常用金属材料的显微组织观察
- 格式:doc
- 大小:2.64 MB
- 文档页数:5
实验一有色合金显微组织观察与分析一、实验目的1. 观察常见的铝合金、铜合金、镁合金及轴承合金等有色金属试样的显微组织特征。
2. 了解有色金属中合金元素对其组织和性能的影响。
二、实验说明(一)铝合金1.铸造铝合金:应用最广泛的铸造铝合金为含有大量硅的铝合金,即所谓硅铝合金。
典型的硅铝合金牌号为ZL102,含硅11~13%,在共晶成分附近,因而具有优良的铸造性能——流动性好,铸件致密,不容易产生铸造裂纹。
铸造后几乎全部得到共晶组织即粗大灰色针状的共晶硅分布在白亮色的α-Al固溶体基体上,这种粗大的针状硅晶体严重降低合金的塑性,因此通常在浇铸时向合金溶液中加入2~3%的变质剂,进行变质处理,合金共晶点向右移,原来的合金变成亚共晶,其组织为枝晶状初生α固溶体(白亮色)+细的(α+Si)共晶体(黑色),如图1-1所示,从而提高合金强度和塑性。
(a)未经变质处理(b)变质处理图1-1 铸造铝合金(ZL102)的显微组织500X2.形变铝合金:硬铝是Al-Cu-Mg系合金,是重要的形变铝合金,具有强烈的时效强化作用,经时效处理后具有很高的硬度、强度,故而称Al-Cu-Mg系合金为硬铝合金。
在Al-Cu-Mg系中,形成了CuAl2(θ相)、CuMgAl2(S相),这两个相在加热时均能溶入合金的固溶体内,并在随后的时效热处理过程中通过形成“富集区”、“过渡相”而使合金达到强化。
如图1-2所示。
(a)铸态(b)时效板材图1-2 硬铝(ZL12)的显微组织 100X(二)铜合金1. 普通黄铜普通黄金是Cu-Zn合金,其含锌量均在45%以下,根据Cu-Zn合金状态图,含锌量在32%以下的黄铜(如H80、H70)为α相固溶体的单相组织;而含锌量在32~45%之间的黄铜(H62、H59)则为(α+β)两相组织。
(1)α单相黄铜:含锌在36%以下的黄铜属单相α固溶体,典型牌号有H70。
铸态组织为α固溶体呈树枝状,经变形和再结晶退火,其组织为多边形晶粒,有退火孪晶。
金属材料显微组织图谱(共42个图谱)图谱01、不锈钢中的位错线:图谱02、铁碳合金的室温平衡组织(0.01%C ):(纯铁的室温平衡组织)铁素体 w ww .b zf x w .c om铁素体+珠光体图谱04、铁碳合金的室温平衡组织(0.77%C ):(T8钢的室温平衡组织)珠光体w ww .b zf xw .c om珠光体+二次渗碳体图谱06、球状珠光体:(T12钢的球化退火组织)球状珠光体w ww .b zf xw .c om图谱07、灰口铸铁的组织(一):(灰口铸铁的显微组织)铁素体+片状石墨 铁素体+珠光体+片状石墨 珠光体+片状石墨图谱08、灰口铸铁的组织(二):铁素体和团絮状石墨w ww .b zf xw .c om图谱09、灰口铸铁的组织(三):铁素体和球状石墨图谱10、陶瓷在室温下的组织:w ww .b zf xw .c om图谱11、W18Cr4V钢离子氮碳共渗+离子渗硫复合处理渗层组织:图谱12、共晶合金组织的形态:w ww .b zf xw .c om图谱13、亚共晶合金组织的形态:图谱14、过共晶合金组织的形态:w ww .b z f xw .c om图谱15、共析钢的室温组织:图谱16、共晶白口铸铁室温平衡组织:图谱17、亚共晶白口铸铁室温平衡组织:w ww .b zf xw .c om图谱18、过共晶白口铸铁室温平衡组织:图谱19、珠光体型组织:图1 珠光体 放大3800倍图2 索氏体 放大8000倍w w w .b z f xw .c om图3 屈氏体 放大8000倍图谱20、上贝氏体形态:图1 光学显微照片 放大500倍图2 电子显微照片 放大5000倍w ww .b zf xw .c om图谱21、下贝氏体形态:图1 光学显微照片 放大500倍图2 电子显微照片 放大12000倍图谱22、低碳马氏体的组织形态:w ww .b zf xw .c om图谱23、高碳马氏体的组织形态:图谱24、铸锭结构:(1) 