卧式容器的支座
- 格式:doc
- 大小:383.50 KB
- 文档页数:12
CHEMICAL ENGINEERING DESIGN 化工设计2020,30(4)浅谈卧式容器鞍式支座的允许载荷常永波∗ 北京石油化工工程有限公司西安分公司 西安 710075摘要 卧式容器作为压力容器中最常见的结构型式之一,常采用鞍式支座来支承。
当选用NB /T47065.1-2018标准鞍式支座进行卧式容器设计计算时,发现在垫板不起加强作用,鞍座的应力由水平拉应力控制时,部分鞍座水平应力σ9不满足《卧式容器》NB /T47042-2014校核要求。
由此可见,按标准鞍式支座的选取原则,即在满足鞍座标准规定的条件下,当垫板不起加强作用时,有必要对选用的标准鞍式支座进行强度校核。
关键词 鞍式支座 受力分析 允许载荷∗常永波:工程师。
2008年毕业于西北大学过程装备与控制工程专业。
一直从事化工容器设计工作。
联系电话:187********,E -mail:280775137@。
鞍式支座是卧式容器广泛应用的一种支座,通常由垫板、腹板、筋板和底板构成。
垫板能够减少筒体的周向应力,筋板作用是将垫板和腹板连接起来增加鞍座刚度,用来抵抗压缩力和外弯矩。
腹板、筋板的厚度以及鞍座的高度直接决定着鞍式支座的允许载荷的大小。
1 鞍式支座的受力分析1.1 鞍式支座腹板的水平拉应力容器作用于鞍座的载荷见图1。
图1 容器作用于鞍座的载荷示意图此径向载荷的水平分量即静载荷产生的水平分力Fs,有将鞍座沿纵向截面撕裂的趋势,该力由Zick 法导出:F s =[1+cos β-0.5sin 2βπ-β+sin βcos β]Q =K 9Q式中,Q 为一个鞍座的反力(支承的重量),N;K 9为系数,当鞍式支座包角θ=120°时,K 9=0.204;当鞍式支座包角θ=150°时,K 9=0.259。
依据《卧式容器》NB /T47042-2014规定,鞍式支座腹板的水平拉应力σ9按以下两种情况分别计算:(1)无垫板或垫板不起加强作用时:σ9=F s H s b 0=K 9QH s b 0(1)(2)垫板起加强作用时:σ9=F s H s b 0+b r δre =K 9QH s b 0+b r δre(2)式中,H s 为计算高度,取min {H,13R a},mm;b 0为鞍座腹板厚度,mm;b r 为鞍座垫板有效宽度,mm,取b r =b 2。
容器支座介绍一、卧式容器的支座卧式容器的支座有三种:鞍座、圈座和支腿。
㈠鞍式支座鞍座是应用最广泛的一种卧式容器支座,常见的卧式容器和大型卧式贮槽,热交换器等多采用这种支座。
鞍式支座如上图所示,为了简化设计计算,鞍式支座已有标准JB/T4712-92 《鞍式支座》,设计时可根据容器的公称直径和容器的重量选用标准中的规格。
鞍座是由横向筋板、若干轴向筋板和底板焊接而成。
在与设备连接处,有带加强垫板和不带加强垫板两种结构。
鞍式支座的鞍座包角q为120°或150°,以保证容器在支座上安放稳定。
鞍座的高度有200、300、400和500mm四种规格,但可以根据需要改变,改变后应作强度校核。
鞍式支座的宽度b可根据容器的公称直径查出。
鞍座分为A型(轻型)和B型(重型)两类,其中重型又分为BⅠ~BⅤ五种型号。
其中BⅠ型结构如BⅠ型鞍座结构图所示。
A型和B型的区别在于筋板和底板、垫板等尺寸不同或数量不同。
BI型鞍座结构图鞍座的底板尺寸应保证基础的水泥面不被压坏。
根据底板上螺栓孔形状的不同,每种型式的鞍座又分为固定式支座(代号F)和滑动式支座(代号S)两种安装形式,固定式鞍座底板上开圆形螺栓孔,滑动式支座开长圆形螺栓孔。
在一台容器上,两个总是配对使用。
在安装活动支座时,地脚螺栓采用两个螺母。
第一个螺母拧紧后倒退一圈,然后用第二个螺母锁紧,这样可以保证设备在温度变化时,鞍座能在基础面上自由滑动。
