当于油冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms )后,瞬时大至v 4时(相当于水冷)转变成马氏体。
其中与C 曲线鼻尖相切的冷却速度(v k )称为淬火的临界冷却速度。
表3-1 共析钢过冷奥氏体在不同温度等温转变的组织及性能3、亚共析钢和过共析钢连续冷却时的显微组织亚共析钢的C 曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,如图3-2所示。
当奥氏体缓慢冷却时(相当于炉冷,,转变产物接近平衡组织,如图3-2中v 1)即珠光体和铁素体。
随着冷却速度的增大,即v 3>v 2>v 1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶界上。
因此, v1的组织为铁素体十珠光体;v 2的组织为铁素体十索氏体;v 3的组织为铁图3-2 亚共析钢的C 曲线素体十屈氏体;当冷却速度为v 4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3-4);当冷却速度v s 超过临界冷却速度时,钢全部转变为马氏体组织(如图3-7、3-8)。
过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。
4、各组织的显微特征(1)索氏体(s )是铁素体与渗碳体的机械混合物。
其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨(见图3-3)。
图3-3 索氏体图3-4 屈氏体+马氏体(2)屈氏体(T )也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下无法分辨,只能看到如墨菊状的黑色形态。
当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3-4)。
(3)贝氏体(B )为奥氏体的中温转变产物,它也是铁索体与渗碳体的两相混合物。
在显微形态上,主要有以下三种形态:A .上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的非层状组织。
当转变量不多时,在光学显微镜下为成束的铁素体条向奥氏体晶内伸展,具有羽毛状特征。
在电镜下,铁素体以几度到十几度的小位向差相互平行,渗碳体则沿条的长轴方向排列成行(如图3-5)。
B .下贝氏体是在片状铁素体内部沉淀有碳化物的两相混合物组织。
它比淬火马氏体易受浸蚀,在显微镜下呈黑色针状(见图3-6)。
在电镜下可以见到,在片状铁素体基体中分布有很细的碳化物片,它们大致与铁素体片的长轴成55~60°的角度。
C .粒状贝氏体是最近十几年才被确认的组织。
在低、中碳合金钢中,特别是连续冷却时(如正火、热轧空冷或焊接热影响区)往往容易出现,在等温冷却时也可能形成。
它的形成温度范围大致在上贝氏体转交温度区的上部,由铁素体和它所包围的小岛状组织所组成。
图3-5 上贝氏体+板条状马氏体+少量网状铁素体图3-6 下贝氏体(4)马氏体(M )是碳在α-Fe 中的过饱和固溶体。
马氏体的形态按含碳量主要分两种,即板条状和针状(见图3-7、3-8所示。
图3-7 板条状马氏体图3-8 针状马氏体A .板条状马氏体一般为低碳钢或低碳合金钢的淬火组织。
其组织形态是由尺寸大致相同的细马氏体条定向平行排列组成马氏体束或马氏体领域。
在马氏体束之间位向差较大,一个奥氏体晶粒内可形成几个不同的马氏体领域。
板条马氏体具有较低的硬度和较好的韧性。
图3-7是20钢950℃加热保温后水淬的金相图谱。
B .针状马氏体是含碳量较高的钢淬火后得到的组织。
在光学显微镜下,它呈竹叶状或针状,针与针之间成一定的角度。
最先形成的马氏体较粗大,往往横穿整个奥氏体晶粒,将奥氏体晶粒加以分割,使以后形成的马氏体针的大小受到限制。
因此,针状马氏体的大小不一。
同时有些马氏体有一条中脊线,并在马氏体周围有残留奥氏体。
针状马氏体的硬度高而韧性差。
(5)残余奥氏体(A 残)是含碳量大于0.5%的奥氏体淬火时被保留到室温不转变的那部分奥氏体。
它不易受硝酸酒精溶液的浸蚀,在显微镜下呈白亮色,分布在马氏体之间,无固定形态。
如图3-9为针状马氏体以及大量的残余奥氏体。
图3-10为50钢油冷淬火(830℃加热),其组织为马氏体+少量残余奥氏体。
图3-9 针状马氏体+残余奥氏体图3-10 马氏体+粒状渗碳体+少量残余奥氏体(6)钢的回火组织与性能:A .回火马氏体是低温回火(150~250℃)组织,它仍保留了原马氏体形态特征。
