北京市一零一中学2013年高中化学竞赛 第8讲 电解质溶液和电离平衡
- 格式:doc
- 大小:852.50 KB
- 文档页数:13
第8讲 电解质溶液和电离平衡 【竞赛要求】 酸碱质子理论。
弱酸、弱碱的电离常数。
缓冲溶液。
利用酸碱平衡常数的计算。
溶度积原理及有关计算。
离子方程式的正确书写。
一、酸碱质子理论(Bronsted 理论) 酸使石蕊变红,有酸味; 碱使石蕊变蓝,有涩味。
当酸碱相混合时,性质消失。
Arrhenius)的电离学说,使人们对酸碱的认识发生了一个飞跃。
HA=H+ + A- 电离出的正离子全部是 H+ ;MOH=M+ + OH- 电离出的负离子全部是OH-。
进一步从平衡角度找到了比较酸碱强弱的标准,即、。
阿仑尼乌斯理论在水溶液中是成功的但其在非水体系中的适用性,却受到了挑战。
:,无法用的理论去讨论,因为根本找不到符合定义的酸和碱。
理论Bronsted)和英国化学家劳里(Lowry)于1923年分别提出了酸碱质子理论1、酸碱的定义 ,HSO,H2PO等都是酸,因为它们能给出质子;CN-,NH3,HSO,SO都是碱,因为它们都能接受质子。
为区别于阿仑尼乌斯酸碱,也可专称质子理论的酸碱为布仑斯惕酸碱。
由如上的例子可见,质子酸碱理论中的酸碱不限于电中性的分子,也可以是带电的阴阳离子。
若某物质既能给出质子,又能接受质子,就既是酸又是碱,可称为酸碱两性物质,如HCO等,通常称为酸式酸根离子。
2、酸碱的共轭关系 碱 + 质子,此式中的酸碱称为共轭酸碱对。
例如NH3是NH的共轭碱,反之,NH是NH3的共轭酸。
又例如,对于酸碱两性物质,HCO的共轭酸是H2CO3,HCO的共轭碱是CO。
换言之,H2CO3和HCO是一对共轭酸碱,HCO和CO是另一对共轭酸碱。
3、酸和碱的反应 碱1 + 酸2 例如: HCl + NH3 Cl- + NH H2O + NH3 OH- + NH HAc + H2O Ac-+ H3O+ H2S + H2O HS-+ H3O+ H2O + S 2- OH- + HS- H2O + HS- OH- + H2S 这就是说,单独一对共轭酸碱本身是不能发生酸碱反应的,因而我们也可以把通式:酸 碱 + H+ 称为酸碱半反应,酸碱质子反应是两对共轭酸碱对交换质子的反应;此外,上面一些例子也告诉我们,酸碱质子反应的产物不必定是盐和水,在酸碱质子理论看来,阿仑尼乌斯酸碱反应(中和反应、强酸置换弱酸、强碱置换弱碱)、阿仑尼乌斯酸碱的电离、阿仑尼乌斯酸碱理论的“盐的水解”以及没有水参与的气态氯化氢和气态氨反应等等,都是酸碱反应。
专题八电解质溶液和电离平衡学号姓名得分1、根据酸碱的质子理论,“凡是能给出质子[H]的分子或离子都是酸;凡是能结合质子的分子或离子都是碱。
”按这个理论,下列微粒:①HS,②CO3,③HPO4,④NH3,⑤OH,⑥H2O,⑦HCO3,⑧HAc,⑨KHSO4(1)只属于碱的微粒是:;(2)只属于酸的微粒是:;(3)属于两性的微粒是:。
(填编号)。
2、人体血液的pH值变化范围较小,pH值只能在7.0~7.8的范围内变化,否则将会有生命危险。
实验证明,在50 mL的血液中加入1滴(0.05 mL)10 mol·L 的盐酸时,pH值由7.4降至7.2,如果向50 mL、pH值为7.4的NaOH溶液中加入1滴(0.05mL)10 mol·L-1-1-2-2---+盐酸时,pH值大约将变为。
显然,人体血液具有的作用。
3、经测定,H2O2为二元弱酸,其酸性比碳酸弱,它在碱性溶液中极不稳定,易分解生成H2O 和O2。
若向Na2O2中通入干燥的CO2气体,Na2O2与CO2并不起反应。
(1)写出H2O2在水溶液中的电离方程式(2)用化学方程式表示Na2O2和潮湿的CO2气体反应的过程。
4、将食盐晶体与浓磷酸共热可得磷酸二氢钠与氯化氢气体;在磷酸二氢钠溶液中通入氯化氢气体又可得磷酸与氯化钠。
上述两反应是否矛盾?若不矛盾,试以平衡移动原理解释。
5、把0.10 mol CH3COONa加到1.0 L 0.10 mol·L CH3COOH溶液中(设加CH3COONa溶液体积不变),求溶液的pH(已知pKa= 4.74)。
6、已知Kb= 1.8 ×10,计算 0.10 mol·L 的 NH3·H2O 的 [OH];若向其中加入固体NH4Cl ,使[NH] 的浓度达到 0.20 mol·L ,求 [OH]。
7、已知硫酸的第一步电离(H2SO4 = H+HSO)是完全的,但第二步电离(HSO+-1+-1--5-1--1 H-1?2?+ SO24)并不完全。
电解质溶液及电离平衡课件集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]电解质溶液及电离平衡一、强电解质和弱电解质1.强、弱电解质强电解质:溶液和熔融状态下,完全电离的物质:如NaCl、Al(OH)3。
