铁碳合金的平衡结晶过程及其成分
- 格式:ppt
- 大小:1.95 MB
- 文档页数:36
实验一平衡态铁碳合金成分、组织、性能之间关系的分析1.1典型铁碳合金的平衡组织观察与分析一、实验目的1通过实验能识别铁碳合金在平衡状态下的显微组织。
2掌握碳含量对铁碳合金平衡组织形貌及相组成比例的影响。
二、实验原理简介利用金相显微镜观察金属的内部组织和缺陷的方法称为显微分析或金相分析。
合金在极其缓慢的冷却条件如退火状态下所得到的组织称为平衡组织。
铁碳合金平衡组织的观察与分析要依据Fe-Fe3C相图来进行。
1室温下铁碳合金基本组织特征1铁素体F 铁素体是碳溶于-Fe中形成的间隙固溶体。
经35的硝酸酒精溶液浸蚀后在显微镜下呈现白亮色多边形晶粒。
在亚共析钢中铁素体呈块状分布当合金的含碳量接近于共析成分时铁素体则呈断续的网状分布于珠光体晶界上。
2渗碳体Fe3C 渗碳体是铁与碳形成的一种化合物。
经35的硝酸酒精溶液浸蚀后在显微镜下为白亮色若用苦味酸钠溶液浸蚀则渗碳体呈暗黑色而铁素体仍为白亮色由此可以区别铁素体和渗碳体。
由于铁碳合金的成分和形成条件不同渗碳体可以呈现不同的形状一次渗碳体是由液相中直接结晶出来呈板条状游离分布二次渗碳体是从奥氏体中析出的呈网状分布在珠光体晶界上三次渗碳体是从铁素体中析出呈窄条状分布在铁素体晶界上。
3珠光体P 珠光体是铁素体和渗碳体的两相复合物。
在平衡状态下它是由铁素体和渗碳体相间排列的层片状组织。
经35的硝酸酒精溶液浸蚀后铁素体和渗碳体皆为白亮色而两相交界呈暗黑色线条。
在不同的放大倍数下观察时组织特征有所区别。
如在高倍600倍以上下观察时珠光体中平行相间的宽条铁素体和细条渗碳体都呈白亮色而两相交界为暗黑色在中倍400倍左右下观察时白亮色的渗碳体被暗黑色交界所“吞食”而呈现为细黑条这时看到的珠光体是宽白条铁素体和暗黑细条渗碳体的相间复合物在低倍200倍以下下观察时无论是宽白条的铁素体还是暗黑细条的渗碳体都很难分辨这时珠光体呈现暗黑色块状组织。
4变态莱氏体Ld 变态莱氏体是珠光体和渗碳体组成的复合物。
第六章铁碳合金状态相图分析及组织观察一、概述铁碳合金状态图是研究铁碳合金的组织与性能关系的重要工具。
了解和掌握铁碳合金状态图对于制定钢铁材料的各种工艺有很重要的指导意义。
下面分别讨论纯Fe;共析钢;亚共析钢;过共析钢;共晶白口铁;亚共晶白口铁;过共晶白口铁等几个典型合金的结晶过程,以深入了解铁碳合金相合肥组织的形成规律及其组织特征。
1、含0.01%C合金的结晶过程及组织特征含碳0.01%的合金为工业纯铁,其结晶过程如下(参照图1中的合金①)。
液态金属在1~2点温度区间按匀晶转变结晶出单相δ固溶体。
δ固溶体冷却导3点时,开始发生固溶体的同素异构转变Aδ→。
由于δ相晶界上的能量转高,因此,奥氏体的晶核优先在δ相的晶界上形成,然后长大。
这一转变在4点结束,合金全部转变为单相奥氏体。
奥氏体冷却到5~6之间又发生同素异构转变γα→,转变为铁素体。
铁素体也同样是在奥氏体晶界上优先形核,然后长大。
铁素体冷到7点时,碳在铁素体中的溶解度达到饱和。
冷到7点以下,将从铁素体中析出过剩的渗碳体。
这种渗碳体一般沿铁素体晶界析出,称为三次渗碳体。
因此,工业纯铁室温下的组织为铁素体和三次渗碳体所组成。
铁碳平衡状态图2、共析合金的结晶过程及组织特征当温度在1点以上时,合金全部为液态。
当合金降温至1点,并稍微过冷,开始从液体中析出奥氏体。
继续降温从液体汇总析出奥氏体,液相的浓度沿BC 线变化,奥氏体的浓度沿JE 线变化。
两相相对重量的比值可由杠杆定律求出: QLaOQA Ob =奥氏体初次晶在液态金属中自由长大,一般呈树枝状。
降温至2点结晶终了,变成了单相的奥氏体组织。
在2-3点温度区间,为单相奥氏体,相的浓度等于合金的成分,没有成分和组织的变化。
在3点共析成分的奥氏体发生共析转变,形成的转变产物为珠光体。
平衡条件下所得的珠光体组织是一层铁素体和一层渗碳体交替排列的机械混合物。
用3%硝酸酒精溶液浸蚀后,窄的条纹为渗碳体,宽的白色条纹危房铁素体,这是因为浸蚀时,铁素体被均匀浸蚀,而渗碳体叫铁素体硬,不易被浸蚀,故凸出于铁素体之外。
