典型铁碳合金的结晶过程
- 格式:doc
- 大小:28.00 KB
- 文档页数:3
铁碳合金钢铁是现代工业中应用最广泛的金属材料。
其基本组元是铁和碳,故统称为铁碳合金。
由于碳的质量分数大于6.69%时,铁碳合金的脆性很大,已无实用价值。
所以,实际生产中应用的铁碳合金其碳的质量分数均在6.69%以下。
第一节铁碳合金的基本组织铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体。
1.铁素体碳溶入α-Fe中形成的间隙固溶体称为铁素体,用符号F表示。
铁素体具有体心立方晶格,这种晶格的间隙分布较分散,所以间隙尺寸很小,溶碳能力较差,在727℃时碳的溶解度最大为0.0218%,室温时几乎为零。
铁素体的塑性、韧性很好(δ=30~50%、a KU=160~200J /cm2),但强度、硬度较低(σb=180~280MPa、σs=100~170MPa、硬度为50~80HBS)。
图4.1 铁素体的显微组织(200×)2.奥氏体碳溶入γ-Fe中形成的间隙固溶体称为奥氏体,用符号A表示。
奥氏体具有面心立方晶格,其致密度较大,晶格间隙的总体积虽较铁素体小,但其分布相对集中,单个间隙的体积较大,所以γ-Fe的溶碳能力比α-Fe大,727℃时溶解度为0.77%,随着温度的升高,溶碳量增多,1148℃时其溶解度最大为2.11%。
奥氏体常存在于727℃以上,是铁碳合金中重要的高温相,强度和硬度不高,但塑性和韧性很好(σb≈400 MPa、δ≈40~50%、硬度为160~200HBS),易锻压成形。
图4.2 奥氏体的显微组织示意图3.渗碳体渗碳体是铁和碳相互作用而形成的一种具有复杂晶体结构的金属化合物,常用化学分子式Fe3C表示。
渗碳体中碳的质量分数为6.69%,熔点为1227℃,硬度很高(800HBW),塑性和韧性极低(δ≈0、a KU≈0),脆性大。
渗碳体是钢中的主要强化相,其数量、形状、大小及分布状况对钢的性能影响很大。
4.珠光体珠光体是由铁素体和渗碳体组成的多相组织,用符号P表示。
珠光体中碳的质量分数平均为0.77%,由于珠光体组织是由软的铁素体和硬的渗碳体组成,因此,它的性能介于铁素体和渗碳体之间,即具有较高的强度(σb=770MPa)和塑性(δ=20~25%),硬度适中(180HBS)。
§3-2铁碳合金的基本组织和性能钢和铁是工业上应用最广泛的金属材料,它们都是铁碳合金。
不同成分的钢和铸铁的组织都不相同,因此,它们的性能和应用也不一样。
铁碳合金中碳原子和铁原子可以有几种不同的结合方式:一种是碳溶于铁中形成固溶体;另一种是碳和铁化合形成化合物;此外,还可以形成由固溶体和化合物组成的混合物。
一、铁素体(F)它是碳溶解于α-Fe中的间隙固溶体称为铁素体(简称α固溶体)。
通常用符号F表示。
晶体结构呈体心立方晶格,碳在α铁中的溶解度极小,随温度的升高略有增加,在室温时的溶解度仅有0.008%,在727℃时最大溶解度为0.0218%。
铁素体的性能几乎与纯铁相同,它的强度和硬度较低,σb=250MPa,HBS=80,塑性和韧性则很高,δ= 50%。
二、奥氏体(A)碳溶解于γ-Fe中的间隙固溶体称为奥氏体(简称γ固溶体),通常用符号A表示。
晶体结构呈面心立方晶格。
由于γ铁晶格中间隙较大,因此在727℃时能溶解0.77%碳,在1148℃时的最大溶解度达到2.11%,奥氏体存在于727℃以上的高温区间,具有一定的强度和硬度,以及很好的塑性,是绝大多数钢在高温进行锻造或轧制时所要求的组织。
三、渗碳体(Fe3C)它是铁与碳形成的金属化合物Fe3C,含碳量为6.69%,其晶胞是八面体,晶格构造十分复杂。
渗碳体的性能很硬很脆,HBW≈800,δ≈0。
渗碳体在钢中主要起强化作用,随着钢中含碳量的增加,渗碳体的数量增多,钢的强度和硬度提高,而塑性下降。
四、珠光体(P)珠光体是由铁素体和渗碳体组成的机械混合物,用符号P表示,它是由硬的渗碳体片和软的铁素体片层片相间,交错排列而成的组织。
所以其性能介于它们二者之间,强度较高,σb=750MPa ,HBS=180,同时保持着良好的塑性和韧性δ=(20~25)%。
五、莱氏体(L d)奥氏体与渗碳体的机械混合物称为莱氏体,用符号Ld表示。
它是C=4.3%的铁碳合金液体在1148℃发生共晶转变的产物。
一、共析钢的结晶过程
图中Ⅰ表示共析钢(Wc=0.77%),合金在1点以上为液体(L),当缓冷至稍低于1点温度时,开始从液体中结晶出奥氏体(A),A的数量随温度的下降而增多。
温度降到2点时,液体全部结晶为奥氏体。
2~S点之间,合金是单一奥氏体相。
继续缓冷至S点时,奥氏体发生共析转变,转变成珠光体(P)。
727℃以下,P基本上不发生变化。