长圆孔的长度须根据设备的温差伸缩量进行校核。
一台卧式容器的鞍式支座,一般情况下不宜多于两个。
因为鞍座水平高度的微小差异都会造成各支座间的受力不均,从而引起筒壁内的附加应力。
采用双鞍座时,鞍座与筒体端部的距离A可按下述原则确定(见上图):当筒体的L/D较大,且鞍座所在平面内又无加强圈时,应尽量利用封头对支座处筒体的加强作用,取A≤0.25D;当筒体的L/D较小,d/D较大,或鞍座所在平面内有加强圈时,取A≤0.2L。
一、卧式容器的支座卧式容器的支座有三种:鞍座、圈座和支腿。
㈠鞍式支座鞍座是应用最广泛的一种卧式容器支座,常见的卧式容器和大型卧式贮槽,热交换器等多采用这种支座。
鞍式支座如上图所示,为了简化设计计算,鞍式支座已有标准JB/T4712-92 《鞍式支座》,设计时可根据容器的公称直径和容器的重量选用标准中的规格。
鞍座是由横向筋板、若干轴向筋板和底板焊接而成。
在与设备连接处,有带加强垫板和不带加强垫板两种结构。
鞍式支座的鞍座包角q为120°或150°,以保证容器在支座上安放稳定。
鞍座的高度有200、300、400和500mm四种规格,但可以根据需要改变,改变后应作强度校核。
鞍式支座的宽度b可根据容器的公称直径查出。
鞍座分为A型(轻型)和B型(重型)两类,其中重型又分为BⅠ~BⅤ五种型号。
其中BⅠ型结构如BⅠ型鞍座结构图所示。
A型和B型的区别在于筋板和底板、垫板等尺寸不同或数量不同。
BI型鞍座结构图鞍座的底板尺寸应保证基础的水泥面不被压坏。
根据底板上螺栓孔形状的不同,每种型式的鞍座又分为固定式支座(代号F)和滑动式支座(代号S)两种安装形式,固定式鞍座底板上开圆形螺栓孔,滑动式支座开长圆形螺栓孔。
在一台容器上,两个总是配对使用。
在安装活动支座时,地脚螺栓采用两个螺母。
第一个螺母拧紧后倒退一圈,然后用第二个螺母锁紧,这样可以保证设备在温度变化时,鞍座能在基础面上自由滑动。
长圆孔的长度须根据设备的温差伸缩量进行校核。
一台卧式容器的鞍式支座,一般情况下不宜多于两个。
因为鞍座水平高度的微小差异都会造成各支座间的受力不均,从而引起筒壁内的附加应力。
采用双鞍座时,鞍座与筒体端部的距离A可按下述原则确定(见上图):当筒体的L/D较大,且鞍座所在平面内又无加强圈时,应尽量利用封头对支座处筒体的加强作用,取A≤0.25D;当筒体的L/D较小,d/D较大,或鞍座所在平面内有加强圈时,取A≤0.2L。
㈡圈座在下列情况下可采用圈座:对于大直径薄壁容器和真空操作的容器,因其自身重量可能造成严重挠曲;多于两个支承的长容器。
卧式容器第一节 概述卧式容器的设计,除按常规计算圆筒、封头外,还应验算支座处的局部应力。
此局部应力的计算取决于支座的结构型式。
卧室容器的支座型式有鞍式支座、圈座和支腿式支座。
一般对于大直径的薄壁容器和真空操作的卧式容器或支承点多于两个时可采用圈座。
支腿式支座结构虽简单,但由于支承反力集中于局部壳体上,故只适用于较轻的小型卧式容器。
对于较重的大设备,通常采用鞍式支座。
目前应用的鞍式支座,大多是双鞍座式。
从受力情况来分析,支座越多其容器内产生的应力越小,但由于地基不均匀的沉陷、基础水平度的误差或筒体不直、不圆等因素造成支座反力分布不均,反而使局部应力增大,因此一般都采用双支座。
对于此类卧式容器,其受力分析和强度设计都以齐克(L.P.Zick )提出的理论为基础,即将卧式容器当作受均布载荷的双支点的外伸简支梁来分析的,但这种近似分析所求得的各项应力与通过实验测定的各应力值并不完全相同,所以在应力计算式中进行了修正,并按应力的性质对各应力值进行了控制。
我国及其他不少国家都以此理论为依据制订卧式容器的设计规范。