第二章铁碳合金§2-1 铁碳合金的基本组织一、【纯铁的同素异构转变】:固态金属随温度变化而发生晶格改变的现象,称为同素异构转变。
纯铁即具有同素异构转变的特征,如图所示:同素异构转变是纯铁的一个重要特性,以铁为基的铁碳合金之所以能通过热处理显著改变其性能,就是由于铁具有同素异构转变的特性。
金属的同素异构转变过程与液态金属的结晶过程相似,实质上它是一个重要结晶过程。
因此,它同样遵循着结晶的一般规律:有一定的转变温度;转变时需要过冷;有潜热产生;转变过程也括晶核的形成和晶核的长大两阶段。
二、铁碳合金的基本组织【铁碳合金的(基本组织)相】:铁素体、奥氏体、渗碳体均是铁碳合金的基本相。
1、【铁素体Ferrite(F)】:碳溶于α铁中的间隙固溶体称为铁素体,用符号F或α表示。
它仍保持α铁的体心立方晶格;在727℃时的最大溶碳量为Wc=0.0218%,在600℃是溶碳量约为Wc=0.0057%,室温下几乎为零Wc=0.0008%。
其室温性能几乎和纯铁相同,铁素体的强度、硬度不高(σb=180-280MPa,50-80HBS),但具有良好的塑性和韧性(δ=30%-50%,Akv=128-160J)。
所以以铁素体为基体的铁碳合金适于塑性成形加工。
2、【奥氏体Austenite(A)】:碳溶于γ铁中的间隙固溶体称为奥氏体,用符号A或γ表示。
它仍保持γ铁的面心立方晶格。
在727℃时的溶碳量为Wc=0.77%,到1148℃是时达到最大Wc=2.11%。
奥氏体的力学性能与其溶碳量及晶粒大小有关,一般奥氏体的强度、硬度为(σb 约为400MPa,160-200HBS),但具有良好的塑性和韧性(δ=40%-50%),无磁性。
因为奥氏体的硬度较低而塑性较高,易于锻压成型。
3、【渗碳体Cementite】渗碳体具有复杂晶格的间隙化合物,分子式为Fe3C,其Wc=6.69%,是钢和铸铁中常用的固相。
熔点约为1227℃,渗碳全硬度很高(950-1050HV),而塑性与韧性几乎为零,脆性很大。
铁碳合金相图及结晶组织变化铁碳合金的组元和相一、基本概念铁碳合金:碳钢和铸铁的统称,都是以铁和碳为基本组元的合金碳钢:含碳量为0.0218%〜2.11%的铁碳合金铸铁:含碳量大于2.11%的铁碳合金铁碳合金相图:研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。
注:由于含碳量大于Fe3C的含碳量(6.69% )时,合金太脆,无实用价值,因此所讨论的铁碳合金相图实际上是F e-Fe3C二、组元1. 纯铁纯铁指的是室温下的a-Fe,强度、硬度低,塑性、韧性好。
2. 碳碳是非金属元素,自然界存在的游离的碳有金刚石和石墨,它们是同素异构体。
3. 碳在铁碳合金中的存在形式有三种:C与Fe形成金属化合物,即渗碳体;C以游离态的石墨存在于合金中。
C溶于Fe的不同晶格中形成固溶体;A. 铁素体:C溶于a-Fe中所形成的间隙固溶体,体心立方晶格,用符号“F或“a表示,铁素体是一种强度和硬度低,而塑性和韧性好的相,铁素体在室温下可稳定存在。
B. 奥氏体:C溶于Y-Fe中所形成的间隙固溶体,面心立方晶格,用符号“A”“表示,奥氏体强度低、塑性好,钢材的热加工都在奥氏体相区进行,奥氏体在高温下可稳定存在。
C. C与Fe形成金属化合物:即渗碳体Fe3C , Fe与C组成的金属化合物,Fe与C组成的金属化合物,含碳量为6.69 %。
以“Fe3C或“ Cm符号表示,渗碳体的熔点为1227 C,硬度很高(HB = 800)而脆,塑性几乎等于零。
渗碳体在钢和铸铁中,一般呈片状、网状或球状存在。
它的形状和分布对钢的性能影响很大,是铁碳合金的重要强化相。
碳在a-Fe中溶解度很低,所以常温下碳以渗碳体或石墨的形式存在。
铁碳合金相图的分析1. 铁碳合金相图由三个相图组成:包晶相图、共晶相图和共析相图;2. 相图中有五个单相区:液相L、高温铁素体3、铁素体a奥氏体Y渗碳体Fe3C ;3. 相图中有三条水平线:HJB水平线(1495 C):包晶线,发生包晶反应,反应产物为奥氏体。
