3-2 典型铁碳合金的平衡结晶过程
- 格式:ppt
- 大小:252.50 KB
- 文档页数:6
第二章碳钢C相图第3节Fe-Fe3第5讲典型铁碳合金结晶过程分析2典型铁碳合金的结晶过程分析-4共晶白口铸铁w c =4.3%铁碳合金的结晶过程CD EFK124.30%共晶白口铸铁w c =4.3%铁碳合金的结晶过程CD EFK124.30%1交点:液相开始发生共晶转变1~2之间:共晶奥氏体中会出现二次渗碳体2交点:γ发生共析转变→P (珠光体)共晶渗碳体不发生变化2 以下:组织低温莱氏体(L′d )L 4.31148∘C(γ2.11+Fe 3C)共晶转变生成莱氏体(Ld )奥氏体为共晶奥氏体,渗碳体为共晶渗碳体w c=4.3%的铁碳合金结晶过程示意图低温莱氏体金相照片(黑斑区为珠光体,白色为渗碳体)室温组织:(L′d )室温相:α+ Fe 3Cw c =4.3%的铁碳合金的结晶过程通过杠杆定律计算室温下各组织含量通过杠杆定律计算室温下各相含量自学内容w α=6.69−4.36.69−0.0008×100%≈?w Fe 3C =1−w α≈?%100='d L w典型铁碳合金的结晶过程分析-5亚共晶白口铸铁w c =3%铁碳合金的结晶过程CD EFK1233.0%亚共晶白口铸铁w c =3%铁碳合金的结晶过程CD EFK1233.0%3以下2交点:存在两相L +γ2~3:奥氏体中会出现二次渗碳体3交点:γ发生共析转变→P (珠光体)二次渗碳体+ Ld 不发生变化3 以下:组织低温莱氏体(L′d + Fe 3C II + P )L 4.31148∘C(γ2.11+Fe 3C)1交点:液相开始发生匀晶转变L →γ其中的室温组织:(L'd + P + Fe 3C Ⅱ)室温相:α+ Fe 3Cw c =3.0%的铁碳合金的结晶过程通过杠杆定律计算室温下各组织含量通过杠杆定律计算室温下各相含量自学内容w Fe 3C =1−w α≈?w α= 6.69−3.06.69−0.0008×100%≈?w L ′d=3.0−2.114.3−2.11×100%≈?w P = 4.3−3.04.3−2.11×6.69−2.116.69−0.77×100%≈?w Fe 3C II =1−w L ′d −w P ≈?结晶过程示意图亚共晶白口铸铁的金相照片亚共晶白口铸铁w c =3%铁碳合金3以下典型铁碳合金的结晶过程分析-6过共晶白口铸铁w c =5.3%铁碳合金的结晶过程CDEF K123典型铁碳合金的结晶过程分析-6过共晶白口铸铁w c =5.3%铁碳合金的结晶过程CDEF K1231~2:一次渗碳体形成的温度高,故其形貌为粗大的片状结构2交点:共晶转变3交点:γ发生共析转变3 以下:组织低温莱氏体(L′d + Fe 3C I )1交点:液相开始发生匀晶转变L →Fe 3C I过共晶白口铸铁w c=5.3%铁碳合金L'd+Fe3CⅠ过共晶白口铸铁的室温组织典型铁碳合金的结晶过程分析-7工业纯铁w c <0.01%铁碳合金的结晶过程A GH J NP Q1234567工业纯铁w c <0.01%铁碳合金的结晶过程A GH J NP Q12345671~2:L 减少δ增加1以上:液相1交点:匀晶转变L →δ2点:单相δ (0.01%)2~3:单相δ (0.01%)3点开始:δ →γ3~4:δ减少γ增加4~5:单相γ(0.01%)5点开始:γ→α5~6:γ减少α增加6点,6~7:单相α (0.01%)7点:α析出Fe 3C ⅡI工业纯铁w c<0.01%铁碳合金室温下的相:F+Fe3C 室温组织: F + Fe3CⅢ工业纯铁室温组织金相照片。