第二节 卧式容器计算一、设计规范1、GB150《钢制压力容器》——国家标准适用范围:(1)鞍式支座(或圈座)支承的薄壁容器;(2)几何形状对称、载荷均布的容器;(3)承受非交变性载荷作用的容器;(4)两支座,且鞍座形心到封头切线之间的距离A ≤0.2L ;(5)鞍座包角θ在120°≤θ≤150°范围内。
2、HGJ16《钢制化工容器强度计算规定》——化工部标准适用范围:三鞍座卧式容器的设计和计算。
二、受力分析1、受力分析图、弯矩图和剪力图(见图1)2、外载荷(1) 设计压力p (内压或外压)(2)(2)均布载荷q容器的质量作用于假想的简支梁(即卧式容器)上,容器质量包括容器自身质量、充满水或所容介质的质量、所有附件及保温层等质量。
简支梁的长度为筒体L 加上两个封头的折算长度,封头折算长度2/3h i ;得单位长度载荷q 。
一、卧式容器的支座卧式容器的支座有三种:鞍座、圈座和支腿。
㈠鞍式支座鞍座是应用最广泛的一种卧式容器支座,常见的卧式容器和大型卧式贮槽,热交换器等多采用这种支座。
鞍式支座如上图所示,为了简化设计计算,鞍式支座已有标准JB/T4712-92 《鞍式支座》,设计时可根据容器的公称直径和容器的重量选用标准中的规格。
鞍座是由横向筋板、若干轴向筋板和底板焊接而成。
在与设备连接处,有带加强垫板和不带加强垫板两种结构。
鞍式支座的鞍座包角q为120°或150°,以保证容器在支座上安放稳定。
鞍座的高度有200、300、400和500mm四种规格,但可以根据需要改变,改变后应作强度校核。
鞍式支座的宽度b可根据容器的公称直径查出。
鞍座分为A型(轻型)和B型(重型)两类,其中重型又分为BⅠ~BⅤ五种型号。
其中BⅠ型结构如BⅠ型鞍座结构图所示。
A型和B型的区别在于筋板和底板、垫板等尺寸不同或数量不同。
BI型鞍座结构图鞍座的底板尺寸应保证基础的水泥面不被压坏。
根据底板上螺栓孔形状的不同,每种型式的鞍座又分为固定式支座(代号F)和滑动式支座(代号S)两种安装形式,固定式鞍座底板上开圆形螺栓孔,滑动式支座开长圆形螺栓孔。
在一台容器上,两个总是配对使用。
在安装活动支座时,地脚螺栓采用两个螺母。
第一个螺母拧紧后倒退一圈,然后用第二个螺母锁紧,这样可以保证设备在温度变化时,鞍座能在基础面上自由滑动。
长圆孔的长度须根据设备的温差伸缩量进行校核。
一台卧式容器的鞍式支座,一般情况下不宜多于两个。
因为鞍座水平高度的微小差异都会造成各支座间的受力不均,从而引起筒壁内的附加应力。
采用双鞍座时,鞍座与筒体端部的距离A可按下述原则确定(见上图):当筒体的L/D较大,且鞍座所在平面内又无加强圈时,应尽量利用封头对支座处筒体的加强作用,取A≤0.25D;当筒体的L/D较小,d/D较大,或鞍座所在平面内有加强圈时,取A≤0.2L。
㈡圈座在下列情况下可采用圈座:对于大直径薄壁容器和真空操作的容器,因其自身重量可能造成严重挠曲;多于两个支承的长容器。
第二节容器支座容器和设备的支座,是用来支撑其重量,并使其固定在一定的位置上。
在某些场合下制作还要承受操作是的振动,承受风载荷和地震载荷。
容器和设备的结构形式很多,根据容器与之身的形式,支座可分两大类,即卧式容器支座和立式容器支座。
一卧式容器支座卧式容器支座有三种形:鞍座圈座和支腿。
常见的卧式容器和大型卧式储罐,换热器等多采用鞍座,它是应用的最广泛的卧式容器支座。
但对于大直径薄壁容器和真空设备,为增加筒体支座处的局部刚度常采用圈座。
小型设备常采用机构简单的支腿。
1 双鞍支座及制作标准置于支座上的卧式容器,其情况和梁相似,由材料力学分析可知,梁弯曲产生的应力与支点的数目和位置有关。
当尺寸和载荷一定时,多支点在梁内产生的应力较小,因此支座数目似乎应该多些好。
但对于大型卧式容器而言,当采用多支座时,如果各制作的水平高度有差异或地基呈现不均匀,或壳体不直不圆等微小差异以及容器不同部位受力挠曲的相对变形不同,使支座反力难以为个支点平均分摊,导致壳体应力正大,因而体现不出多做的优点,故一般情况下采用双支座。
