第四章 钢显微组织评定(全)
- 格式:ppt
- 大小:937.50 KB
- 文档页数:13
钢中非金属夹杂物含量的测定标准评级图显微检验法介绍GB/T 10561—2005—何群雄,孙时秋:介绍了钢中非金属夹杂物含量测定显微检验法的概况,并对国标等同采用国际标准ISO4967:1998后变化的技术内容作了简要说明。
:非金属夹杂物;标准评级图显微检验法 0钢中非金属夹杂物的评定是衡量钢内在质量的一种重要方法,通过该方法的检验能反映钢中非金属夹杂物的含量、沾污度以及类型,为满足产品设计要求或改进生产工艺提供可靠的依据,尤其是非金属夹杂物的显微检验方法,更是各国冶金学家长期研究的课题。
随着显微技术和电子金相技术的不断发展,采用自动图像仪及计算机软件来评定非金属夹杂物的方法已经越来越多的被用于进行科学研究和实际生产检验。
目前美国金属材料协会(ASTM)E4委员会已有3个显微检验方法来评定非金属夹杂物含量的方法标准,即ASTM E45-97《用评级图谱评定非金属夹杂物的人工方法》、ASTM E1122-1986《自动图像分析法检查非金属夹杂物级别的方法》和ASTM E1245-2000《采用自动图像分析法测定钢中非金属夹杂物或第二相含量的方法》。
但是,应用光学显微镜测定钢中非金属夹杂物的标准图谱评级方法,至今还是在被最广泛地采用。
随着钢铁冶金技术的不断发展和对钢铁材料质量的要求不断提高,标准图谱评级的显微方法检验标准也在不断地修改和完善之中,如现行的国际标准ISO4967-1998《用标准图谱评定钢非金属夹杂物的显微方法》和美国ASTME45-97《钢中非金属夹杂物含量测定方法》对标准图谱和评定方法都作了较大的修改和变动,较好地解决了用光学显微镜评定钢中非金属夹杂物评定的一系列问题,使标准图谱的显微评定方法日趋完善。
GB/T10561-1989《钢中非金属夹杂物显微评定方法》标准是我国钢检测领域的一项重要的基础标准,也是钢中非金属夹杂物含量的主要检测方法之一。
该标准已颁布了一项重要的基础标准,也是钢中非金属夹杂物含量的主要检测方法之一。
合金钢、铸铁、有色金属的显微组织观察与分析实验目的实验说明实验内容及方法指导实验报告要求思考题一:实验目的(1)观察各种常用合金钢、有色金属和铸铁的显微组织.(2)分析这些金属材料的组织和性能的关系及应用。
二:实验说明1.几种常用合金钢的显微组织一般合金结构钢、低合金工具钢都是低合金钢。
即合金元素总量小于5%的钢,由于加入了合金元素,使相图发生了一些变动,但其平衡状态的显微组织与碳钢没有质的区别。
热处理后的显微组织仍然可借助C曲线来分析,除了Co元素之外,合金元素都使C曲线右移,所以低合金钢用较低的冷却速度即可获得马氏体组织。
例如,除作滚动轴承外,还广泛用作切削工具、冷冲模具、冷轧辊及柴油机喷嘴的GCrl5钢,经过球化退火、840~C油淬和低温回火,得到的组织为隐针或细针回火马氏体和细颗粒状均匀分布的碳化物以及少量残余奥氏体.高速钢是一种常用的高合金工具钢.如W18Cr4V高速钢,因为含有大量合金元素,使Fe-Fe3C相图中点E 大大向左移动,所以它虽然只含有w(C)=0.7%~0.8%碳,但已经含有莱氏体组织。
在高速钢的铸态组织中可看到鱼骨状共晶碳化物,如图1所示。
这些粗大的碳化物,不能用热处理方法去除,只能用锻造的方法将其打碎.锻造退火后高速钢的显微组织是由索氏体和分布均匀的碳化物组成(图2)。
大颗粒碳化物是打碎了的共晶碳化物。
高速钢淬火加热时,有一部分碳化物未溶解,淬火后得到的组织是马氏体、碳化物和残余奥氏体(图3)。