铁碳合金相图及结晶组织变化铁碳合金的组元和相一、基本概念铁碳合金:碳钢和铸铁的统称,都是以铁和碳为基本组元的合金碳钢:含碳量为0.0218%〜2.11%的铁碳合金铸铁:含碳量大于2.11%的铁碳合金铁碳合金相图:研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。
注:由于含碳量大于Fe3C的含碳量(6.69% )时,合金太脆,无实用价值,因此所讨论的铁碳合金相图实际上是F e-Fe3C二、组元1. 纯铁纯铁指的是室温下的a-Fe,强度、硬度低,塑性、韧性好。
2. 碳碳是非金属元素,自然界存在的游离的碳有金刚石和石墨,它们是同素异构体。
3. 碳在铁碳合金中的存在形式有三种:C与Fe形成金属化合物,即渗碳体;C以游离态的石墨存在于合金中。
C溶于Fe的不同晶格中形成固溶体;A. 铁素体:C溶于a-Fe中所形成的间隙固溶体,体心立方晶格,用符号“F或“a表示,铁素体是一种强度和硬度低,而塑性和韧性好的相,铁素体在室温下可稳定存在。
B. 奥氏体:C溶于Y-Fe中所形成的间隙固溶体,面心立方晶格,用符号“A”“表示,奥氏体强度低、塑性好,钢材的热加工都在奥氏体相区进行,奥氏体在高温下可稳定存在。
C. C与Fe形成金属化合物:即渗碳体Fe3C , Fe与C组成的金属化合物,Fe与C组成的金属化合物,含碳量为6.69 %。
以“Fe3C或“ Cm符号表示,渗碳体的熔点为1227 C,硬度很高(HB = 800)而脆,塑性几乎等于零。
渗碳体在钢和铸铁中,一般呈片状、网状或球状存在。
它的形状和分布对钢的性能影响很大,是铁碳合金的重要强化相。
碳在a-Fe中溶解度很低,所以常温下碳以渗碳体或石墨的形式存在。
铁碳合金相图的分析1. 铁碳合金相图由三个相图组成:包晶相图、共晶相图和共析相图;2. 相图中有五个单相区:液相L、高温铁素体3、铁素体a奥氏体Y渗碳体Fe3C ;3. 相图中有三条水平线:HJB水平线(1495 C):包晶线,发生包晶反应,反应产物为奥氏体。
一、共析钢的结晶过程图中Ⅰ表示共析钢(Wc=0.77%),合金在1点以上为液体(L),当缓冷至稍低于1点温度时,开始从液体中结晶出奥氏体(A),A的数量随温度的下降而增多。
温度降到2点时,液体全部结晶为奥氏体。
2~S点之间,合金是单一奥氏体相。
继续缓冷至S点时,奥氏体发生共析转变,转变成珠光体(P)。
727℃以下,P基本上不发生变化。
故室温下共析钢的组织为P。
共析钢的结晶过程如下图。
二、亚共析钢的结晶过程图3-6中合金Ⅱ表示亚共析钢。
合金在1点以上为液体。
缓冷至稍低于1点,开始从液体中结晶出奥氏体,冷却到2点结晶终了。
在2~3点区间,合金为单一的奥氏体组织,当冷却到与GS线相交的3点时,开始从奥氏体中析出时,就会将多余的碳原子转移到奥氏体中,引起未转变的奥氏体的含碳量增加。
沿着GS线变化。
当温度降至4点(727℃)时,剩余奥氏体含碳量增加到了Wc=0.77%,具备了共析转变的条件,转变为珠光体。
原铁素体不变保留了在基体中。
4点以下不再发生组织变化。
故亚共析钢的室温组织为铁素体+珠光体。
亚共析钢的结晶过程如图3-8所示。
三、过共析钢的结晶过程图3-6中合金Ⅲ表示过共析钢。