采用双支座时,支座位置的选取一方面要考虑到利用封头的加强效应,另一方面又要考虑不是壳体中因荷重引起的弯曲应力过大,所以选取原则如下。
1双鞍卧式支座容器的受力状态可简化为受韵部载荷的外伸梁,由材料力学知,当外申长度A=0.207时。
跨度中央的弯矩与支座截面处的弯矩绝对值相等,所以一般近似取A0.2l。
其中L取两封头切线间距离,A为鞍座中心线至封头切线间距离。
2当鞍座临近封头时,则封头对支座处筒体有加强刚性效应,在满足A0.207下应尽量使a0.5R此外,卧式容器由于温度或载荷变化时都会产生轴向的伸缩,因此容器两端的支座不能都固定在基础上,必须有一段能在基础上滑动,以避免产生过大的附加力。
通常的做法是将一个支座上的地脚螺旋孔做成圆形,并且螺母不上紧,使其成为活支座,而另一个支座仍未固定支座。
还有一种是采用滚动支座,他克服了滑动摩檫力大的缺点,但结构复杂照价高。
卧式容器的支座浏览字体设置:- 11pt + 10pt 12pt 14pt 16pt放入我的网络收藏夹一、卧式容器的支座卧式容器的支座有三种:鞍座、圈座和支腿。
㈠鞍式支座鞍座是应用最广泛的一种卧式容器支座,常见的卧式容器和大型卧式贮槽,热交换器等多采用这种支座。
鞍式支座如上图所示,为了简化设计计算,鞍式支座已有标准JB/T4712-92 《鞍式支座》,设计时可根据容器的公称直径和容器的重量选用标准中的规格。
鞍座是由横向筋板、若干轴向筋板和底板焊接而成。
在与设备连接处,有带加强垫板和不带加强垫板两种结构。
鞍式支座的鞍座包角 为120°或150°,以保证容器在支座上安放稳定。
鞍座的高度有200、300、400和500mm四种规格,但可以根据需要改变,改变后应作强度校核。
鞍式支座的宽度b可根据容器的公称直径查出。
鞍座分为A型(轻型)和B型(重型)两类,其中重型又分为BⅠ~BⅤ五种型号。
其中BⅠ型结构如BⅠ型鞍座结构图所示。
A型和B型的区别在于筋板和底板、垫板等尺寸不同或数量不同。
BI型鞍座结构图鞍座的底板尺寸应保证基础的水泥面不被压坏。
根据底板上螺栓孔形状的不同,每种型式的鞍座又分为固定式支座(代号F)和滑动式支座(代号S)两种安装形式,固定式鞍座底板上开圆形螺栓孔,滑动式支座开长圆形螺栓孔。
在一台容器上,两个总是配对使用。
在安装活动支座时,地脚螺栓采用两个螺母。
第一个螺母拧紧后倒退一圈,然后用第二个螺母锁紧,这样可以保证设备在温度变化时,鞍座能在基础面上自由滑动。
长圆孔的长度须根据设备的温差伸缩量进行校核。
一台卧式容器的鞍式支座,一般情况下不宜多于两个。
因为鞍座水平高度的微小差异都会造成各支座间的受力不均,从而引起筒壁内的附加应力。
采用双鞍座时,鞍座与筒体端部的距离A可按下述原则确定(见上图):当筒体的L/D较大,且鞍座所在平面内又无加强圈时,应尽量利用封头对支座处筒体的加强作用,取A≤0.25D;当筒体的L/D较小, /D较大,或鞍座所在平面内有加强圈时,取A≤0.2L。
㈡圈座在下列情况下可采用圈座:对于大直径薄壁容器和真空操作的容器,因其自身重量可能造成严重挠曲;多于两个支承的长容器。
圈座的结构如上图所示。
除常温常压下操作的容器外,若采用圈座时则至少应有一个圈座是滑动支承的。
㈢腿式支座腿式支座简称支腿,结构如上图所示。
因为这种支座在与容器壳壁连接处会造成严重的局部应力,故只适合用于小型设备(DN≤1600、L≤5m)。
腿式支座的结构型式、系列参数等参见标准JB/T4714-92 《腿式支座》。
二、立式容器的支座浏览字体设置:- 11pt + 10pt 12pt 14pt 16pt放入我的网络收藏夹二、立式容器的支座立式容器的支座主要有耳式支座、支承式支座和裙式支座三种。
中、小型直立容器常采用前二种支座,高大的塔设备则广泛采用裙式支座。