细晶区; (2)柱状晶区; (3)等轴晶区w ww .b z f xw .c om图谱25、回火索氏体:图谱26、低碳钢渗碳缓冷后的显微组织:图谱27、38CrMoAl 钢氮化层的显微组织:w ww .b zf x w .c om图谱28、球墨铸铁的显微组织:图谱29、蠕墨铸铁的显微组织:图谱30、可锻铸铁的显微组织:w ww .b z f xw .c om图谱31、ZL102合金的铸态组织(一):未变质处理图谱32、ZL102合金的铸态组织(二):变质处理后w ww .b zf xw .c om图谱33、铜锌合金的显微组织(一):单相黄铜图谱34、铜锌合金的显微组织(二):双相黄铜w ww .b zf xw .c om图谱35、Ti-6Al-4V 合金时效处理后的显微组织:图谱36、GCr15钢淬火、回火后的显微组织:w w w .b zf x w .c om图谱37、ZChSnSb11-6轴承合金的显微组织:图谱38、高速钢淬火、回火后的组织:()w ww .b z f xw .c om图谱39、钨纤维铜基复合材料中的裂纹在铜中扩展受阻:图谱40、碳纤维环氧树脂复合材料断裂时纤维断口电子扫描照片:图谱41、韧性断裂断口:(韧窝)w ww .b zf xw .c om图谱42、脆性断裂断口:(河流花样)(全文完)w ww .b zf xw .c om。
实验三碳钢的非平衡组织及常用金属材料显微组织观察实验目的概述实验内容实验方法实验报告思考题一、实验目的1. 观察碳钢经不同热处理后的显微组织。
2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。
3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。
4. 了解上述材料的组织特征、性能特点及其主要应用。
TOP二、概述1. 碳钢热处理后的显微组织碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。
因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。
为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。
在缓慢冷时(相当于炉冷,见图2-3中的V1)应得到100%的珠光体;当冷却速度增大到V2。
时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至V4、V5,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体。
其中与C曲线鼻尖相切的冷却速度(V4)称为淬火的临界冷却速度。
转变类型组织名称形成温度范围/℃显微组织特征硬度(HRC)珠光体型相变珠光体(P)>650在400~500X金相显微镜下可以观察到铁索体和渗碳体的片层状组织~20(HBl80~200)索氏体(S)600~650在800一]000X以上的显微镜下才能分清片层状特征,在低倍下片层模糊不清25~35屈氏体(T)550~600用光学显微镜观察时呈黑色团状组织,只有在电子显徽镜(5000~15000X)下才能看出片层状35—40贝氏体型相变上贝氏体(B上)350~550在金相显微镜下呈暗灰色的羽毛状特征40—48下贝氏体(BT)230~350在金相显微镜下呈黑色针叶状特征48~58马氏体型相变马氏体(M)<230在正常淬火温度下呈细针状马氏体(隐晶马氏体),过热淬火时则呈粗大片状马氏体60~65亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,当奥氏体缓慢冷却时(相当于炉冷,如图2-3中V1:),转变产物接近平衡组织,即珠光体和铁素体。
铝铜合金金相显微组织分析铝铜合金是世界上最常用的金属合金,由于其优良的力学性能和良好的加工性能,在建筑、制造、交通等各个领域得到了广泛的应用。
但是,为了获得良好的性能,在开发铝铜合金时,必须综合考虑多种因素,包括其微观组织、晶粒尺寸、均匀度和含量等。