一、共析钢的结晶过程图中Ⅰ表示共析钢(Wc=0.77%),合金在1点以上为液体(L),当缓冷至稍低于1点温度时,开始从液体中结晶出奥氏体(A),A的数量随温度的下降而增多。
温度降到2点时,液体全部结晶为奥氏体。
2~S点之间,合金是单一奥氏体相。
继续缓冷至S点时,奥氏体发生共析转变,转变成珠光体(P)。
727℃以下,P基本上不发生变化。
故室温下共析钢的组织为P。
共析钢的结晶过程如下图。
二、亚共析钢的结晶过程图3-6中合金Ⅱ表示亚共析钢。
合金在1点以上为液体。
缓冷至稍低于1点,开始从液体中结晶出奥氏体,冷却到2点结晶终了。
在2~3点区间,合金为单一的奥氏体组织,当冷却到与GS线相交的3点时,开始从奥氏体中析出时,就会将多余的碳原子转移到奥氏体中,引起未转变的奥氏体的含碳量增加。
沿着GS线变化。
当温度降至4点(727℃)时,剩余奥氏体含碳量增加到了Wc=0.77%,具备了共析转变的条件,转变为珠光体。
原铁素体不变保留了在基体中。
4点以下不再发生组织变化。
故亚共析钢的室温组织为铁素体+珠光体。
亚共析钢的结晶过程如图3-8所示。
三、过共析钢的结晶过程图3-6中合金Ⅲ表示过共析钢。
合金在1点以上为液体,当缓冷至稍低于1点后,开始从液体中结晶出奥氏体,直至2点结晶终了。
在2~3点之间是含碳时为合金Ⅲ奥氏组织。
缓冷至3点时,奥氏体中开始沿晶界析出渗碳体(即二次渗碳体)。
随着温度不断降低,由奥氏体中析出的二次渗碳愈来愈多,而奥氏体中的含碳量不断减少,并沿着ES线变化。
3~4点之间的组织为奥氏体+二次渗碳体。
降至4点(727℃)时,奥氏体的成分达到了共析成分,于是这部分奥氏体发生共析反应,转变为珠光体。
在4点以下,合金的组织不再发生变化。
故室温组织为珠光体+二次渗碳体。
过共析钢结晶过程如图3-9。
图3-6中合金Ⅲ表示过共析钢。
合金在1点以上为液体,当缓冷至稍低于1点后,开始从液体中结晶出奥氏体,直至2点结晶终了。
在2~3点之间是含碳时为合金Ⅲ奥氏组织。
三、典型铁碳合金的平衡结晶过程铁碳相图上的合金,按成分可分为三类:⑴工业纯铁(<0.0218% C),其显微组织为铁素体晶粒,工业上很少应用。
⑵碳钢(0.0218%~2.11%C),其特点是高温组织为单相A,易于变形,碳钢又分为亚共析钢(0.0218%~0.77%C)、共析钢(0.77%C)和过共析钢(0.77%~2.11%C)。
⑶白口铸铁(2.11%~6.69%C),其特点是铸造性能好,但硬而脆,白口铸铁又分为亚共晶白口铸铁(2.11%~4.3%C)、共晶白口铸铁(4.3%C)和过共晶白口铸铁(4.3—6.69%C)下面结合图3-26,分析典型铁碳合金的结晶过程及其组织变化。
图3-26 七种典型合金在铁碳合金相图中的位置㈠工业纯铁(图3-26中合金①)的结晶过程合金液体在1~2点之间通过匀晶反应转变为δ铁素体。
继续降温时,在2~3点之间,不发生组织转变。
温度降低到3点以后,开始从δ铁素体中析出奥氏体,在3~4点之间,随温度下降,奥氏体的数量不断增多,到达4点以后,δ铁素体全部转变为奥氏体。
在4~5点之间,不发生组织转变。
冷却到5点时,开始从奥氏体中析出铁素体,温度降到6点,奥氏体全部转变为铁素体。
在6-7点之间冷却,不发生组织转变。
温度降到7点,开始沿铁素体晶界析出三次渗碳体Fe 3C III 。
7点以下,随温度下降,Fe 3C III 量不断增加,室温下Fe 3C III 的最大量为:%31.0%1000008.069.60008.00218.03=⨯--=ⅢC Fe Q 。
图3-27为工业纯铁的冷却曲线及组织转变示意图。
工业纯铁的室温组织为α+Fe 3C III ,如图3-28所示,图中个别部位的双晶界内是Fe 3C III 。
图3-27 工业纯铁的冷却曲线及组织转变示意图图3-28 工业纯铁的显微组织 400×㈡共析钢(图3-26中合金②)的结晶过程共析钢的含碳量为0.77%,超过了包晶线上最大的含碳量0.53%,因此冷却时不发生包晶转变,其结晶过程及组织转变示于图3 - 29。