弱电解质:溶液和熔融状态下,不完全电离的物质:如H2S、H2CO3。
一般而言,强酸强碱和所有的盐都是强电解质,弱酸弱碱都弱电解质。
2.弱电解质的电离平衡⑴电离平衡:类似化学平衡反应,弱电解质的电离反应是可逆的。
当达到反应物和生成物的浓度不变时,达到平衡。
这个平衡是动态平衡的。
⑵电离平衡的特征:1、是一个可逆反应,在一定条件下,达到一个平衡点,有一个K值。
2、平衡受反应物和生成物的量的影响,当改变生成物和反应物的浓度时,平衡值也会改变。
3、电离反应是吸热反应,因此改变温度对平衡也有影响。
二、水的离子积和溶液的PH写出水的电离方程式。
在纯水及任何稀溶液中, 2H2O——H3O++OH- 可简写为:H2O—— H+ + OH-1、水的离子积常数25℃Kw = c(H+)·c(OH-)=10-14(常数)其中,25℃时,c(H+)=c(OH-)=10-7mol·L-1讨论:1、在纯水中加入酸(或碱)时,对水的电离有怎样的影响2、给纯水加热,其中c(H+)、c(OH-)如何变化3、在c(H+)=10-2的盐酸中,OH-浓度是多少其中水电离出来的H+浓度是多少2.溶液的酸碱性和PHPH = - lgc(H+)当C(H+)10—7mol/L PH 7 溶液呈酸性当C(H+)10—7mol/L PH 7 溶液呈中性当C(H+)10—7mol/L PH 7 溶液呈碱性讨论:1、常温下,稀溶液中,pH+pOH=2、你认c(H+)在什么范围内,用pH来表示溶液的酸碱性比较方便3、pH的测定方法:(1)广范pH试纸、精密pH试纸(2)酸碱指示剂 3)pH计石蕊5 ~ 8、酚酞8 ~10、甲基橙~红.紫.蓝无.粉红.红红.橙.黄4、PH相关计算例1:pH=12的NaOH溶液1mL加水稀释至100mL,pH ;pH=5的HCl 溶液1mL加水稀释至1000mL,pH 。
第8讲电离平衡新题赏析主讲教师:周业虹北京市化学特级教师新题赏析题一:(新课标I卷)已知K sp(AgCl)=1.56×10-10,K sp(AgBr)=7.7×10-13 ,K sp(Ag2CrO4)=9×10-11。
某溶液中含有Cl-、Br-和CrO42-,浓度均为0.010mol/L,向该溶液中逐滴加入0.010mol/L的AgNO3溶液时,三种阴离子产生沉淀的先后顺序为()A、Cl-、Br-、CrO42-B、CrO42-、Br-、Cl-C、Br-、Cl-、CrO42-D、Br-、CrO42-、Cl-题二:(新课标II卷)室温时,M(OH)2(s) M2+(aq)+2OH-(aq),K sp=a;c(M2+)=b mol·L-1时,溶液的pH等于()A. B. C.14+ D.14+题三:(山东卷)某温度下,向一定体积0.1mol/L醋酸溶液中逐滴加入等浓度的NaOH溶液,溶液中pOH(pOH=-lg[OH-])与pH的变化关系如图所示,则()A.M点所示溶液导电能力强于Q点B.N点所示溶液中c(CH3COO-)﹥c(Na+)C.M点和N点所示溶液中水的电离程度相同D.Q点消耗NaOH溶液的体积等于醋酸溶液的体积题四:(江苏卷)下列有关说法正确的是()A.反应NH3(g)+HCl(g)== NH4Cl(s)在室温下可自发进行,则该反应的△H<0B.电解法精炼铜时,以粗铜作阴极,纯铜作阳极C.CH3COOH 溶液加水稀释后,溶液中的值减小D.Na2CO3溶液中加入少量Ca(OH)2固体,CO32-水解程度减小,溶液的pH 减小题五:(北京卷)实验:①0.1mol·L-1AgNO3溶液和0.1mol·L-1NaCl溶液等体积混合得到浊液a,过滤得到滤液b和白色沉淀c;②向滤液b中滴加0.1mol·L-1KI溶液,出现浑浊;③向沉淀c中滴加0.1mol·L-1KI溶液,沉淀变为黄色。
高中化学知识点规律大全——电离平衡1.电离平衡[强电解质和弱电解质]强电解质弱电解质 概 念在水溶液里全部电离为离子的电解质 在水溶液里仅部分电离为离子的电解质化合物类型 含有离子键的离子化合物和某些具有极性键的共价化合物 某些具有极性键的共价化合物 所含物质 强酸、强碱、盐等 水、弱酸、弱碱电离情况完全电离,不存在电离平衡(电离不可逆) 不完全电离(部分电离),存在电离平衡联 系 都属于电解质说明 离子化合物在熔融或溶于水时离子键被破坏,电离产生了自由移动的离子而导电;共价化合物只有在溶于水时才能导电.因此,可通过使一个化合物处于熔融状态时能否导电的实验来判定该化合物是共价化合物还是离子化合物. [弱电解质的电离平衡](1)电离平衡的概念:在一定条件(如温度、压强)下,当电解质分子电离成离子的速率与离子重新结合成分子的速率相等时,电离过程就达到了平衡状态,这叫做电离平衡. (2)弱电解质的电离平衡的特点:电离平衡遵循勒夏特列原理,可根据此原理分析电离平衡的移动情况. ①电离平衡是动态平衡.电离方程式中用可逆符号“”表示.