圆周角定理推论和圆内接多边形 优秀教学设计(教案)
- 格式:pdf
- 大小:294.54 KB
- 文档页数:4
《圆周角》教案(三)教学目标1.学习圆周角、圆内接多边形的概念,圆周角定理及推论.2.掌握圆周角与圆心角、直径的关系,能用分类讨论的思想证明圆周角定理.3.会用圆周角定理及推论进行证明和计算.教学重点圆周角的定理及应用.教学难点运用分类讨论的数学思想证明圆周角定理.教学过程(一)例题导入下图是圆柱形的海洋馆的横截面示意图,人们可以通过其中的圆弧形玻璃窗弧AB观看窗内的海洋动物,同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁分别站在其他靠墙的位置D 和E、他们的视角(∠ADB和∠AEB )和同学乙的视角相同吗?像∠ACB、∠ADB和∠AEB这样顶点在圆上,并且两边都和圆相交的角叫做圆周角.今天我们就圆周角进行探究(二)探求新知圆周角定理及其推论的推导1.圆周角定理的推导2.问题1:同弧(AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?问题2:同弧(AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?思考:(1)交流讨论:在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?请在下列图中画出来(2)①当圆心在圆周角的一边上时,如何证明问题1中发现的结论?请结合你上面画出的此种情况下的图形证明.②另外两种情况如何证明,可否转化成第一种情况呢? (3)解决问题【课堂小结】:圆周角定理的证明体现了分类讨论的思想.“在同圆或等圆中”这一限制性条件,不可或缺.若将“同弧或等弧”改为“同弦或等弦”,则结论是错误的.(填“正确”或“错误”)2.圆周角定理推论的推导思考:半圆(或直径)所对的圆周角是多少度?90°的圆周角所对的弦是什么?在半径不等的圆中,如果两个圆周角相等,它们所对的弧相等吗?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?圆内接四边形的两组对角分别有怎样的关系?【课堂小结】:圆内接四边形的对角互补的题设和结论分别是圆内接四边形的对角,互补.【针对训练】1.下列各图中,∠ABC 不是圆周角的是 .(填序号)2.(2012·益阳)如图,点A 、B 、C 在圆O 上,∠A =60°,则∠BOC = 度.·· · · OBACAAABBBCCC OOO ⑴⑵⑶⑷3.如图,OA⊥BC,∠AOB=50°,则∠ADC=°.4.(2012·淮安)如图,AB是⊙O的直径,点C在⊙O上,若∠A=40 º,则∠B的度数为()A.80 ºB.60 ºC.50 ºD.40 º5.已知如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE=.(三)圆周角定理及其推论的应用例1 如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.思考:解答过程中是如何应用∠ACB的平分线这一条件证得AD=BD的? 推理依据是什么?去掉“AD=BD”这一步行吗?计算时应用了勾股定理,问题中的直角三角形是如何产生的?依据是什么?【反思小结】半圆(或直径)所对的圆周角是直角这一推论为在圆中确定直角,构成垂直关系,创造了条件,有时在圆中没有直径时,还需构造出直径1.两个概念:圆周角,圆内接四边形.2.圆周角定理及其推论.3.圆内接四边形的性质.4.分类讨论的数学思想方法.。
人教版数学九年级上册《圆周角定理的推论和圆内接多边形》教学设计2一. 教材分析人教版数学九年级上册《圆周角定理的推论和圆内接多边形》一节,是在学生已经掌握了圆周角定理的基础上,进一步引导学生探究圆内接多边形的性质。
本节课的主要内容有圆周角定理的推论和圆内接多边形的性质。
教材通过实例和问题,引导学生探究和发现圆内接四边形的性质,进而推广到一般情况下的圆内接多边形。
教材内容由浅入深,由特殊到一般,符合学生的认知规律。
二. 学情分析学生在学习本节课之前,已经掌握了圆周角定理,对圆的相关知识有一定的了解。
但是,对于圆内接多边形的性质,他们可能是初次接触,需要通过实例和问题,去探究和发现。