故室温下共析钢的组织为P。
共析钢的结晶过程如下图。
二、亚共析钢的结晶过程
图3-6中合金Ⅱ表示亚共析钢。
合金在1点以上为液体。
缓冷至稍低于1点,开始从液体中结晶出奥氏体,冷却到2点结晶终了。
在2~3点区间,合金为单一的奥氏体组织,当冷却到与GS线相交的3点时,开始从奥氏体中析出时,就会将多余的碳原子转移到奥氏体中,引起未转变的奥氏体的含碳量增加。
沿着GS线变化。
当温度降至4点(727℃)时,剩余奥氏体含碳量增加到了Wc=0.77%,具备了共析转变的条件,转变为珠光体。
原铁素体不变保留了在基体中。
4点以下不再发生组织变化。
故亚共析钢的室温组织为铁素体+珠光体。
亚共析钢的结晶过程如图3-8所示。
三、过共析钢的结晶过程
图3-6中合金Ⅲ表示过共析钢。
合金在1点以上为液体,当缓冷至稍低于1点后,开始从液体中结晶出奥氏体,直至2点结晶终了。
在2~3点之间是含碳时为合金Ⅲ奥氏组织。
缓冷至3点时,奥氏体中开始沿晶界析出渗碳体(即二次渗碳体)。
随着温度不断降低,由奥氏体中析出的二次渗碳愈来愈多,而奥氏体中的含碳量不断减少,并沿着ES线变化。
3~4点之间的组织为奥氏体+二次渗碳体。
降至4点(727℃)时,奥氏体的成分达到了共析成分,于是这部分奥氏体发生共析反应,转变为珠光体。
在4点以下,合金的组织不再发生变化。
故室温组织为珠光体+二次渗碳体。
过共析钢结晶过程如图3-9。
图3-6中合金Ⅲ表示过共析钢。
合金在1点以上为液体,当缓冷至稍低于1点后,开始从液体中结晶出奥氏体,直至2点结晶终了。
在2~3点之间是含碳时为合金Ⅲ奥氏组织。
缓冷至3点时,奥氏体中开始沿晶界析出渗碳体(即二次渗碳体)。
随着温度不断降低,由奥氏体中析出的二次渗碳愈来愈多,而奥氏体中的含碳量不断减少,并沿着ES线变化。
3~4点之间的组织为奥氏体+二次渗碳体。
降至4点(727℃)时,奥氏体的成分达到了共析成分,于是这部分奥氏体发生共析反应,转变为珠光体。
在4点以下,合金的组织不再发生变化。
故室温组织为珠光体+二次渗碳体。
过共析钢结晶过程如图3-9。
四、共晶白口铁的结晶过程
图3-6中合金Ⅳ表示共晶白口铁(Wc=4.3%)。
合金在C 点温度以上为液体,当降至C 点时,液态合金将发生共晶转变,结晶出奥氏体与渗碳体的机械混合物,即高温莱氏体。
转变是在恒温下进行,其中奥氏体的成分是E点的成分。
温度继续下降时,莱氏体中的奥代体将不断析出二次渗碳体,剩余奥氏体的碳浓度不屡减少,并沿着ES线变化。
1~2点之间的组织为高温莱氏体,是由奥氏体,二次渗碳体和共晶渗碳体组成(A+Fe 3 C Ⅱ+Fe 3 C共晶)。
当温度降至2点(727℃)时,莱氏体中的奥氏体的含碳量降到了Wc=0.77%,发生共析转变,生成珠光体,即高温莱氏体(Ld)转变为低温莱氏体(L ' d),其组织由珠光体、二次渗碳体和共晶渗碳体组成(P+ Fe 3 C Ⅱ+Fe 3 C共晶)。
共晶白口铁的显微组织如图3-4所示,共晶白口铁的结晶过程如图3-10所示。
五、亚共晶白口铁的结晶过程
图3-6中合金Ⅴ表示亚共晶白口铁。
合金在1点温度以上为液体,缓冷至稍低于1点温度,开始从液体中结晶出奥氏体。
1~2点温度之间组织为液体和奥氏体。
继续缓冷,结晶出的奥氏体量不断增多,而液体量不断送还减少,奥氏体的含碳量不断沿AE骊变化,液体的硕深度沿AC骊变化。
温度缓冷至2点(1148℃)时,奥氏体的含碳量为E点的成分,液体的碳浓度为C点的浓度,于是这部分液体发生共晶转变。
在2~3点温度区间,随着温度的不断下降,奥氏体的含碳量沿ES线变化,并不断析出二次渗碳体。
因此2~3点温度区间内的组织为奥代体、二次渗碳体和高温莱氏体(A+Fe 3 C Ⅱ+Ld)。
缓冷至3点(7 27℃)时,Wc=0.77%的奥氏体发生析转变,转变为珠光体。
最后室温组织为珠光体、二次渗碳体和低温莱氏体(P+Fe 3 C Ⅱ+L ' d)。
亚共晶白口铁的结晶过程如图3-11所示。
六、过共晶白口铁的结晶过程
图3-6中合金Ⅵ表示过共晶白口铁。
合金在1点温度以上为液体。
当温度缓冷至稍低于1点时,从液体中开始结晶出一次渗碳体(Fe 3 C ⅡⅠ)。
温度不断下降,结晶出的
一次渗碳体不断增多,剩余液体量相对减少。
同时,液体的碳浓度沿着CD骊不断变化,至2点时,乘余液体Wc=4.3%,于是发生共晶转变,形成高温莱氏体。
此时的组织为一次渗碳体+高温莱氏体。
随后继续冷却时的转变情况与共晶白口铁相同,最终组织为一次渗碳体+低温莱氏体。
过共晶白口铁的结晶过程如图3-12所示。
白口铁因有共晶转变,所以组织中出现了莱氏体基体,莱氏体的存在,使得白口铁硬度很高,脆性很大,所以实际生产中很少直接使用,一般用用炼钢原料。