例如:CH 3COOH CH 3COO - + H +NH 3·H 2O NH 4+ + OH -②将弱电解质溶液加水稀释时,电离平衡向弱电解质电离的方向移动.此时,溶液中的离子数目增多,但电解质的分子数减少,离子浓度减小,溶液的导电性降低.③由于电离过程是吸热过程,因此,升高温度,可使电离平衡向弱电解质电离的方向移动.此时,溶液中离子的数目增多,离子浓度增大,溶液的导电性增强. ④在弱电解质溶液中,加入与弱电解质电离出相同的离子的强电解质时,使弱电解质的电离平衡向逆反应方向移动.例如,在0.1mol ·L -1”滴有氨水的溶液(显浅红色)中,存在电离平衡NH 3·H 2O NH 4+ + OH -.当向其中加入少量下列物质时:a . NH 4Cl 固体.由于增大了c(NH 4+),使NH 3·H 2O 的电离平衡逆向移动,c(OH -)减小,溶液红色变浅.b .NaOH 固体.NaOH 溶于水时电离产生的OH -抑制了NH 3·H 2O 的电离,从而使平衡逆向移动.[电离平衡常数] 在一定温度下,当弱电解质的电离达到平衡状态时,溶液中电离产生的各种离子浓度的乘积与溶液中未电离的弱电解质分子浓度的比值是一个常数,这个常数叫做电离平衡常数,简称电离常数.弱酸的电离常数用K a 表示,弱碱的电离常数用K b 表示. (1)电离平衡常数的表达式.①一元弱酸、一元弱碱的电离常数表达式: 例如,一定温度下CH 3COOH 的电离常数为:CH 3COOH CH 3COO - + H +)()()(33COOH CH c COO CH c H c Ka -+⋅=一定温度下NH 3·H 2O 的电离常数为:NH 3·H 2O NH 4+ + OH -)()()(234O H NH c OH c NH c Kb ⋅⋅=-+②多元弱酸的电离特点及电离常数表达式:a .分步电离.是几元酸就分几步电离.每步电离只能产生一个H +,每一步电离都有其相应的电离常数.b .电离程度逐渐减小,且K 1》K 2》K 3,故多元弱酸溶液中平衡时的H +主要来源于第一步.所以,在比较多元弱酸的酸性强弱时,只需比较其K1即可.例如25℃时,H 3PO 4的电离; H 3PO 4 H 2PO 4-+ H +343421105.7)()()(-+-⨯=⋅=PO H c H c PO H c KH 2PO 4-HPO 42- + H +842242102.6)()()(--+-⨯=⋅=PO H c H c HPO c KHPO42-PO 43- + H +132********.2)()()(--+-⨯=⋅=HPO c H c PO c K注意 a .电离常数表达式中各组分的浓度均为平衡浓度.b .多元弱酸溶液中的c(H +)是各步电离产生的c(H +)的总和,在每步的电离常数表达式中的c(H +)是指溶液中H+的总浓度而不是该步电离产生的c(H +). (2)电离常数的特征.同一弱电解质的稀溶液的电离常数的大小与溶液的浓度无关,只随温度的变化而变化.温度不变,K 值不变;温度不同,K 值也不同.但由于电离常数随温度的变化不大,在室温时,可不考虑温度对电离常数的影响. (3)电离常数的意义:①表明弱电解质电离的难易程度.K 值越大,离子浓度越大,该电解质越易电离;反之,电解质越难电离.②比较弱酸或弱碱相对强弱.例如在25℃时,HNO 2的K =4.6×10-4,CH 3COOH 的K =1.8×10-5,因此HNO 2的酸性比CH 3COOH 的酸性强.6.水的电离和溶液的pH [水的电离](1)水的电离方程式.水是一种极弱的电解质,它能像酸一样电离出极少量的H +,又能像碱一样电离出少量的OH -(这叫做水的自偶电离).水的电离方程式可表示为:H 2O + H 2O H 3O + + OH -简写为:H 2O H + + OH -(2)水的离子积K W .一定温度下,水的电离常数为:)()()(2O H c OH c H c K -+⋅=即c(H +)·c(OH -)=K ·c(H 2O)设水的密度为1 g ·cm3,则1 L H 2O =1 000 mL H 2O =1 000 gH 20=55.6 mol ,即H 2O 的起始浓度为55.6 mol ·L -1.由于水是极弱的电解质,它电离时消耗的水与电离前相比,可忽略不计.例如,25℃时,1 LH 2O 中已电离的H 2O 为10-7mol ,所以c(H 2O)≈55.6 mol ·L -1,即K ·c(H 2O)为一常数,这个新的常数叫做水的离子积常数,简称水的离子积,表示为:c(H +)·c(OH -)=K W说明 ①一定温度下,由于K W 为一常数,故通常不写单位,如25℃时K W =1×10-14.②K W 只与温度有关,与溶液的酸碱性无关.温度不变,K W 不变;温度变化,K W 也发生变化.③由于水的电离过程是吸热过程,因此温度升高时,纯水中的c(H +)、c(OH -)同时增大,K W 也随着增大.