针状马氏体回火析出了极细的碳化物,容易受到浸蚀,在显微镜下呈黑色针状。
低温回火后马氏体针变黑,而残余奥氏体不变仍呈白亮色(如图3-11所示)。
低温回火后可以部分消除淬火钢的内应力,增加韧性,同时仍能保持钢的高硬度。
B .回火屈氏体是中温回火(350~500℃)组织。
回火屈氏体是铁索体与粒状渗碳体组成的极细混合物。
铁素体基体基本上保持了原马氏体的形态(条状或针状),第二相渗碳体则析出在其中,呈极细颗枝状,用光学显微镜极难分辨(如图3-12所示)。
中温回火后有很好的弹性和一定的韧性。
图3-11 回火马氏体图3-12 回火屈氏体C .回火索氏体是高温回火(500~650℃)组织。
回火索氏体是铁素体与较粗的粒状渗碳体所组成的机械混合物。
碳钢回火索氏体中的铁素体已经通过再结晶,呈等轴细晶粒状。
图3-13为保持马氏体位向分布的较粗回火索氏体。
回火索氏体具有良好的综合机械性能。
应当指出,回火屈氏体、回火索氏体是淬火马氏体回火时的产物,它们的渗碳体是颗粒状的,且均匀地分布在铁索体基体上;而淬火索氏体和淬火屈氏体是奥氏体过冷时直接形成的,其渗碳体是呈片状。
回火组织较淬火组织在相同硬度下具有较高的塑性与韧性。
图3-13 回火索氏体(二)几种常用合金钢的显微组织合金钢根据合金元素含量的不同,可分为三种:合金元素总量<5%的称为低合金钢;合金元素为5%~10%的称为中合金钢;合金元素>10%的称为高合金钢。
一般合金结构钢、合金工具钢都是低合金钢。
由于合金元素的加入,使铁碳相图发生一些变化,但其平衡状态的显微组织与碳钢没有本质的区别。
低合金钢热处理后的显微组织与碳钢没有根本的不同,差别只在于合金元素加入后,使C 曲线右移(Co 除外),即以较低的冷却速度也可获得马氏体组织。
例如,40Cr 钢经调质处理后的显微组织和40钢调质后的显微组织基本相同,都为回火索氏体。
GCrl5钢840℃油淬、低温回火后的显微组织,与T12钢780℃水淬、低温回火后的显微组织也基本一样,皆为回火马氏体和碳化物。
合金钢种类繁多,本讲义仅选择几种常用的典型钢号进行观察和分析。
1.合金结构钢A .渗碳钢 20CrNi钢用于制造要求较高强度和韧性的零件。
也可进行渗碳处理制作齿轮。
其退火组织为铁素体+珠光体,如图3-14所示。
B .调质钢 40Cr是一种应用很广泛的钢钟。
它具有良好的综合机械性能,用于制造曲轴、汽车后桥半轴等。
退火处理后为珠光体+网状分布的铁素体,晶粒细小,见图3-15;油冷淬火后其组织为中碳马氏体,部分马氏体成排分布,如图3-16所示。
图3-14 铁素体+珠光体图3-15 珠光体+网状分布的铁素体18CrNiMo 具有较高强度、韧性和淬透性,适宜制作具有一定强韧性的汽车变速箱齿轮以及轴类,原材料组织铁素体以及珠光体,呈枝晶状分布,如图3-17所示;因该钢具有良好的淬透件,淬火后已经完全渗透,基体全为低碳马氏体,如图3-18所示。
图3-16 淬火马氏体图3-17 铁素体+珠光体图3-18 马氏体图3-19 回火马氏体+碳化物颗粒C .轴承钢常用钢号为GCrl5。
经淬油后低温回火为回火马氏体和未溶解的碳化物颗粒,如图3-19所示。
图3-20 球化珠光体图3-21 回火托氏体+极少量铁素体颗粒D .弹簧钢65Mn ,为含锰量较高的优质碳素结构钢,65Mn 冷拉退火后为球化珠光体,见图3-20;图3-21是880℃淬火处理后经过480~520℃中温回火组织,基体为回火托氏体,其上有极少量铁素体颗粒。
2.合金工具钢A .低合金工具钢以9CrSi 为例,840℃加热保温后油冷淬火后180℃低温回火,其组织为极细的回火针状马氏体和未溶的碳化物,如图3-22所示。
B .高合金工具钢以Crl2MoV 为例,经1020℃加热保温后油冷淬火,180℃回火,其组织为回火马氏体和少量残余奥氏体,白色大块状为共晶碳化物,细小颗粒为二次碳化物。
如图3-23所示。
Crl2MoV 淬火后又经520℃保温1h ,回火4次,其组织为回火马氏体和少量残余奥氏体,白色大块状为共晶碳化物,细小颗粒为二次碳化物,如图3-24所示。
图3-22 回火马氏体+碳化物图3-23 隐针马氏体+碳化物+残留奥氏体图3-24 回火马氏体+少量残余奥氏+碳化物图3-25 莱氏体+屈氏体以及残留奥氏体C .高速钢高速钢是一种常用的高合金工具钢,例如W18Cr4V。
因为它含有大量合金元素,使铁碳相图中的E 点大大左移,虽然只含有0.7%~0.8%的碳,仍可获得莱氏体组织,所以又称为莱氏体钢。
高速钢在铸造状态下与亚共晶白口铸铁的组织相似。