从金相显微镜的角度来看,金相显微组织分析可以更全面地了解铝铜合金的组织结构和性能特征,从而更好地实现性能的优化和改进。
铝铜合金金相显微组织分析主要可以从两个相关性方面进行。
首先,金相显微镜可以观察到合金中细小晶粒的形状、尺寸和分布情况,以及合金组织中相互关系的特征。
其次,金相显微镜可以准确地分析铝铜合金中基体和夹杂物之间的相互作用,揭示合金中基体、析出物、熔合现象以及其他特殊组织成分的聚集状态和分布规律。
进行金相显微组织分析前,需要准备具有良好的外观性质的铝铜合金,以确保技术结果的准确性。
通常,需要对样品进行热处理,以消除机械冲击、疲劳和拉伸等影响,从而有效地稳定晶界和含量,使分析结果更准确。
其次,样品需要进行锉削,以消除表面的划痕和污染,使表面的晶界更加明晰和更加自然。
此外,金相显微镜分析一般采用原子比色分析技术,通过观察晶界的颜色差异,从而准确地识别和分析基体与夹杂物之间的特征和分布规律。
铝铜合金金相显微组织分析技术的准确性和可靠性决定了铝铜合金加工工艺的发展,同样也直接影响着性能的优化和改进。
因此,在实际应用中,金相显微组织分析无论对于对新型铝铜合金的开发和改进,以及对现有材料应用的改进都是至关重要的。
综上所述,金相显微组织分析可以更准确地解释铝铜合金的组织结构,揭示其微观组织的特性和分布规律,提高合金的性能,并有效地指导铝铜合金的开发和应用。
因此,金相显微组织分析一直是铝铜合金加工的重要技术,也是未来铝铜合金加工产业发展的核心能力。
磨金相原理
金相测试是一种常用的金属材料显微组织分析方法,它通过对金属材料的金相组织进行观察和分析,从而得到有关材料性质和质量的信息。
磨金相是金相测试中的一种常用方法,它的原理是将金属试样先进行机械研磨,然后通过酸蚀的方式使试样表面形成一层薄薄的氧化层,进而对材料组织进行观察和分析。
具体的实验步骤如下:首先,将金属试样进行粗研磨,以去除试样表面的氧化层和污染物。
然后,再进行细研磨,使试样表面光洁度达到要求。
接下来,将试样放入一定比例的酸溶液中,通过酸蚀的作用,使试样表面形成氧化层。
随后,将试样取出,进行洁净处理,去除残留的酸液。
最后,将试样放入金相显微镜中观察,通过放大镜头对试样进行分析和研究。
磨金相测试的原理在于通过磨削和酸蚀两个步骤,使试样表面形成一层氧化层,然后通过对氧化层的观察和分析,来揭示金属材料的内部组织特征。
磨金相测试可以显示金属晶粒的尺寸、形态和分布情况,以及各种非金属包括夹杂物、碳化物等的存在情况和分布状态。
通过对金相组织的分析,可以判断金属材料的加工状况、热处理效果以及材料的性能和质量。
总之,磨金相测试是一种通过机械研磨和酸蚀的方式对金属材料进行显微组织分析的方法,通过对试样表面形成的氧化层进行观察和分析,揭示金属材料的内部组织特征,为金属材料的性能和质量评估提供依据。
常用金属材料显微组织观察实验报告- 图文常用金属材料的显微组织观察一、实验目的1.观察各种常用合金钢,有色金属和铸铁的显微组织。
2.分析这些金属材料的组织和性能的关系及应用。
二、金属材料的显微组织观察及分析1.几种常用合金钢的显微组织合金钢依合金元素含量的不同,可分为三种:合金元素总量小于5%的称为低合金钢;合金元素为5~10%的称为中合金钢;合金元素大于10%的称为高合金钢。
1)一般合金结构钢、合金工具钢都是低合金钢。
由于加入合金元素,铁碳相图发生一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有本质的区别。
低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同,差别只是在于合金元素都使C曲线右移(除Co外),即以较低的冷却速度可获得马氏体组织。
40Cr钢经调质处理后的显微组织是回火索氏体。
GCrl5钢(轴承钢)840℃油淬低温回火试样的显微组织,与T12钢780℃水淬低温回火试样的显微组织也是一样的,都得到回火马氏体+碳化物十残余奥氏体组织。