例如:25℃时,c(H ’)=(OH -)=1×10-7 mol ·L -1 ,K W =1×10-14100℃时,c(H ’)=(OH -)=1×10-6 mol ·L -1 ,K W =1×10-12但由于c(H +)与c(OH -)始终保持相等,故仍显中性.④在任何以水为溶剂的溶液中都存在H +和OH -,它们既相互依存,又相互制约.当溶液中的c(H +)增大时,c(OH -)将减小;反之,当溶液中的c(OH -)增大时,c(H +)则必然减小.但无论在中性、酸性还是碱性溶液中,在一定温度下,c(H +)与c(OH -)的乘积(即K W )仍是不变的,也就是说,K W 不仅适用于纯水,也适用于任何酸、碱、盐的稀溶液.只要温度相同,不论是在纯水中,还是在酸、碱、盐的水溶液中,K W 都是相同的.⑤一定温度下,不论是纯水中,还是在酸、碱、盐的水溶液中,由H 2O 电离产生的c(H +)与c(OH -)总是相等的.如25℃时,0.1 mol ·L-1的盐酸中,c 水(H +)=c(OH -)=1.010114-⨯=1×10-13 mol ·L -1.⑥水的电离平衡遵循勒夏特列原理.例如,向纯水中加入酸或碱,均使水的电离平衡逆向移动(即酸或碱抑制水的电离);向水中投入活泼金属如钠等,由于金属与水电离产生的H +直接作用而促进水的电离.[溶液的酸碱性的实质] 任何水溶液中都存在水的电离,因此都含有H +和OH -.一种溶液是显酸性、中性还是碱性,是由该溶液中的c(H +)与c(OH -)的相对大小来决定的.酸性溶液:c(H +)>c(OH -)中性溶液:c(H +)=c(OH -)碱性溶液:c(H +)<c(OH -)例如:25℃时,因为K W =1×10-14,所以:中性溶液:c(H +)=c(OH -)=1×10-7 mol ·L -1酸性溶液:c(H +)>1×10-7 mol ·L -1,c(OH -)<1×10-7 mol ·L -1碱性溶液:c(H +)<1×10-7 mol ·L -1,c(OH -) >1×10-7 mol ·L -1100℃时,因为K W =1×10-12,所以:中性溶液:c(H +)=c(OH -)=1×10-6 mol ·L -1酸性溶液:c(H +)>1×10-6 mol ·L -1,c(OH -)<1×10-6 mol ·L -1碱性溶液:c(H +)<1×10-6 mol ·L -1,c(OH -) >1×10-6 mol ·L -1[溶液的pH](1)溶液的pH 的概念:在c(H +)≤1 mol ·L -1的水溶液中,采用c(H +)的负对数来表示溶液酸碱性的强弱.(2)数学表达式: pH =-1g[c(H +)]若c(H +)=10-n mol ·L -1,则pH =n .若c(H +) =m ×10-n mol ·L -1,则pH =n -lgm . (3)溶液酸碱性的强弱与pH 的关系. ①常温(25℃)时:pH =7,溶液呈中性,c(H +)=c(OH -)=1×10-7 mol ·L -1.Ph <7,溶液呈酸性,pH 小(大) c(H +)大(小) 溶液的酸性强(弱).PH >7,溶液呈碱性,pH 大(小) c(OH -)大(小) 溶液的碱性强(弱).②pH 范围为0~14之间.pH =0的溶液中并非无H +,而是c(H +)=1mol ·L -1;pH =14的溶液中并非没有OH -,而是c(OH -)=1 mol ·L -1.pH 减小(增大)n 倍,则c(H +)增大为原来的10n 倍(减小为原来的1/10n 倍),相应的c(OH -)减小为原来1/10n 倍(增大为原来的10n倍).③当溶液中的c(H +)>1mol ·L -1时,pH <0;c(OH -)>1mol ·L -1时,pH >14.因此,当溶液中的c(H +)或c(OH -)大于mol ·L -1时,一般不用pH 来表示溶液的酸碱性,而是直接用c(H +)或c(OH -)来表示.所以,pH 只适用于c(H +)或c(OH -)≤1 mol ·L -1的稀溶液.④也可以用pOH 来表示溶液的酸碱性.pOH 是OH -离子浓度的负对数,即pOH =一lg[c(OH -)].因为25℃时,c(H +)·c(OH -)=1×10-14,所以:pH + pOH =14. [溶液中pH 的计算] (1)基本关系式:①pH =-1g[c(H +)]②c(H +)=10-pH mol ·L -1③任何水溶液中,由水电离产生的c(H +)与c(OH -)总是相等的,即:c 水(H +)=c 水(OH -).④常温(25℃)时,c(H +)·c(OH -)=1×10-14⑤n 元强酸溶液中c(H +)=n ·c 酸;n 元强碱溶液中c(OH -)=n ·c 碱· (2)强酸与弱酸、强碱与弱碱溶液加水稀释后pH 的计算. ①强酸与弱酸分别加水稀释相同倍数时,由于弱酸中原来未电离的弱酸分子进一步电离出离子,故弱酸的pH 变化小.