碳化物呈颗粒状,马氏体和残余奥氏体都是过饱和的固溶体,腐蚀后都呈白色,无法分辨,但可看到明显的奥氏体晶界。
为了消除残余奥氏体,需要进行三次回火,回火后的显微组织为暗灰色回火马氏体、白亮小颗粒状碳化物和少量残余奥氏体,如图4所示。
图1 W18Cr4V钢铸态组织图2 W18Cr4V钢锻后退火组织图3 W18Cr4V钢的淬火组织图4 W18CNV钢的淬火回火组织2.铸铁的显微组织依铸铁在结晶过程中石墨化程度不同,可分为白口铸铁、灰口铸铁、麻口铸铁.白口铸铁具有莱氏体组织而没有石墨,碳几乎全部以碳化物形式(Fe3C)存在;灰口铸铁没有莱氏体,而有石墨,即碳部分或全部以自由碳、石墨的形式存在。
第四章二元合金相图与合金凝固一、本章主要内容:相图基本原理:相,相平衡,相律,相图的表示与测定方法,杠杆定律;二元匀晶相图:相图分析,固溶体平衡凝固过程及组织,固溶体的非平衡凝固与微观偏析固溶体的正常凝固过程与宏观偏析:成分过冷,溶质原子再分配,成分过冷的形成及对组织的影响,区域熔炼;二元共晶相图:相图分析,共晶系合金的平衡凝固和组织,共晶组织及形成机理:粗糙—粗糙界面,粗糙—光滑界面,光滑—光滑界面;共晶系非平衡凝固与组织:伪共晶,离异共晶,非平衡共晶;二元包晶相图:相图分析,包晶合金的平衡凝固与组织,包晶反应的应用铸锭:铸锭的三层典型组织,铸锭组织控制,铸锭中的偏析其它二元相图:形成化合物的二元相图,有三相平衡恒温转变的其它二元相图:共析,偏晶,熔晶,包析,合晶,有序、无序转变,磁性转变,同素异晶转变二元相图总结及分析方法二元相图实例:Fe-Fe3C亚稳平衡相图,相图与合金性能的关系相图热力学基础:自由能—成分曲线,异相平衡条件,公切线法则,由成分—自由能曲线绘制二元相图二、1.填空1 相律表达式为___f=C-P+2 ___。
2. 固溶体合金凝固时,除了需要结构起伏和能量起伏外,还要有___成分_______起伏。
3. 按液固界面微观结构,界面可分为____光滑界面_____和_______粗糙界面___。
4. 液态金属凝固时,粗糙界面晶体的长大机制是______垂直长大机制_____,光滑界面晶体的长大机制是____二维平面长大____和_____依靠晶体缺陷长大___。
5 在一般铸造条件下固溶体合金容易产生__枝晶____偏析,用____均匀化退火___热处理方法可以消除。
6 液态金属凝固时,若温度梯度dT/dX>0(正温度梯度下),其固、液界面呈___平直状___状,dT/dX<0时(负温度梯度下),则固、液界面为______树枝___状。
7. 靠近共晶点的亚共晶或过共晶合金,快冷时可能得到全部共晶组织,这称为____伪共晶__。
第四节钢铁材料渗层深度测定及组织检验一、渗碳层检测钢的渗碳层检测包括渗碳层深度测定和渗碳层组织检验。
渗碳层深度检测方法有金相法、硬度法、断口法、剥层化学分析法,其中硬度法是仲裁方法。
(一)金相法一般来说,以过共析层+共析层+(1/2)亚共析过渡层之和作为总渗碳层深度,常用于碳钢;以过共析层+共析层+亚共析过渡层之和作为总渗碳层深度,常用于合金渗碳钢。
以上两种试样应为退火状态。
(二)硬度法硬度法是从试样边缘起测量显微硬度分布的方法。
执行标准为GB/T9450-2005《钢件渗碳淬火有效硬化层深度的测定与校核》和GB/T9451-2005《钢件薄表面总硬化层深度或有效硬化层深度的测定》。
被检测试样应在渗碳、淬火后采用维氏硬度试验方法进行,淬硬层深度是指从零件表面到维氏硬度值为550HV1处的垂直距离。
渗碳层的深度就是渗碳淬火硬化层深度,用CHD表示,单位为mm,如CHD=0.8mm;测定维氏硬度时试验力为1kg();硬度测试应在最终热处理后的试样横截面上进行。