图1、16Mn-淬火-x400马氏体16Mn钢属于碳锰钢,碳的含量在0.16%左右。
16Mn钢的合金含量较少,焊接性良好,焊前一般不必预热。
加入合金元素锰,使C曲线右移,在淬火处理后,组织为马氏体组织。
但由于16Mn钢的淬硬倾向比低碳钢稍大,所以在低温下(如冬季露天作业)或在大刚性、大厚度结构上焊接时,为防止出现冷裂纹,需采取预热措施。
图2、16Mn-正火-x400铁素体索氏体16Mn属于低碳钢,碳含量<0.16%,正火后组织为F+S。
在400倍显微镜下,索氏体基本上不可分辨。
16Mn钢是目前我国应用最广的低合金钢。
广泛应用于各种板材、钢管。
图3、65Mn-等温淬火-400下贝氏体65Mn,锰提高淬透性,但Mn含量过大会导致过热现象。
特性:经热处理后的综合力学性能优于碳钢,65Mn 钢板强度、硬度、弹性和淬透性均比65号钢高。
但有过热敏感性和回火脆性。
常用金属材料的显微组织观察一、实验目的观察几种常用合金钢、铸铁和有色金属的显微组织;了解这些金属材料的成分、组织和性能的特点。
二、仪器与材料仪器: XJP-2A( 单目 ) 金相显微镜; XJP-3C( 双目 ) 金相显微镜;材料: 10 种常用金属材料表 1 常用金属材料的金相试样三、实验原理及教学内容1 合金钢在合金钢中,由于合金元素对相图及相变过程的影响,其显微组织比碳钢复杂得多,组成相除了合金铁素体、合金奥氏体、合金渗碳体外,还可能出现金属间化合物,其组织形态随钢种的不同而呈现出不同的特征。
根据其用途可分为:合金结构钢、合金工具钢、特殊性能钢。
• 40Cr 调质钢(合金结构钢)合金调质钢是指调质处理后的合金结构钢,调质处理后具有高强度与良好的塑性及韧性。
40表示含碳量0.4%,Cr是加入的合金元素,起着增加淬透性,使调质后的回火索氏体组织得到强化。
回火索氏体以前我们学过,是由等轴状F和粒状渗碳体构成。
40Cr调质处理(淬火后高温回火) W18Cr4V退火• W18Cr4V 高速钢(合金工具钢)高速钢是一种高合金工具钢,具有高硬度、高耐磨性和高热硬性,还具有一定的强度、韧性和塑性。
加入合金元素W提高热硬性;Cr可以提高钢的淬透性;加入合金元素V可显著提高钢的耐磨性和热硬性。
a. 铸态组织显微组织分为三个部分:晶界附近为骨骼状莱氏体共晶碳化物Fe4W2C及WC,严重地分割了基体,使钢受载时极易脆裂;晶粒外层为奥氏体分解产物—马氏体及残余奥氏体,因为它不易被浸蚀而呈亮色,常称为“白色组织”;晶粒的心部是δ共析体,为极细的共析组织,易受浸蚀而呈黑色,通常称为“黑色组织”。
b. 锻造和退火后的组织为了改善碳化物的不均匀性,生产上采用反复锻造的方法将共晶碳化物击碎使其分布均匀。
为了去除锻造内应力,清除不平衡组织,降低了硬度,改善切削加工性能,为淬火提供良好的原始组织,必须对高速钢进行退火处理。
经过860~880℃退火后,高速钢 W18Cr4V 的退火组织为较粗大的共晶碳化物颗粒及稍细的二次碳化物,分布在索氏体基体上。
合金钢、铸铁、有色金属的显微组织观察与分析实验目的实验说明实验内容及方法指导实验报告要求思考题一:实验目的(1)观察各种常用合金钢、有色金属和铸铁的显微组织。
(2)分析这些金属材料的组织和性能的关系及应用。
二:实验说明1.几种常用合金钢的显微组织一般合金结构钢、低合金工具钢都是低合金钢。
即合金元素总量小于5%的钢,由于加入了合金元素,使相图发生了一些变动,但其平衡状态的显微组织与碳钢没有质的区别。
热处理后的显微组织仍然可借助C曲线来分析,除了Co元素之外,合金元素都使C曲线右移,所以低合金钢用较低的冷却速度即可获得马氏体组织。
例如,除作滚动轴承外,还广泛用作切削工具、冷冲模具、冷轧辊及柴油机喷嘴的GCrl5钢,经过球化退火、840~C油淬和低温回火,得到的组织为隐针或细针回火马氏体和细颗粒状均匀分布的碳化物以及少量残余奥氏体。
高速钢是一种常用的高合金工具钢。
如W18Cr4V 高速钢,因为含有大量合金元素,使Fe—Fe3C相图中点E大大向左移动,所以它虽然只含有w(C)=0.7%~0.8%碳,但已经含有莱氏体组织。