设稀释10n倍,则:强酸:pH 稀 = pH 原 + n 弱酸:pH 稀 < pH 原 + n当加水稀释至由溶质酸电离产生的c 酸(H +)<10-6 mol ·L -1时,则必须考虑水的电离.如pH =5的盐酸稀释1 000倍时,pH 稀=6.98,而不是等于8.因此,酸溶液无论如何稀释,溶液的pH 都不会大于7.②强碱与弱碱分别加水稀释相同倍数时,弱碱的pH 变化小.设均稀释10n倍,则: 强碱:pH 稀 = pH 原 — n 弱碱:pH 稀 > pH 原 — n当加水稀释至由溶质碱电离产生的c(OH -)<10-6 mol ·L -1时,则必须考虑水的电离.如pH =9的NaOH 溶液稀释1 000倍时,pH 稀≈7,而不是等于6.因此,碱溶液无论如何稀释,溶液的pH 都不会小于7. (3)两强酸或两强碱溶液混合后pH 的计算. ①两强酸溶液混合.先求出:212211V V V H c V H c H c ++=+++)()()(酸 再求;pH 混=-1g[c 混(H +)] 注:V 1、V 2的单位可为L 或mL ,但必须一致.②两强碱溶液混合.求算两强碱溶液混合后溶液的pH 时,不能直接根据题中给出的碱的pH 求算混合液的pH ,而必须先分别求出两强碱溶液中的c(OH -),再依下式求算c 混(OH -):212211V V V OH c V OH c OH c ++=---)()()(混 然后求出c 混(H +)、pH 混.例如:将pH =8的Ba(OH)2溶液与pH =10的NaOH 溶液等体积混合后,溶液中的c(H +)应为2×10-10 mol ·L -1,而不是(10-10 + 10-8)/2 mol ·L -1.(4)强酸与强碱溶液混合后pH 的计算.解题步骤:分别求出酸中的n(H +)、碱中的n(OH -)→依H + + OH -=H 2O 比较出n(H +)与n(OH -)的大小.①n(H +)=n(OH -)时,恰好中和,混合液显中性;pH =7.[反之,若混合液的pH =7,则必有n(H +)=n(OH -)]②n(H +)>n(OH -)时,酸过量,则:碱酸余碱酸酸)()()()(V V H n V V OH n H n H c +=+-=+-++再求出pH 混(求得的pH 混必小于7).注:若已知pH 混<7,则必须利用上式进行相关计算.⑧ n(H +)< n(OH -)时,碱过量.则:碱酸余碱酸酸)()()()(V V OH n V V H n OH n OH c +=+-=-+--然后求出c 混(H +)、pH 混.注:若已知pH 混>7,则必须利用上式进行相关计算. (5)强酸与强碱混合反应后溶液呈中性时,强酸的pH 酸、强碱的pH 碱与强酸溶液体积V 酸、强碱溶液体积V 碱之间的关系:当溶液呈中性时:n(H +) =n(OH -)即:c(H +)·V 酸=c(OH -)·V 碱25℃时,有c 酸(H +)·V 酸=1×10-14/c 碱(H +)·V 碱,整理得:c 酸(H +)·c 碱(H +)=1×10-14V 碱/V 酸,两边取负对数得:{-1g [c 酸(H +)]} + {-lg[ c 碱(OH -)]}={-lg(1×10-14)} + {-lg (V 碱/V 酸)} 故 pH 酸 + pH 碱 =14 + lg(V 酸/V 碱)①若pH 酸+pH 碱=14,则V 酸∶V 碱=1∶1,即强酸与强碱等体积混合. ②若pH 酸+pH 碱>14,则:V 酸∶V 碱=14)(10-+碱酸pH pH ∶1③若pH 酸+pH 碱<14,则:V 酸∶V 碱=1∶)(1410碱酸pH pH +-7.盐类的水解 [盐类的水解](1)盐类水解的概念:在溶液中盐电离出来的离子跟水电离产生出来的H +或OH -结合生成弱电解质的反应,叫做盐类的水解.说明 盐类的水解反应与中和反应互为可逆过程:盐 + 水酸 + 碱 - 热量(2)盐类水解的实质:盐溶于水时电离产生的弱碱阳离子(如NH 4+、A13+、Fe 3+等)或者弱酸阴离子(如CH 3COO -、CO 32-、S 2-等)与水电离产生的OH -或H +结合生成了难电离的弱碱、弱酸(弱电解质),使水的电离平衡发生移动,从而引起水电离产生的c(H +)与c(OH -)的大小发生变化. (3)各种类型的盐的水解情况比较:盐的类型 强酸强碱盐 强酸弱碱盐 弱酸强碱盐 弱酸弱碱盐 水解情况 不水解 水解 水解 水解参与水解的离子弱碱阳离子 弱酸阴离子 弱酸阴离子和弱碱阳离子溶液的酸碱性 正盐显中性;酸式盐因电离产生H ’而显酸性 酸性[弱碱阳离子与H 2O 电离产生的OH-结合而使得c(H +)> c(OH -)]碱性 [弱酸阴离子与H 2O 电离产生的OH-结合而使得c(H +)<c(OH -)] 依组成盐对应的酸、碱的电离常数尺的相对大小而定K 酸>K 碱:溶液呈酸性K 酸<K 碱:溶液呈碱性 实例正 盐:KCl 、Na 2SO 4、NaNO 3、KNO 3等 酸式盐:NaHSO 4等CuCl 2、NH 4C1、FeCl 3、A12(SO 4)3 CH 3COONa 、NaClO 、NaF 、K 2S 、K 2CO 3 CH 3COONH 4、NH 4F 、(NH 4)2CO 3说明①盐类的水解程度很小,水解后生成的难溶物的微粒数、易挥发性物质的微粒数都很少,没有沉淀、气体产生,因此不能用“↑”、“↓”符号表示②发生水解的盐都是使水的电离平衡正向移动而促进水的电离(而酸或碱则总是抑制水的电离)①判断某盐是否水解的简易口诀:不溶不水解,无弱不水解,谁弱谁水解,都弱都水解. ②判断盐溶液酸碱性的简易口诀:谁强显谁性,都强显中性,都弱具体定(比较等温时K 酸与K 碱的大小). (4)盐类水解离子方程式的书写方法书写原则:方程式左边的水写化学式“H 2O ”,中间符号用“”,右边不写“↓”、“↑”符号.整个方程式中电荷、质量要守恒. ①强酸弱碱盐: 弱碱阳离子: M n + + nH 2O M(OH)n + nH +如CuSO 4水解的离子方程式为: Cu 2+ + 2H 2O Cu(OH)2 + 2H +说明 溶液中离子浓度大小的顺序为:c(SO 42-)>c(Cu 2+)>c(H +)>c(OH -) ②弱酸强碱盐:a . 一元弱酸对应的盐.如CH 3COONa 水解的离子方程式为: CH 3COO - + H 2O CH 3COOH + OH -说明溶液中离子浓度大小的顺序为:c(Na+)>c(CH3COO-)>c(OH-)>c(H+)根据“任何电解质溶液中阴、阳离子电荷守恒”可知:c(Na+) + c(H+) = c(CH3COO-) + c(OH-)b.多元弱酸对应的盐.多元弱酸对应的盐发生水解时,是几元酸就分几步水解,且每步水解只与1个H2O分子结合,生成1个OH-离子.多元弱酸盐的水解程度是逐渐减弱的,因此,多元弱酸盐溶液的酸碱性主要由第一步水解决定.例如K2CO3的水解是分两步进行的:第一步:CO32- + H2O HCO3- + OH-第二步:HCO3- +H2O H2CO3 + OH-水解程度:第一步>第二步.所以K2CO3溶液中各微粒浓度大小的顺序为:c(K+)>c(CO32-)>c(OH-)>c(HCO3-)>c(H2CO3)>c(H+)根据“任何电解质溶液中电荷守恒”可知:c(K+) + c(H+) =2×c(CO32-) + c(OH-) + c(HCO3-)⑧弱酸弱碱盐:如CH3COONH4水解的离子方程式为:CH3COO-+ NH4++ H2O CH3COOH + NH3·H2O因为K(CH3COOH)=K(NH3·H2O)=1.8×10-5,所以CH3COONH4溶液呈中性.[影响盐类水解程度的因素](1)盐本身的组成决定盐是否水解及水解程度的大小.对于强碱弱酸盐来说,组成盐的阴离子对应的酸越弱(强),则盐的水解程度越大(小),溶液中的c(OH-)越大(小),pH 也越大(小).例如:相同温度下,等物质的量浓度的CH3COONa溶液与NaClO溶液相比,由于酸性CH3COOH>HClO,故pH较大<碱性较强)的是NaClO溶液.又如:相同温度下,等物质的量浓度的NaA、NaB、NaC三种溶液的pH的大小顺序为:NaA>NaB>NaC,则三种酸HA、HB、HC的酸性强弱顺序为:HA<HB<HC.(2)盐类的水解平衡遵循勒夏特列原理.①温度.因为盐水解时吸热,所以升温,盐的水解程度增大,盐溶液的酸性或碱性增强.②浓度.盐溶液越稀,水解程度越大,故加水稀释能促进盐的水解.但因为溶液体积增大得更多,所以盐溶液中的c(H +)或c(OH-)反而减小(即酸性或碱性减弱).③向能水解的盐溶液中加入与水解产物相同的离子,水解被抑制;若将水解产物反应掉,则促进盐的水解.例如,在FeCl3溶液中存在水解平衡:Fe3+ + 3H2O Fe(OH)3 + 3H+.若加入少量的NaOH溶液,则水解平衡向右移动,促进了Fe3+的水解;若加入少量盐酸,则水解平衡向左移动,Fe3+的水解受到抑制.[盐类水解的应用](1)判断盐溶液的酸碱性(或pH范围).如A12(SO4)3。
第8讲 电解质溶液和电离平衡【竞赛要求】酸碱质子理论。
弱酸、弱碱的电离常数。
缓冲溶液。
利用酸碱平衡常数的计算。
溶度积原理及有关计算。
离子方程式的正确书写。
【知识梳理】一、酸碱质子理论(Bronsted 理论)最初阶段人们从性质上认识酸碱。
酸:使石蕊变红,有酸味; 碱:使石蕊变蓝,有涩味。
当酸碱相混合时,性质消失。
当氧元素发现后,人们开始从组成上认识酸碱,以为酸中一定含有氧元素;盐酸等无氧酸的发现,又使人们认识到酸中一定含有氢元素。
阿仑尼乌斯(Arrhenius )的电离学说,使人们对酸碱的认识发生了一个飞跃。
