13-7热力学第二定律的统计解释讲解
- 格式:ppt
- 大小:827.51 KB
- 文档页数:24
热力学第二定律(英文:second law of thermodynamics)是热力学的四条基本定律之一,表述热力学过程的不可逆性——孤立系统自发地朝着热力学平衡方向──最大熵状态──演化,同样地,第二类永动机永不可能实现。
这一定律的历史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。
定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。
定律的数学表述主要借助鲁道夫·克劳修斯所引入的熵的概念,具体表述为克劳修斯定理。
虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到了解释。
这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。
定律本身可作为过程不可逆性[2]:p.262及时间流向的判据。
而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等克劳修斯表述克劳修斯克劳修斯表述是以热量传递的不可逆性(即热量总是自发地从高温热源流向低温热源)作为出发点。
虽然可以借助制冷机使热量从低温热源流向高温热源,但这过程是借助外界对制冷机做功实现的,即这过程除了有热量的传递,还有功转化为热的其他影响。
1850年克劳修斯将这一规律总结为:不可能把热量从低温物体传递到高温物体而不产生其他影响。
开尔文表述参见:永动机#第二类永动机开尔文勋爵开尔文表述是以第二类永动机不可能实现这一规律作为出发点。
第二类永动机是指可以将从单一热源吸热全部转化为功,但大量事实证明这个过程是不可能实现的。
功能够自发地、无条件地全部转化为热;但热转化为功是有条件的,而且转化效率有所限制。
也就是说功自发转化为热这一过程只能单向进行而不可逆。
1851年开尔文勋爵把这一普遍规律总结为:不可能从单一热源吸收能量,使之完全变为有用功而不产生其他影响。
热力学第二定律的统计推导热力学第二定律是热力学中的重要定律,它告诉我们关于能量转化的方向性。
热力学第二定律的统计推导是通过统计力学的分子观点,从微观角度解释热力学定律的推论。
要理解热力学第二定律的统计推导,需要首先了解分子的运动行为。
根据统计力学的基本假设,分子是以一定的速度和方向运动的。
当一个物体被加热时,分子的热运动速度增加,它们会散布到更广泛的区域。
在一个封闭系统中,如果两个物体处于温度不同的状态,根据统计力学,分子会通过热传导从高温物体转移到低温物体。
这是因为高温物体的分子运动速度较快,碰撞频率较高,而低温物体的分子运动速度较慢,碰撞频率较低。
分子的碰撞会导致能量传递,从而实现热传导。
然而,根据热力学第二定律,自然界中热量不会自发地从低温物体传递到高温物体。
这样的过程是不可逆的。
为什么会出现这种不可逆性呢?统计推导告诉我们,不可逆性可以通过熵的概念进行解释。
熵是一个描述系统无序程度的物理量。
根据统计力学的分子观点,系统的熵与分子的排列方式有关。
更多的排列方式对应着更高的熵值。
假设有一个系统由高温物体和低温物体构成,初始状态下高温物体的熵较低,低温物体的熵较高。
如果可以实现热量自发地从低温物体传递到高温物体,系统的总熵会减小。
这会导致高温物体的熵增加,低温物体的熵减小。
由于熵的增加对应着无序程度的增加,这个过程是不可逆的。
根据热力学第二定律,自然界中热量传导的方向是从高温物体到低温物体,目的是实现整个系统的熵增加。
这样,高温物体的熵减小,低温物体的熵增加,系统的总熵增加。
除了热传导,热力学第二定律还有另外一个重要的推论:热量不可完全转化为功。
这是因为能量转化的过程中总会存在一定的损耗,导致无用能量的产生。
统计推导告诉我们,能量转化的损耗与分子碰撞的非弹性特性有关。
在能量转化的过程中,分子发生碰撞时会出现能量的损失,例如摩擦力引起的热量散失等。
这些非弹性碰撞会导致系统熵的增加,从而导致能量转化的不可逆性。
热力学第二定律热力学是研究能量转化和能量传递的学科,而热力学第二定律是其中最重要的基本定律之一。
它提供了关于能量转化的方向性和限制性的基本原理,对于理解自然界中的能量变化过程具有重要的意义。
本文将对热力学第二定律进行详细讨论和解释。
1. 热力学第二定律的表述热力学第二定律有多种不同的表述方式,其中包括开尔文表述、卡诺表述和统计热力学表述等。
这些表述方式虽然从不同的角度出发,但都涉及到能量传递和转化的方向性问题。
开尔文表述认为任何一个永动机都无法制造,即能量无法从自然界中被完全转化为有用的功。
这是因为在能量转化过程中总会产生一定的热量损失,而热量是无法完全转化为功的。
卡诺表述将热力学第二定律与热机的效率联系起来。
卡诺定理指出,在相同的温度下,所有工作于制冷剂和热源之间的热机中,卡诺热机的效率是最高的。
这说明热能无法完全转化为功,必然会有一部分热量被排放到冷源中。
统计热力学表述则从微观粒子的概率分布出发,将热力学第二定律与系统的熵变联系起来。
熵是系统的无序程度的度量,热力学第二定律表明自然界中的系统熵趋于增大。
2. 热力学第二定律的意义热力学第二定律揭示了自然界中一种普遍存在的趋势,即能量从高温热源流向低温热源。
这种趋势不仅在宏观尺度上成立,也在微观尺度上成立。
热力学第二定律的意义在于它提供了一个能量转化的方向性标准,使我们能够理解和预测自然界中的各种能量转化过程。
3. 熵的概念与热力学第二定律的关系熵是热力学中一个重要的概念,它用来衡量系统的无序程度。
熵的增加意味着系统的无序程度增加,而热力学第二定律指出,自然界中系统的熵总是趋于增大的。
从微观角度看,系统中微观粒子的运动状态具有无序性,而能量转化过程中总会使得系统的微观粒子趋于更多的运动状态,因此系统的熵趋于增大。
这也解释了为什么自然界中的能量转化过程总是存在能量损失和热量排放的现象,而无法实现全部转化为有用功的理想状态。
4. 热力学第二定律的应用热力学第二定律不仅是理论上的基础,也是工程和实际应用中的重要依据。