在高速钢的铸态组织中可看到鱼骨状共晶碳化物,如图1所示。
这些粗大的碳化物,不能用热处理方法去除,只能用锻造的方法将其打碎。
锻造退火后高速钢的显微组织是由索氏体和分布均匀的碳化物组成(图2)。
大颗粒碳化物是打碎了的共晶碳化物。
高速钢淬火加热时,有一部分碳化物未溶解,淬火后得到的组织是马氏体、碳化物和残余奥氏体(图3)。
碳化物呈颗粒状,马氏体和残余奥氏体都是过饱和的固溶体,腐蚀后都呈白色,无法分辨,但可看到明显的奥氏体晶界。
为了消除残余奥氏体,需要进行三次回火,回火后的显微组织为暗灰色回火马氏体、白亮小颗粒状碳化物和少量残余奥氏体,如图4所示。
图1 W18Cr4V钢铸态组织图2 W18Cr4V钢锻后退火组织图3 W18Cr4V钢的淬火组织图4 W18V钢的淬火回火组织2.铸铁的显微组织依铸铁在结晶过程中石墨化程度不同,可分为白口铸铁、灰口铸铁、麻口铸铁。
常用金属材料的组织与性能分析一、实验目的:1、观察和研究各种不同类型常用金属材料的显微组织特征。
2、掌握成分、显微组织对性能的影响关系。
二、实验设备与材料:金相显微镜(MC006 4X1)视频图像处理金相显微镜(4XC-ST)计算机(成像、分析软件)常用金属材料的标准金相试样三.实验前思考问题:1、铁碳合金相图,不同碳钢的组织变化及其显微组织特征。
2、实验五钢的热处理,同一种钢材,不同的热处理下为什么性能出现较大的变化。
3、常用的金属材料有哪些。
四、实验内容:1、铁碳合金的平衡组织观察铁碳合金的平衡组织是指铁碳合金在极为缓慢的冷却条件下(如退火)得到的组织。
可以根据Fe-Fe3C相图來分析其在平衡状态下的显微组织。
铁碳合金主要包括碳钢和白口铸铁,其室温组成相由铁素体和渗碳体这两个基本相所组成。
由于含碳量不同,铁素体和渗碳体的相对数量、析出条件及分布状况均有所不同,因而呈现不同的组织形态。
各种铁碳合金在室温下的显微组织铁碳合金在金相显微镜下具有下面四种基本组织:铁素体(F)是碳溶解于a-Fe中的间隙固溶体。
工业纯铁用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的等轴晶粒;亚共析钢中铁素体呈白色块状分布;当含碳量接近共析成分时,铁素体则呈现断续的网状分布于珠光体周围。
渗碳体(Fe3C)是铁与碳形成的金属间化合物,其含碳量为6.69%, 质硬而脆,耐蚀性强,经4%硝酸酒精浸蚀后,渗碳体任呈亮白色,而铁素体浸蚀后呈灰白色,由此可区别铁素体和渗碳体。
渗碳体可以呈现不同的形态:一次渗碳体直接由液体中结晶出,呈粗大的片状;二次渗碳体由奥氏体中析出,常呈网状分布于奥氏体的晶面;三次渗碳体由铁素体中析出,呈不连续片状分布于铁素体晶界处,数量极微,可忽略不计。
珠光体(P)是铁素体和渗碳体呈层片状交替排列的机械混合物。
经4%硝酸酒精浸蚀后,在不同放大倍数的显微镜下可以看到具有不同特征的珠光体组织。
当放大借数较低时,珠光体中的渗碳体看到的只是一条黑线, 甚至珠光体片层因不能分辨而呈黑色。
金相材料显微镜金相材料显微镜是一种用于金相分析的重要工具,它能够帮助我们观察金属材料的微观结构,包括晶粒、晶界、孔隙和夹杂物等。
通过金相显微镜的观察,我们可以了解材料的组织结构、相变情况、热处理效果等重要信息,为材料的研究和应用提供重要参考。
本文将介绍金相材料显微镜的原理、操作方法和应用技巧,希望能对相关领域的研究者和工程师有所帮助。
金相材料显微镜主要包括光学显微镜和电子显微镜两种类型。
光学显微镜是最常用的金相显微镜,它利用可见光对样品进行观察,可以获得较高的放大倍数和清晰度。
电子显微镜则利用电子束来观察样品,具有更高的分辨率和放大倍数,可以观察到更小尺寸的微观结构。
不同类型的显微镜适用于不同尺度和要求的金相分析,研究者可以根据具体需求选择合适的显微镜进行观察。
在使用金相材料显微镜时,需要注意一些操作方法和技巧。
首先,样品的制备非常重要,必须保证样品表面的平整度和光洁度,以获得清晰的显微观察效果。
其次,调节显微镜的参数也是关键,包括光源亮度、对比度、放大倍数等,这些参数的调节会直接影响观察效果。
