热力学第二定律辅导讲义
- 格式:ppt
- 大小:1.14 MB
- 文档页数:30
《热力学第二定律》讲义一、热力学第二定律的引入在我们生活的这个世界中,热现象无处不在。
从烧开水到汽车发动机的运转,从空调制冷到太阳能的利用,热的传递和转化始终伴随着我们。
而热力学第二定律,就是用来描述热现象中能量转化和传递的方向性规律。
想象一下,如果热能够自发地从低温物体传递到高温物体,那我们的世界将会变得多么奇妙。
冬天的时候,我们不需要取暖设备,房间里的温度会自动升高;冰箱也不再需要耗电来制冷,食物会自动保持低温。
但这样的情景在现实中从未发生,这背后隐藏着热力学第二定律的奥秘。
二、热力学第二定律的表述热力学第二定律有多种表述方式,其中最为常见的是克劳修斯表述和开尔文表述。
克劳修斯表述:热量不能自发地从低温物体传递到高温物体。
举个例子,一杯热水放在室温下会逐渐冷却,热量从热水传递到了周围的环境中。
但如果没有外界的干预,比如使用冰箱或其他制冷设备,热量不会自动从周围环境返回热水,使热水重新变热。
开尔文表述:不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。
比如说,一个热机从高温热源吸收热量,然后对外做功。
但在这个过程中,它不可避免地会向低温热源排放一些热量,无法将从高温热源吸收的全部热量都转化为有用功。
这两种表述虽然形式不同,但本质上是等价的,都揭示了热现象中能量转化和传递的不可逆性。
三、热力学第二定律的微观解释从微观角度来看,热力学第二定律与系统的微观状态数有关。
在一个孤立系统中,分子的运动是无序的。
随着时间的推移,系统总是趋向于从微观状态数少的状态向微观状态数多的状态演变。
例如,将两种不同的气体放在一个容器中,它们会逐渐混合均匀。
而要使混合后的气体重新分离成原来的两种纯净气体,几乎是不可能的。
这是因为混合后的微观状态数远远大于分离状态的微观状态数。
从概率的角度来说,系统向微观状态数多的方向发展的概率要大得多,这就导致了热现象中自发过程的方向性。
四、热力学第二定律的应用热力学第二定律在许多领域都有着重要的应用。
第三章 热力学第二定律§3.1 热力学第二定律1.自发过程自发过程:在自然条件下,能够发生的过程,称为自发过程。
自发过程的逆过程称为非自发过程。
所谓自然条件,是指不需要人为加入功的过程。
例如:(1) 热量从高温物体传入低温物体; (2)气体向真空膨胀;(3)锌片与硫酸铜的置换反应等,。
说明:自发过程是热力学中的不可逆过程,这是自发过程长的共同特征。
自发过程的逆过程都不能自动进行,自发过程的逆向必须消耗功。
2.热、功转换任何热机从高温1T 热源吸热1Q ,一部分转化为功W ,另一部分2Q 传给低温2T 热源。
将热机所作的功与所吸的热之比值称为热机效率,或称为热机转换系数,用η表示。
恒小于1。
即1W Q η-=若热机不向低温热源散热,20Q =,此时热机效率可达到100%,将所吸收的热全部变为功,实践证明这样的机器永远造不成。
人们将这种从单一热源吸热全部用来对外作功的机器,称为第二永动机。
2.热力学第二定律克劳修斯(Clausius )的说法:“不可能把热从低温物体传到高温物体,而不引起其它变化。
”开尔文(Kelvin )的说法:“不可能从单一热源取出热使之完全变为功,而不发生其他的变化。
”克劳修斯和开尔文的说法都是指某一件事情是“不可能”的,即指出某种自发过程的逆过程是不能自动进行的。
克劳修斯的说法是指明热传导的不可逆性,开尔文的说法是指明功转变为热的过程的不可逆性,这两种说法实际上是等效的。
热力学第二定律和热力第一定律一样,是建立在无数事实的基础上,是人类经验的总结。
它不能从其它更普遍的定律推导出来。
§3.2 卡诺循环与卡诺定理1.卡诺循环(Carnot cycle )卡诺循环:由恒温可逆膨胀、绝热可逆膨胀、恒温可逆压缩、绝热可逆压缩四个可逆步骤组成的循环过程。
以理想气体为工作物质,从高温T 1热源吸收Q 1的热量,一部分通过理想热机用来对外做功W ,另一部分的热量Q 2放给低温T 2热源。