下面来分别介绍这三种支座。
㈠耳式支座耳式支座简称耳座,它由筋板和支脚板组成。
广泛用在反应釜及立式换热器等直立设备上。
它的优点是简单、轻便,但对器壁会产生较大的局部应力。
因此,当设备较大或器壁较薄时,应在支座与器壁间加一垫板。
对于不锈钢制设备,当用碳钢作支座时,为防止器壁与支座在焊接过程中不锈钢中合金元素的流失,也需在支座与器壁间加一个不锈钢垫板。
上图是带有垫板的耳式支座。
耳式支座已经标准化,它们的型式、结构、规格尺寸、材料及安装要求应符合JB/T 4725-92 《耳式支座》。
该标准分为A型(短臂)和B型(长臂)两类,每类又分为带垫板与不带垫板两种结构,见表4-18。
表4-18 耳式支座结构型式特征型式支座号适用公称直径结构特征A1~8DN300~4000 短臂、带垫板AN1~3 短臂、不带垫板B1~8 长臂、带垫板BN 1~3 长臂、不带垫板它们的各部分尺寸见耳式支座结构尺寸图。
A型耳式支座的筋板底边较窄,地脚螺栓距容器壳壁较近,仅适用于一般的立式钢制焊接容器。
B型耳式支座有较宽的安装尺寸,故又叫长臂支座。
当设备外面有保温层或者将设备直接放在楼板上时,宜采用B型耳式支座。
标准耳式支座的材料为Q235-A.F,若有改变,需在设备装备图中加以注明。
耳式支座选用的方法是:(1)根据设备估算的总重量,算出每个支座(按2个支座计算)需要承担的负荷Q值;(2)确定支座的型式后,从表4-19或表4-20中按照支座允许负荷Q允大于实际负荷Q的原则,选出合适的支座。
每台设备可配置两个或四个支座,考虑到设备在安装后可能出现全部支座未能同时受力等情况,在确定支座尺寸时,一律按两个计算。
表4-19 A、AN型支座系列参数尺寸支座号支座本体允许载荷[Q](MP a)适用容器公称直径DN高度H底板筋板垫板地脚螺栓支座质量(Kg)l1b1δ1s1l2b2δ2l3b3δ3e d规格A型AN型1 10 300~600125 100 60 6 30 80 80 4 160 125 6 20 24 M20 1.7 0.72 20 500~1000160 125 80 8 40 100 100 5 200 160 6 24 24 M20 2.0 1.53 30 700~1400200 160 105 10 50 125 125 6 250 200 8 30 30 M24 6.0 2.84 60 1000~2000250 200 140 14 70 160 160 8 315 250 8 40 30 M24 11.1 —5 100 1300~2600320 250 180 16 90 200 200 10 400 320 10 48 30 M24 21.6 —6 150 1500~3000400 315 230 20 115 250 250 12 500 400 12 60 36 M30 40.8 —7 200 1700~3400480 375 230 22 130 300 300 14 600 480 14 70 36 M30 67.3 —8 250 200~4000600 480 360 26 145 380 380 16 720 600 16 72 36 M30120.4 —表4-20 B、BN型支座系列参数尺寸支座号支座本体允许载荷[Q](MP a)适用容器公称直径DN高度H底板筋板垫板地脚螺栓支座质量(Kg)l1b1δ1s1l2b2δ2l3b3δ3e d规格B型BN型小型设备的耳式支座,可以支承在管子或型钢制的立柱上。
大型设备的支座往往搁在钢梁或混凝土制的基础上。
㈡支承式支座支承式支座可以用钢管、角钢、槽钢来制作,也可以用数块钢板焊成,见支承式支座图。
它们的型式、结构、尺寸及所用材料应符合JB/T 4724-92 《支承式支座》。
支撑式支座支承式支座分为A型和B型,适用的范围和结构见表4-21所示。