此外,观察过程中需要注意保持显微镜和样品的稳定,避免振动和移动造成观察困难。
总之,熟练掌握金相材料显微镜的操作技巧对于获得准确的观察结果非常重要。
金相材料显微镜在材料科学和工程领域具有广泛的应用。
通过金相显微镜的观察,可以了解金属材料的晶粒大小和分布、相变情况、热处理效果等重要信息,为材料的设计、制备和性能评价提供重要依据。
同时,金相显微镜也可以用于材料的质量检测和故障分析,帮助工程师找出材料中的缺陷和问题,并提出改进方案。
因此,金相材料显微镜在材料领域具有不可替代的作用,对于材料的研究和应用具有重要意义。
综上所述,金相材料显微镜是材料科学和工程领域中不可或缺的工具,它可以帮助我们观察金属材料的微观结构,了解材料的组织和性能。
熟练掌握金相显微镜的原理、操作方法和应用技巧对于材料研究和工程设计具有重要意义,希望本文的介绍能够对相关领域的研究者和工程师有所帮助。
金相检测方法
金相检测是金属材料分析中的一项重要技术,通过对金属组织
结构的观察和分析,可以确定金属材料的性能和品质。
金相检测方
法主要包括金相显微镜观察、腐蚀组织观察、显微硬度测试等多种
手段。
下面将就金相检测方法进行详细介绍。
一、金相显微镜观察。
金相显微镜是金相检测中最常用的设备,通过金相显微镜可以
观察金属材料的晶粒组织、非金属夹杂物、孔隙、气泡等微观结构。
在进行金相显微镜观察时,需要先将金属试样进行切割、研磨、腐
蚀等预处理工序,然后在金相显微镜下进行观察和分析。
二、腐蚀组织观察。
金属材料的腐蚀组织观察是金相检测中的重要手段之一,通过
对金属试样进行腐蚀处理,可以清晰地显示出金属材料的晶粒组织、晶界、相界等微观结构。
腐蚀组织观察可以帮助分析金属材料的晶
粒大小、分布均匀性、晶界清晰度等指标。
三、显微硬度测试。
显微硬度测试是金相检测中的另一项重要手段,通过在金相显
微镜下进行硬度测试,可以了解金属材料的硬度分布情况。
显微硬
度测试可以帮助分析金属材料的硬度差异、相变组织、残余应力等
情况,对金属材料的性能评定具有重要意义。
综上所述,金相检测方法包括金相显微镜观察、腐蚀组织观察、显微硬度测试等多种手段,通过这些手段可以全面地了解金属材料
的组织结构和性能特点。
在实际应用中,金相检测方法对于材料的
质量控制、产品性能评定、失效分析等领域具有重要意义。
希望本
文介绍的金相检测方法对您有所帮助,谢谢阅读。
常用金属材料的显微组织观察一、实验目的1.观察各种常用合金钢,有色金属和铸铁的显微组织。
2.分析这些金属材料的组织和性能的关系及应用。
二、金属材料的显微组织观察及分析1.几种常用合金钢的显微组织合金钢依合金元素含量的不同,可分为三种:合金元素总量小于 5%的称为低合金钢;合金元素为 5~10%的称为中合金钢;合金元素大于 10%的称为高合金钢。
1一般合金结构钢、合金工具钢都是低合金钢。
由于加入合金元素,铁碳相图发生一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有本质的区别。
低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同, 差别只是在于合金元素都使 C 曲线右移 (除 Co 外 ,即以较低的冷却速度可获得马氏体组织。
40Cr 钢经调质处理后的显微组织是回火索氏体。
GCrl5钢 (轴承钢 840℃油淬低温回火试样的显微组织,与 T12钢 780℃水淬低温回火试样的显微组织也是一样的,都得到回火马氏体+碳化物十残余奥氏体组织。
图 1、 16Mn-淬火 -x40016Mn 钢属于碳锰钢,碳的含量在 0.16%左右。
16Mn 钢的合金含量较少,焊接性良好,焊前一般不必预热。
加入合金元素锰,使 C 曲线右移,在淬火处理后,组织为马氏体组织。
但由于 16Mn 钢的淬硬倾向比低碳钢稍大,所以在低温下(如冬季露天作业或在大刚性、大厚度结构上焊接时,为防止出现冷裂纹,需采取预热措施。