HA = H + + A -电离出的正离子全部是 H + ;MOH = M + + OH - 电离出的负离子全部是 OH -。
进一步从平衡角度找到了比较酸碱强弱的标准,即a K 、b K 。
阿仑尼乌斯理论在水溶液中是成功的,但其在非水体系中的适用性,却受到了挑战。
例如:溶剂自身的电离和液氨中进行的中和反应,都无法用阿仑尼乌斯的理论去讨论,因为根本找不到符合定义的酸和碱。
为了弥补阿仑尼乌斯理论的不足,丹麦化学家布仑斯惕(Bronsted )和英国化学家劳里(Lowry )于1923年分别提出了酸碱质子理论。
1、酸碱的定义质子理论认为:凡能给出质子(H +)的物质都是酸;凡能接受质子的物质都是碱。
如HCl ,NH +4,HSO -4,H 2PO -4等都是酸,因为它们能给出质子;CN -,NH 3,HSO -4,SO -24都是碱,因为它们都能接受质子。
为区别于阿仑尼乌斯酸碱,也可专称质子理论的酸碱为布仑斯惕酸碱。
由如上的例子可见,质子酸碱理论中的酸碱不限于电中性的分子,也可以是带电的阴阳离子。
若某物质既能给出质子,又能接受质子,就既是酸又是碱,可称为酸碱两性物质,如HCO -3等,通常称为酸式酸根离子。
2、酸碱的共轭关系质子酸碱不是孤立的,它们通过质子相互联系,质子酸释放质子转化为它的共轭碱,质子碱得到质子转化为它的共轭酸。
这种关系称为酸碱共轭关系。
可用通式表示为:酸 碱 + 质子,此式中的酸碱称为共轭酸碱对。
例如NH 3是NH +4的共轭碱,反之,NH +4是NH 3的共轭酸。
又例如,对于酸碱两性物质,HCO -3的共轭酸是H 2CO 3,HCO -3的共轭碱是CO -23。
换言之,H 2CO 3和HCO -3是一对共轭酸碱,HCO -3和CO -23是另一对共轭酸碱。
3、酸和碱的反应跟阿仑尼乌斯酸碱反应不同,布仑斯惕酸碱的酸碱反应是两对共轭酸碱对之间传递质子的反应,通式为: 酸1 + 碱2 碱1 + 酸2例如: HCl + NH3 Cl -+ NH +4 H 2O + NH 3 OH -+ NH +4HAc + H 2O Ac -+ H 3O + H 2S + H 2O HS -+ H 3O +H2O + S 2- OH - + HS - H 2O + HS - OH -+ H 2S这就是说,单独一对共轭酸碱本身是不能发生酸碱反应的,因而我们也可以把通式:酸 碱 + H +称为酸碱半反应,酸碱质子反应是两对共轭酸碱对交换质子的反应;此外,上面一些例子也告诉我们,酸碱质子反应的产物不必定是盐和水,在酸碱质子理论看来,阿仑尼乌斯酸碱反应(中和反应、强酸置换弱酸、强碱置换弱碱)、阿仑尼乌斯酸碱的电离、阿仑尼乌斯酸碱理论的“盐的水解”以及没有水参与的气态氯化氢和气态氨反应等等,都是酸碱反应。
在酸碱质子理论中根本没有“盐”的内涵。
二、弱电解质的电离平衡 1、水的电离平衡(1)水的离子积常数H 2O(l) H +(aq) + OH -(aq) w K = [H +] + [OH -] (8-1)式中的w K 称为水的离子积常数。
w K 是标准平衡常数,式中的浓度都是相对浓度。
由于本讲中使用标准浓度极其频繁,故省略除以0c 的写法。
要注意它的实际意义。
由于水的电离是吸热反应,所以,温度升高时,w K 值变大。
表-1 不同温度下水的离子积常数K2[ H + ] [ OH -] = w K 不论溶液是酸性,碱性,还是中性。
常温下,[ H +] = 1×10–7,表示中性,因为这时w K = 1.0×10–14;非常温时,溶液的中性只能是指 [ H + ] = [ OH -]。
(2)pH 值和 pOH 值pH = – lg [ H +] (8-2) pOH = – lg [ OH -] (8-3)因为 [ H + ] [ OH - ] = 1.0×10–14所以 pH + pOH = 14 (8-4)pH 和 pOH 一般的取值范围是 1~14 ,但也有时超出,如:[ H +] = 10 ,则 pH = –1。
2、弱酸和弱减的电离平衡(1)一元弱酸和弱减的电离平衡将醋酸的分子式简写成 HAc ,用 Ac -代表醋酸根,则醋酸的电离平衡可以表示成:HAc H + + Ac -用0a K 表示酸式电离的电离平衡常数,经常简写作a K 。
且:氨水 NH 3·H 2O 是典型的弱碱,用0b K (简写成b K )表示碱式电离的电离平衡常数,则有: NH 3·H 2O NH 4++ OH -b K =][]][[234O H NH OH NH ⋅-+=1.8×10–5(2)多元弱酸的电离平衡多元弱酸的电离是分步进行的,对应每一步电离,各有其电离常数。
以 H 2S 为例:第一步 H 2S H + + HS -721103.1][]][[--+⨯==S H HS H K第二步 HS -H ++ S 2-1522101.7][]][[---+⨯==HS S H K 显然,1K 2K 。