A型支座筋板和底板的材料为Q235-A·F;B型支座钢管材料为10,底板材料均为Q235-A·F。
支承式支座的选用见标准中的规定,其尺寸可按表4-22查出。
表4-21 支承式支座的适用范围形式支座号适用的公称直径(mm)结构特征A1~6 DN800~3000 钢板焊制,带垫板B1~8 DN800~4000钢管焊制,带垫板表4-22 支撑式支座的尺寸 (mm)支座的允许载荷t 支座的支撑面积(cm2)支撑面上的单位压力×10-1(MP a)尺寸地脚螺栓尺寸容器公称直径DN(mm)尺寸A的推荐值(mm)每个支座质量(Kg)L H a b c e S孔径d直径0.1 40.5 2.5 90 150 60 60 70 30 4 15 M12300 1050.79 (350) 125支承式支座的优点是简单轻便,但它和耳式支座一样,对壳壁会产生较大的局部应力,因此当容器壳体的刚度较小、壳体和支座的材料差异或温度差异较大时,或壳体需焊后热处理时,在支座和壳体之间应设置加强板。
加强板的材料应和壳体材料相同或相似。
㈢裙式支座对高大的塔设备最常用的支座就是裙式支座。
它与前两种支座不同,目前还没有标准。
它的各部分尺寸均需通过计算或实践经验确定。
有关裙式支座的结构及其设计方法详见第十七章。
第三节容器的开孔与附件一、容器的开孔与补强为了满足工艺、安装、检修的要求,往往需要在容器的筒体和封头上开各种形状、大小的孔或连接接管。
容器壳体上开孔后,开孔不但削弱了容器壁的强度,而且在筒体与接管的连接处,由于原壳体结构产生了变化,出现不连续,在开孔区域将形成一个局部的高应力集中区。
开孔边缘处的最大应力称为峰值应力。
峰值应力通常较高,达到甚至超过了材料的屈服极限。
较大的局部应力,加之容器材质和制造缺陷等因素的综合作用,往往会成为容器的破坏源。
因此,为了降低峰值应力,需要对结构开孔部位进行补强,以保证容器安全运行。
开孔应力集中的程度和开孔的形状有关,圆孔的应力集中程度最低,因此一般开圆孔。
㈠开孔补强的设计与补强结构所谓"开孔补强设计"是在开孔附近区域增加补强金属,使之达到提高器壁强度,满足强度设计要求的目的。
容器开孔补强的形式概括起来分为整体补强和补强圈补强两种。
1.整体补强整体补强是指采用增加整个壳体的厚度,或用全焊透的结构形式将厚壁接管或整体补强锻件与壳体相焊来降低开孔附近的应力。
由于开孔应力集中的局部性,在远离开孔区的应力值与正常应力值一样,故除非制造或结构上的需要,一般并不把整个容器壁加厚。
在开孔处用全焊透的结构形式焊上一段特意加厚的短管,使接管的加厚部分恰处有效补强区内,则可以降低应力集中系数。
整锻件补强结构是将接管与壳体连同加强部分作成整体锻件,然后与壳体焊在一起。
其优点是补强金属集中于开孔应力最大部分,应力集中现象得到大大缓和。
2.补强圈补强补强圈补强是指在壳体开孔周围贴焊一圈钢板,即补强圈。
补强圈一般与器壁采用搭接结构,材料与器壁相同,补强圈尺寸可参照标准确定,也可按等面积补强原则进行计算。
当补强圈厚度超过8mm 时,一般采用全焊透结构,使其与器壁同时受力,否则不起补强作用。
为了焊接方便,补强圈可以置于器壁外表面(下图所示)或内表面,或内外表面对称放置,但为了焊接方便,一般是把补强圈放在外面的单面补强。
为了检验焊缝的紧密性,补强圈上有一个M10的小螺纹孔。
从这里通入压缩空气进行焊缝紧密性试验。
补强圈现已标准化。
补强圈结构简单,易于制造,应用广泛。
但补强圈与壳体之间存在着一层静止的气隙,传热效果差,致使二者温差与热膨胀差较大,容易引起温差应力。
补强圈与壳体相焊时,使此处的刚性变大,对角焊缝的冷却收缩起较大的约束作用,容易在焊缝处造成裂纹。
特别是高强度钢淬硬性大,对焊接裂纹比较敏感,更易开裂。
还由于补强圈和壳体或接管金属没有形成一个整体,因而抗疲劳性能差。