1图 2、 16Mn-正火 -x40016Mn 属于低碳钢,碳含量 <0.16%,正火后组织为 F+S。
在 400倍显微镜下, 索氏体基本上不可分辨。
16Mn 钢是目前我国应用最广的低合金钢。
广泛应用于各种板材、钢管。
图 3、 65Mn-等温淬火 -40065Mn ,锰提高淬透性,但 Mn 含量过大会导致过热现象。
特性:经热处理后的综合力学性能优于碳钢, 65Mn 钢板强度、硬度、弹性和淬透性均比 65号钢高。
常用金属材料的显微组织观察
一、实验目的
观察几种常用合金钢、铸铁和有色金属的显微组织;
了解这些金属材料的成分、组织和性能的特点。
二、仪器与材料
仪器: XJP-2A( 单目 ) 金相显微镜; XJP-3C( 双目 ) 金相显微镜;
材料: 10 种常用金属材料
三、实验原理及教学内容
1 合金钢
在合金钢中,由于合金元素对相图及相变过程的影响,其显微组织比碳钢复杂得多,组成相除了合金铁素体、合金奥氏体、合金渗碳体外,还可能出现金属间化合物,其组织形态随钢种的不同而呈现出不同的特征。
根据其用途可分为:合金结构钢、合金工具钢、特殊性能钢。
• 40Cr 调质钢(合金结构钢)
合金调质钢是指调质处理后的合金结构钢,调质处理后具有高强度与良好的塑性及韧性。
40表示含碳量0.4%,Cr是加入的合金元素,起着增加淬透性,使调质后的回火索氏体组织得到强化。
回火索氏体以前我们学过,是由等轴状F和粒状渗碳体构成。
40Cr调质处理(淬火后高温回火) W18Cr4V退火
• W18Cr4V 高速钢(合金工具钢)
高速钢是一种高合金工具钢,具有高硬度、高耐磨性和高热硬性,还具有一定的强度、韧性和塑性。
加入合金元素W提高热硬性;Cr可以提高钢的淬透性;加入合金元素V可显著提高钢的耐磨性和热硬性。
a. 铸态组织显微组织分为三个部分:晶界附近为骨骼状莱氏体共晶碳化物Fe4W2C及WC,严重地分割了基体,使钢受载时极易脆裂;晶粒外层为奥氏体分解产物—马氏体及残余奥氏体,因为它不易被浸蚀而呈亮色,常称为“白色组织”;晶粒的心部是δ共析体,为极细的共析组织,易受浸蚀而呈黑色,通常称为“黑色组织”。
b. 锻造和退火后的组织为了改善碳化物的不均匀性,生产上采用反复锻造的方法将共晶碳化物击碎使其分布均匀。
为了去除锻造内应力,清除不平衡组织,降低了硬度,改善切削加工性能,为淬火提供良好的原始组织,必须对高速钢进行退火处理。
经过860~880℃退火后,高速钢 W18Cr4V 的退火组织为较粗大的共晶碳化物颗粒及稍细的二次碳化物,分布在索氏体基体上。
c. 淬火及回火后的组织为保证高速钢的热硬性及高耐磨性,高速钢必须进行1280 ℃淬火及560 ℃ 2~3 次回火处理。
淬火后的组织由淬火马氏体、残余奥氏体及粒状碳化物组成。
由于淬火后的马氏体和残余奥氏体中合金元素含量较高,组织抗腐蚀能力很高,经4% 硝酸酒精溶液浸蚀后,马氏体和残余奥氏体呈白色,仅能显示原奥氏体的晶界和粒状合金碳化物。
为减少残余奥氏体量,消除应力,稳定组织,提高力学性能指标,淬火后W18Cr4V一般需在560℃进行三次回火,回火后的显微组织为暗黑色针状回火马氏体的基体上,分布着亮白色块状碳化物。
W18Cr4V1280℃淬火 W18Cr4V淬火+三次回火
• 1Cr18Ni9Ti 不锈钢(特殊性能钢)
在腐蚀介质中有抗腐蚀性能的钢是不锈钢。
1Cr18Ni9Ti 是奥氏体型不锈钢。
这类钢为了防锈,碳的质量分数较低,高含铬量是保证耐蚀性的主要因素,镍除了进一步提高耐蚀能力外,还扩大了奥氏体区域,从而在室温下能获得奥氏体组织。
这种钢的平衡组织是奥氏体与合金碳化物,碳化物对材料耐蚀性有很大的损伤。
为获得单一组织以提高耐蚀性,必须进行固溶处理:把钢加热到 1050~1150 ℃,使碳化物全部溶解,然后水淬,避免碳化物析出,在室温下得到单相奥氏体组织。
奥氏体型不锈钢在450~850℃的加热和焊接时,晶界处会析出Cr23C6化合物,使晶界处贫铬,产生晶间腐蚀。
加入Ti元素可形成稳定而弥散TiC 化合物,抑制铬碳化合物的产生和晶间腐蚀。