说明多元弱酸的电离以第一步电离为主。
将第一步和第二步的两个方程式相加,得:H 2S 2H + + S 2-22212221102.9][][][--+⨯=⋅==K K S H S H K平衡常数表示处于平衡状态的几种物质的浓度关系,确切地说是活度的关系。
但是在我们的计算中,近似地认为活度系数 f = 1,即用浓度代替活度。
a K 、b K 的大小可以表示弱酸和弱碱的离解程度,K 的值越大,则弱酸和弱碱的电离程度越大。
3、缓冲溶液 (1)同离子效应HAc H + + Ac - 达到平衡时,向溶液中加入固体 NaAc (强电解质完全电离:NaAc = Na + + Ac -),由于Ac - 的引入,破坏了已建立的弱电解质的电离平衡:HAc H + + Ac -Ac -增多,使平衡左移,使 HAc 的电离度减小。
定义:在弱电解质的溶液中,加入与其具有相同离子的强电解质,从而使电离平衡左移,降低弱电解质的电离度。
这种现象称为同离子效应。
(2)缓冲溶液 ①概念能够抵抗外来少量酸碱的影响和较多水的稀释的影响,保持体系 pH 值变化不大的溶液,我们称之为缓冲溶液。
如向 1L 0.10 mol ·L -1 的HCN 和0.10 mol ·L -1NaCN 的混合溶液中(pH = 9.40),加入0.010 mol HCl 时,pH 变为 9.31;加入0.010 mol NaOH 时,pH 变为 9.49;用水稀释,体积扩大 10 倍时,pH 基本不变。
可以认为,0.10 mol ·L -1 HCN 和 0.10 mol ·L -1NaCN 的混合溶液是一种缓冲溶液,可以维持体系的 pH 值为 9.40 左右。
②原理缓冲溶液之所以具有缓冲作用是因为溶液中含有一定量的抗酸成分和抗碱成分。
当外加少量酸(或碱)时,则它与抗酸(或抗碱)成分作用,使弱酸盐弱酸c c /(或弱碱盐弱碱c c /)比值基本不变,从而使溶液pH 值基本不变。
适量水稀释时,由于弱酸与弱酸盐(或弱碱与弱碱盐)以同等倍数被稀释,其浓度比值亦不变。
缓冲溶液一般是由弱酸及其盐(如HAc 与NaAc )或弱碱 及其盐(如NH 3与NH +4盐)以及多元弱酸及其次级酸式盐或酸式盐及其次级盐(如H 2CO 3与NaHCO 3,NaHCO 3与Na 2CO 3)组成。
这类缓冲溶液的pH 值 计算可概括为如下两种形式“(a )弱酸及其盐[H +] = 盐酸c c K a ⋅(8-5) pH = 酸盐c c pK a lg+ (8-6)(b )弱碱及其盐[OH -]= 盐碱c c K b ⋅(8-7) pOH = 碱盐c c pK b lg+ (8-8)缓冲溶液中的弱酸及其盐(或弱碱及其盐)称为缓冲对。
缓冲对的浓度愈大,则它抵制外加酸碱影响的作用愈强,通常称缓冲容量愈大。
缓冲对浓度比也是影响缓冲容量的重要因素,浓度比为1时,缓冲容量最大。
一般浓度比在10到0.1之间,因此缓冲溶液的pH (或pOH )在p a K (或p b K )1±范围内。
配制缓冲溶液时,首先选择缓冲对的p a K (或p b K )最靠近欲达到的溶液pH (或pOH ),然后调整缓冲对的浓度比,使其达到所需的pH 。
上述计算未考虑离子间相互作用的影响,因此最后还应以pH 计测定值为准。
4、酸碱指示剂(1)指示剂的变色原理能通过颜色变化指示溶液的酸碱性的物质,如石蕊,酚酞,甲基橙等,称为酸碱指示剂。
酸碱指示剂一般是弱的有机酸。
现以甲基橙为例,说明指示剂的变色原理。
甲基橙的电离平衡表示如下:HIn In - + H + a K = 4×10–4分子态 HIn 显红色,而酸根离子 In - 显黄色。
当体系中 H +的浓度大时,平衡左移,以分子态形式居多时,显红色;当体系中 OH -的浓度大时,平衡右移,以离子态形式居多时,显黄色。
究竟 pH = ? 时,指示剂的颜色发生变化,则与弱酸 HIn 的电离平衡常数a K 的大小有关。
(2)变色点和变色范围仍以甲基橙为例, HIn In - + H + a K = 4×10–4 ;当 [In -] = [ HIn ] 时,[ H +] = p a K = 4×10–4,pH = p a K = 3.4,显橙色,介于红色和黄色之间。
当 pH < 3.4,HIn 占优势时,红色成分大; 当 pH > 3.4,In -占优势时,黄色成分大。
故 pH = p a K 称为指示剂的理论变色点。
甲基橙的理论变色点为 pH = 3.4, 酚酞的理论变色点为 pH = 9.1。
距离理论变色点很近时,显色并不明显,因为一种物质的优势还不够大。
当 [ HIn ] = 10 [In -] 时,显红色, 当 [In -] = 10 [ HIn ] 时,显黄色。
这时有关系式 pH = p a K 1±,这是指示剂的变色范围。