另外,学生可能对于如何推理论证圆内接多边形的性质有一定的困难,这需要教师在教学中给予引导和帮助。
三. 教学目标1.知识与技能:使学生掌握圆周角定理的推论,了解圆内接多边形的性质,能运用这些性质解决一些简单的问题。
2.过程与方法:通过观察、操作、探究等活动,培养学生的观察能力、操作能力和推理能力。
3.情感态度与价值观:让学生在探究过程中,体验数学的探究乐趣,增强对数学的兴趣。
四. 教学重难点1.圆周角定理的推论。
2.圆内接多边形的性质。
3.如何推理论证圆内接多边形的性质。
五. 教学方法采用问题驱动法、探究发现法、小组合作法等。
教师通过提出问题,引导学生观察、操作、探究,从而发现圆内接多边形的性质。
同时,学生进行小组合作,互相交流、讨论,共同解决问题。
六. 教学准备1.准备一些圆内接多边形的图形,用于引导学生观察和操作。
2.准备一些与圆内接多边形性质相关的问题,用于引导学生探究和发现。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾圆周角定理。
然后,提出问题:“圆内接四边形有什么特殊的性质吗?”让学生思考和讨论。
2.呈现(10分钟)教师呈现一些圆内接四边形的图形,引导学生观察和操作。
《圆周角定理及推论》公开课教案一、教学目标1.知识与技能:o掌握圆周角定理及其推论的基本内容。
o学会应用圆周角定理解决相关问题。
2.过程与方法:o通过观察、归纳、推理等活动,培养学生的逻辑思维能力。
o引导学生通过合作学习和自主探究,提高解决问题的能力。
3.情感态度与价值观:o激发学生对数学的兴趣和热爱,培养其探究精神。
o通过小组合作,增强学生的团队合作精神和沟通能力。
二、教学重点和难点重点:圆周角定理的内容及其应用。
难点:圆周角定理的推论理解和应用。
三、教学过程1.导入新课(5分钟)o通过展示生活中与圆周角相关的实例,如齿轮转动、钟表指针的运动等,激发学生的兴趣。
o提问学生是否知道这些现象背后的数学原理,引出圆周角定理的学习。
2.知识讲解与探究(15分钟)o详细讲解圆周角定理的内容,并通过图示和实例帮助学生理解。
o引导学生通过观察和推理,自主探究圆周角定理的推论,并鼓励学生分享发现。
3.课堂练习与指导(10分钟)o给出几个典型的圆周角问题,让学生尝试运用圆周角定理及推论进行解答。
o教师巡视指导,及时纠正学生的错误,并给予适当启发。
4.小组讨论与分享(5分钟)o学生分组讨论圆周角定理在实际生活中的应用,并准备分享讨论成果。
o每组选择一名代表上台分享,其他组进行点评和补充。
5.总结提升(5分钟)o教师总结本课时的主要内容,强调圆周角定理及其推论的重要性。
o布置课后作业,鼓励学生进一步巩固所学知识,并尝试解决更复杂的问题。
四、教学方法和手段●采用启发式教学,通过提问和讨论引导学生主动思考。
●结合多媒体课件和实物模型,形象生动地展示圆周角定理及其推论。
●开展小组合作学习和分享活动,培养学生的团队精神和沟通能力。
五、课堂练习、作业与评价方式课堂练习:在课堂上完成几个典型问题,以检验学生对圆周角定理及推论的理解和应用能力。
作业:布置相关练习题和实际问题,要求学生运用所学知识进行解答。
评价方式:结合课堂表现、作业完成情况和小组讨论成果,对学生进行综合评价。
∠G= 。
图1
、能推导和理解圆周角定理的两个推论,并能利用这两个推论解决相关的计算和证明;
、知道圆内接多边形和多边形外接圆的概念,明确不是所有多边
题你能得出怎样的结论?
、请用圆周角定理说明半圆(或直径)所对的圆周角是直
的圆周角所对的弦是直
6cm,
的长。
如果一个多边形的所有顶点都在同一个圆上,那么,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。
如图,四边形ABCD的内接四边形;⊙O为四边形
ABCD的外接圆。
圆内接四边形ABCD与∠ C,∠ B
有什么关系?
圆内接四边形的对角互补。
ABCD内接于⊙O,则∠C=__ ,
ADC=_____;若∠B=800ADC=______ 。
AOC=1000。
A
100
A
O
五、拓展延伸(含作业布置、课堂小结)
1、小结:通过这节课的学习你的收获是什么?
2、布置作业:P89 7
同步练习册
板书设计24.1.4 圆周角定理推论和圆内接多边形
1、圆周角推论例题解析练习
2、圆内接多边形概念
3、圆内接四边形性质
教学反思成功之处:不足之处:改进措施:。