1Cr18Ni9Ti由于耐腐蚀性高,所以要观察其组织就要用腐蚀性极强的浸蚀剂:王水溶液,其显微组织是单一的奥氏体,晶粒内有明显的孪晶。
1Cr18Ni9Ti
2 .铸铁(Wc大于2.11的铁碳合金)
铸铁石墨化因铸铁成分及冷却速度不同得到不同组织:F+G、F+P+G、P+G。
根据石墨的形态、大小和分布情况不同,铸铁分为:灰口铸铁、可锻铸铁和球墨铸铁。
•灰口铸铁
石墨呈黑灰色条片状分布在铁素体——珠光体基体上。
由于存在大量的片状石墨降低了力学性能。
解决的办法是进行变质处理:在浇铸前加入变质剂,细化石墨片。
•可锻铸铁
石墨呈灰黑色团絮状分布在亮白色的铁素体基体上。
团絮状石墨大大减轻了石墨对基体金属的割裂作用,因而强度高,有一定的韧性、塑性。
•球墨铸铁石墨呈球状。
铁素体——珠光体球墨铸铁的显微组织中,暗黑色基体为珠光体,石墨周围的亮白色基体是铁素体,石墨呈牛眼状分布其上。
球状石墨对基体的割裂影响最小,因而具有很高的强度、良好的韧性、塑性和切削加工性,可焊性也较好。
灰口铸铁可锻铸铁
球墨铸铁
3.有色金属
•铝合金
应用最广泛的铸造铝合金常称为硅铝明,典型的牌号为 ZL102,含硅11%~13%,其成份在共晶点附近,具有优良的铸造性能。
但铸造后得到的组织是由粗大针状硅晶体和α固溶体(亮白色)所组成的共晶体以及初细小的初晶硅构成,这种粗大的针状硅晶体严重降低合金的塑性和韧性。
为了提高硅铝明的力学性能,通常需要对其进行变质处理,即在浇注前向820~850℃合金溶液中加入占合金重量2~3%的变质剂(常用2/3NaF+1/3NaCl)。
变质处理后的组织由初生α固溶体枝晶(白亮)及细的共晶体(黑色)组成,由于共晶中的硅呈细小的圆形颗粒,因而合金的强度和塑性显著提高。
硅铝明ZL102(未变质)硅铝明ZL102(变质后)
•铝合金
应用最广泛的铸造铝合金常称为硅铝明,典型的牌号为 ZL102,含硅11%~13%,其成份在共晶点附近,具有优良的铸造性能。
但铸造后得到的组织是由粗大针状硅晶体和α固溶体(亮白色)所组成的共晶体以及初细小的初晶硅构成,这种粗大的针状硅晶体严重降低合金的塑性和韧性。
为了提高硅铝明的力学性能,通常需要对其进行变质处理,即在浇注前向820~850℃合金溶液中加入占合金重量2~3%的变质剂(常用2/3NaF+1/3NaCl)。
变质处理后的组织由初生α固溶体枝晶(白亮)及细的共晶体(黑色)组成,由于共晶中的硅呈细小的圆形颗粒,因而合金的强度和塑性显著提高。
单相黄铜(H90)双相黄铜(H62)
•铜合金
常用的铜合金是黄铜(铜锌合金)和青铜(铜锡合金)。
由铜锌相图可知,wZn <39%的黄铜组织为单相α固溶体,这种黄铜称为α黄铜或单相黄铜。
常用的代号有H90、H70等,其中H70由于强度高,塑性特别好,又有弹壳黄铜之称。
单相黄铜H90经变形及退火后,其α晶粒呈多边形,并有大量退火孪晶。
WZn在39%~45%的黄铜具有(α和β')两相组织,称为双相黄铜。
双相黄铜H62地显微组织中,α相呈亮白色,β'相为黑色,是以CuZn化合物为基的有序固溶体,在456~468℃由β转变而成性能硬而脆。
•滑动轴承合金
作为滑动轴承合金,既需要有很好的耐磨性又要有足够的塑性和韧性以承受冲击和振动,所以要求轴承合金的组织应是软基体分布着硬质点(或是硬基体分布着软质点)。
锡基和铅基滑动轴承合金(巴氏合金)是工业上应用最多的轴承合金。
是以元素Sn为基础,加入少量锑和铜组成的合金(W Sb =11%,W Cu =6%),是一种软基体硬质点类型的轴承合金。
其显微组织中暗黑色的为软基体α相,是Sb在Sn中的固溶体;白色块状为硬质点β'相,是以SbSn为基的有序固溶体;由于β'相比α相体积质量小,结晶时容易上浮,造成体积质量偏析,所以加入铜的作用就是形成熔点较高的Cu Sn化合物,并在结晶时首先析出,在液体中形成树枝状骨架,防止随后结晶的β'相上浮,减小体积质量偏析。
组织中亮白色针状及星形就是Cu3Sn或Cu6Sn5化合物η相,也其硬质点作用。
锡基轴承合金
•问答题
根据观察,综合分析各类合金的显微组织特征及组织对性能的影响。