合金在1点以上为液体,当缓冷至稍低于1点后,开始从液体中结晶出奥氏体,直至2点结晶终了。
在2~3点之间是含碳时为合金Ⅲ奥氏组织。
缓冷至3点时,奥氏体中开始沿晶界析出渗碳体(即二次渗碳体)。
随着温度不断降低,由奥氏体中析出的二次渗碳愈来愈多,而奥氏体中的含碳量不断减少,并沿着ES线变化。
3~4点之间的组织为奥氏体+二次渗碳体。
降至4点(727℃)时,奥氏体的成分达到了共析成分,于是这部分奥氏体发生共析反应,转变为珠光体。
在4点以下,合金的组织不再发生变化。
故室温组织为珠光体+二次渗碳体。
过共析钢结晶过程如图3-9。
图3-6中合金Ⅲ表示过共析钢。
合金在1点以上为液体,当缓冷至稍低于1点后,开始从液体中结晶出奥氏体,直至2点结晶终了。
在2~3点之间是含碳时为合金Ⅲ奥氏组织。
三、典型铁碳合金的平衡结晶过程铁碳相图上的合金,按成分可分为三类:⑴工业纯铁(<0.0218% C),其显微组织为铁素体晶粒,工业上很少应用。
⑵碳钢(0.0218%~2.11%C),其特点是高温组织为单相A,易于变形,碳钢又分为亚共析钢(0.0218%~0.77%C)、共析钢(0.77%C)和过共析钢(0.77%~2.11%C)。
⑶白口铸铁(2.11%~6.69%C),其特点是铸造性能好,但硬而脆,白口铸铁又分为亚共晶白口铸铁(2.11%~4.3%C)、共晶白口铸铁(4.3%C)和过共晶白口铸铁(4.3—6.69%C)下面结合图3-26,分析典型铁碳合金的结晶过程及其组织变化。
图3-26 七种典型合金在铁碳合金相图中的位置㈠工业纯铁(图3-26中合金①)的结晶过程合金液体在1~2点之间通过匀晶反应转变为δ铁素体。
继续降温时,在2~3点之间,不发生组织转变。
温度降低到3点以后,开始从δ铁素体中析出奥氏体,在3~4点之间,随温度下降,奥氏体的数量不断增多,到达4点以后,δ铁素体全部转变为奥氏体。
在4~5点之间,不发生组织转变。
冷却到5点时,开始从奥氏体中析出铁素体,温度降到6点,奥氏体全部转变为铁素体。
在6-7点之间冷却,不发生组织转变。
温度降到7点,开始沿铁素体晶界析出三次渗碳体Fe 3C III 。
7点以下,随温度下降,Fe 3C III 量不断增加,室温下Fe 3C III 的最大量为:%31.0%1000008.069.60008.00218.03=⨯--=ⅢC Fe Q 。
图3-27为工业纯铁的冷却曲线及组织转变示意图。
工业纯铁的室温组织为α+Fe 3C III ,如图3-28所示,图中个别部位的双晶界内是Fe 3C III 。
图3-27 工业纯铁的冷却曲线及组织转变示意图图3-28 工业纯铁的显微组织 400×㈡共析钢(图3-26中合金②)的结晶过程共析钢的含碳量为0.77%,超过了包晶线上最大的含碳量0.53%,因此冷却时不发生包晶转变,其结晶过程及组织转变示于图3 - 29。
杠杆定理计算铁碳合金二元相图的计算3.3.1 工业纯铁1、以含碳0.01%的铁碳合金为例,其冷却曲线(如图3.2)和平衡结晶过程如下。
合金在1点以上为液相L 。
冷却至稍低于1点时,开始从L 中结晶出δ,至2点合金全部结晶为δ。
从3点起,δ逐渐转变为A ,至4点全部转变完了。
4-5点间A 冷却不变。
自5点始,从A 中析出F 。
F 在A 晶界处生核并长大,至6点时A 全部转变为F 。
在6-7点间F 冷却不变。
在7-8点间,从F 晶界析出II I C Fe 3。