测试时,一般宽度在1.5mm的范围内,垂直于渗碳层表面沿着两条平行线呈之字形打压痕,在一条直线上两相邻压痕的距离S不小于压痕对角线的倍,两条直线上相错位的压痕间距不应超过0.1mm。
测量压痕中心至试样表面的距离精度应在±μm的范围内,每个压痕对角线的测量精度应在±μm以内。
在适当条件下,可使用至HV1的试验力进行试验,并在足够的放大倍数下测量压痕。
测试时至少应在两条硬化线上进行,并绘制出每条线的硬度分布曲线(硬度值为纵坐标,至表面的距离为横坐标),用图解法分别确定硬度值为550HV处至表面的距离,如果两数值的差≤0.1mm,则取二者的平均值作为淬硬层深度,否则应重复试验。
上述方法适用于渗碳和碳氮共渗淬火硬化层,距表面3倍于硬化层深度处硬度值小于450HV且硬化层深度大于0.3mm的零件。
经协议各方协商,对于距表面3倍于硬化层深度处硬度大于450HV的钢件,可以选择硬度值大于550HV(以25HV为一级)的某一特定值作为界限硬度;可以使用其它维氏硬度载荷;也可以使用努氏硬度。
第四章焊接接头组织性能分析焊接过程是个局部快速加热到高温并随后冷却的过程,整个焊件的温度随时间和空间急剧变化,易形成在时间和空间域内梯度都很大的不均匀温度场,温度场的分布决定着焊缝区和热影响区的范围,对焊接接头的质量有着直接影响。
由于焊接过程中的特殊传热过程,焊接所连接的材料上距离热源的远近不同,其组织和性能也各有差异。
通常将受到焊接热作用后组织和性能相对于基材发生改变的区域称为焊接接头。
焊接接头不仅包括结合区,也包括其周围区域。
4.1焊接冶金基础焊接时,焊件或同焊接材料被加热到高温而熔化,冷却后形成的结合部分叫做焊缝。
焊件材料称为母材。
由于局部加热,焊缝邻近区域的母材势必会因热量的传导而受影响。
母材因受热的影响(但未熔化)而发生组织与力学性能变化的区域叫热影响区。
焊缝与热影响区的交界线叫做熔合线或熔合区,实际为具有一定尺寸的过渡区,常称为熔合区。
对于焊接结构件来说,其安全性主要取决于焊接接头,特别是焊接热影响区的组织和性能。
焊缝、热影响区与熔合区共同构成焊接接头,如图1-1所示。
图1-1 焊接接头示意图在焊接过程中,随着温度的变化,焊缝区要发生熔化、化学反应、凝固及固态相变一系列过程;热影响区则会发生组织变化。
这些变化总称为焊接冶金过程。
冶金过程将决定焊缝的成分和接头的组织以及某些缺陷的形成,从而决定了焊接接头的质量。
下面就介绍一下焊接冶金的基本知识与基本规律。
4.1.1. 焊接传热过程的特点在焊接过程中,被焊金属由于热的输入和传播,而经历加热、熔化(或达到热塑性状态)和随后的凝固及连续冷却过程,称之为焊接热过程。
凡是通过局部加热来达到连接金属的焊接方法,不论是熔焊或固态焊接(如电阻焊接、摩擦焊),由于其加热的瞬时性和局部性使得焊缝附近的母材都经受了一种特殊热循环的作用。
其特点为升温速度快,冷却速度快;焊接加热的另一个特点为热场分步极不均匀,紧靠焊缝的高温区内接近熔点,远离焊缝的低温区内接近室温,这一加热特点也造成焊件的温度分布不均匀,并随时间而不断变化,参见图1-2。
碳钢热处理后的显微组织观察与分析实验目的实验说明实验内容实验方法指导实验报告要求思考题一:实验目的(1)观察和研究碳钢经不同形式热处理后显微组织的特点。
(2)了解热处理工艺对碳钢硬度的影响。
二:实验说明碳钢经热处理后的组织可以是接近平衡状态(如退火、正火)的组织,也可以是不平衡组织(如淬火组织)。
因此在研究热处理后的组织时,不但要用铁碳相图,还要用钢的C曲线来分析。