因此合金的室温平衡组织为F +II I C Fe 3。
F 呈白色块状;II I C Fe 3量极少,呈小白片状分布于F 晶界处。
若忽略II I C Fe 3,则组织全为F 。
图3.2工业纯铁结晶过程示意图3.3.2 共析钢2、含碳0.77%,其冷却曲线和平衡结晶过程如图3.3所示。
合金冷却时,于1点起从L 中结晶出A ,至2点全部结晶完了。
在2-3点间A 冷却不变。
至3点时,A 发生共析反应生成P 。
从3点继续冷却至4点,P 皆不发生转变。
因此共析钢的室温平衡组织全部为P ,P 呈层片状。
共析钢的室温组织组成物也全部是P ,而组成相为F 和C Fe 3,它们的相对质量为:碳含量2.11~6.69%%%%881006.690.776.69=⨯-=F ;%%%3121=-=F C Fe图3.3 共析钢结晶过程示意图3、以含碳0.4%的铁碳含金为例。
合金冷却时,从1点起自L 中结晶出δ,至2点时,L 成分变为0.53%C ,δ变为0.09%C ,发生包晶反应生成17.0A ,反应结束后尚有多余的L 。
2点以下,自L 中不断结晶出A ,至3点合金全部转变为A 。
在3-4点间A 冷却不变。
从4点起,冷却时由A 中析出F ,F 在A 晶界处优先生核并长大,而A 和F 的成分分别沿GS 和GP 线变化。
至5点时,A 的成分变为0.77%C ,F 的成分变为0.0218%C 。
铁碳合金的结晶一.铁碳相图☆提示:重点内容铁碳相图是研究钢和铸铁的基础,对于钢铁材料的应用以及热加工和热处理工艺的制订也具有重要的指导意义。
铁和碳可以形成一系列化合物,如Fe3C、Fe2C、FeC等, 有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为 Fe-Fe3C相图, 此时相图的组元为Fe 和Fe3C。
Fe-Fe3C相图Fe-Fe3C相图中各点的温度、碳含量及含义1. 铁碳合金的组元(1)Fe 铁是过渡族元素, 熔点或凝固点为1538℃, 相对密度是7.87g/cm3。
纯铁从液态结晶为固态后, 继续冷却到1394℃及912℃时, 先后发生两次同素异构转变。
(见2-1-2)纯铁是如何结晶的工业纯铁的机械性能特点是强度低、硬度低、塑性好。
主要机械性能如下:抗拉强度极限σb180MPa~230MPa抗拉屈服极限σ0.2100MPa~170MPa延伸率δ 30%~50%断面收缩率ψ 70%~80%冲击韧性 a k 1.6×106J/m2~2×106 J/m2硬度 50HB~80HB(2) Fe3C Fe3C是Fe与C的一种具有复杂结构的间隙化合物, 通常称为渗碳体, 用Cm表示。
渗碳体的机械性能特点是硬而脆, 大致性能如下:2. 铁碳合金中的相Fe-Fe3C相图中存在五种相。
①液相L 液相L是铁与碳的液溶体。
②δ相δ相又称高温铁素体, 是碳在δ-Fe中的间隙固溶体, 呈体心立方晶格, 在1394℃以上存在, 在1495℃时溶碳量最大, 为0.09%。
③α相α相也称铁素体, 用符号F或α表示, 是碳在α-Fe 中的间隙固溶体, 呈体心立方晶格。
铁素体中碳的固溶度极小, 室温时约为0.0008%, 600℃时为 0.0057%, 在727℃时溶碳量最大, 为0.0218%。
铁素体的性能特点是强度低、硬度低、塑性好。
其机械性能与工业纯铁大致相同。
④γ相相常称奥氏体, 用符号A或γ表示, 是碳在γ-Fe中的间隙固溶体, 呈面心立方晶格。