图1为共析碳钢的C曲线,图2为45钢连续冷却的CCT曲线。
图1 共析碳钢的c曲线图2 45钢的CCT曲线C曲线能说明在不同冷却条件下过冷奥氏体在不同温度范围内发生不同类型的转变过程及能得到哪些组织。
1.碳钢的退火和正火组织亚共析碳钢(如40、45钢等)一般采用完全退火,经退火后可得接近于平衡状态的组织,其组织形态特征已在实验l中加以分析和观察(图3)过共析碳素工具钢(如T10、T12钢等)则采用球化退火,T12钢经球化退火后,组织中的二次渗碳体和珠光体中的渗碳体都呈球状(或粒状),图中均匀分散的细小粒状组织就是粒状渗碳体。
2.钢的淬火组织含碳质量分数相当于亚共析成分的奥氏体淬火后得到马氏体。
马氏体组织为板条状或针状,20钢经淬火后将得到板条状马氏体。
在光学显微镜下,其形态呈现为一束束相互平行的细条状马氏体群。
在一个奥氏体晶粒内可有几束不同取向的马氏体群,每束条与条之间以小角度晶界分开,束与束之间具有较大的位向差,如图4所示。
图3 T12 钢球化退火组织图4 低碳马氏体组织45钢经正常淬火后将得到细针状马氏体和板条状马氏体的混合组织,如图5所示。
由于马氏体针非常细小,故在显微镜下不易分清。
45钢加热至860℃后油淬,得到的组织将是马氏体和部分托氏体(或混有少量的上贝氏体),如图6所示。
碳质量分数相当于共析成分的奥氏体等温淬火后得到贝氏体,如T8钢在550~350℃及350℃~ Ms温度范围内等温淬火,过冷奥氏体将分别转变为上贝氏体和下贝氏体。
铸钢的金相组织及检验一、铸造碳钢的金相组织及检验(一)铸造碳钢的显微组织1.铸态组织为铁素体+珠光体+魏氏组织。
如图8-1、图8-2。
图8-1 ZG230-450铸钢铸态组织(100×) 图8-2 ZG310-570铸钢铸态组织(100×)铸态组织的形貌和组成相的含量与钢的碳含量有关。
碳含量越低的铸钢,铁素体含量越多,魏氏组织的针状越明显、越发达,数量也多。
随铸钢碳含量的增加,珠光体量增多,魏氏组织中的针状和三角形的铁素体量减少,针齿变短,量也减少,而块状和晶界上的网状铁素体粗化,含量也增多。
若存在严重的魏氏组织,或存在大量低熔点非金属夹杂物沿晶界呈断续网状分布,将使铸钢的脆性显著增加。
2.退火组织为铁素体+珠光体。
铁素体呈细等轴晶。
珠光体分布形态随钢的碳含量增加而变化。
随钢的碳含量增加,珠光体呈断续网状分布→网状分布→珠光体与铁素体均匀分布,其含量也不断增多。
若退火组织中存在残留的铸态组织或组织粗化均属于不正常组织。
3.正火组织为铁素体+珠光体,分布较均匀,如图8-3。
与退火组织相比较,正火组织的组成相更细、更均匀,珠光体含量稍多。
若存在残留铸态组织或组织粗化均属不正常组织。
4.调质组织 ZG270-500以上牌号的铸造碳钢可进行调质处理,组织为回火索氏体,见图8-4。
若出现未溶铁素体或粗大的回火索氏体属不正常组织。
图8-3 ZG230-450 铸钢正火组织(100 ×) 图8-4 ZG35CrMo铸钢调质组织(650×)5.几种常用铸造碳钢的组织见表8-1,表8-1 常用铸造碳钢的组织铸造碳钢 ZG200-400 ZG230-450 ZG270-500 ZG310-570 ZG340-640显微组织铸态魏氏组织+块状铁素体+珠光体珠光体+魏氏组织+铁素体珠光体+铁素体部分铁素体呈网状分布铁素体呈网状分布退火铁素体+珠光体珠光体+铁素体珠光体呈断续网状分布珠光体呈网状分布正火铁素体+珠光体珠光体+铁素体调质回火索氏体(二)铸造碳钢的质量检验铸造碳钢多数用于一般工程,金相检验按照GB/T 8493-1987《一般工程用铸造碳钢金相》标准进行。