四川大学化工原理气体吸收实验
- 格式:docx
- 大小:465.03 KB
- 文档页数:3
填料吸收塔实验一. 实验设备的特点:1. 使用方便, 安全可靠, 直观;2. 数据稳定,实验准确;3. 本装置体积小,重量轻,移动方便.二.实验装置的基本情况:实验流程示意图见图一,空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,•经过氨瓶总阀8进入氨气转子流量计9计量,•氨气通过转子流量计处温度由实验时大气温度代替。
其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。
分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。
•在吸入塔顶尾气之前,予先在吸收瓶14内放入1mL已知浓度的硫酸作为吸收尾气中氨之用。
吸收液的取样可用塔底6取样口进行。
填料层压降用∪形管压差计13测定。
四. 实验方法及步骤:1. 测量干填料层(△P/Z)─u关系曲线:先全开调节阀 2,后启动鼓风机,用阀 2 调节进塔的空气流量,按空气流量从小到大的顺序读取填料层压降△P,转子流量计读数和流量计处空气温度,•然后在对数坐标纸上以空塔气速 u为横坐标,以单位高度的压降△P/Z为纵坐标,标绘干填料层(△P/Z)─u关系曲线(见图二).2. 测量某喷淋量下填料层(△P/Z)─u关系曲线:用水喷淋量为40L/h时,用上面相同方法读取填料层压降△P,•转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, •一旦看到液泛现象时记下对应的空气转子流量计读数。
在对数坐标纸上标出液体喷淋量为40L/h下(△P/z)─u•关系曲线(见图二),确定液泛气速并与观察的液泛气速相比较。
3. 吸收系数的测定⑴选泽适宜的空气流量和水流量(建议水流量为30L/h)•根据空气转子流量计读数为保证混合气体中氨组分为0.02-0.03左右摩尔比,计算出氨气流量计流量读数。
⑵先调节好空气流量和水流量,打开氨气瓶总阀8调节氨流量,使其达到需要值,在空气,氨气和水的流量不变条件下操作一定时间过程基本稳定后,•记录各流量计读数和温度,记录塔底排出液的温度,并分析塔顶尾气及塔底吸收液的浓度。
最新化工原理实验报告吸收实验要点在进行化工原理实验,特别是吸收实验时,有几个关键要点需要关注:1. 实验目的:理解吸收过程中的质量传递原理,掌握吸收塔的操作和设计基础,以及熟悉相关设备的使用。
2. 实验原理:吸收实验通常涉及将气体中的某一组分通过与液体接触而转移到液体中的过程。
这一过程依赖于气液之间的浓度差和接触面积。
通常,气体从塔底进入,液体从塔顶喷洒下来,气体和液体在塔内逆流接触,实现质量传递。
3. 实验设备:主要包括吸收塔、气体流量计、液体流量计、温度计、压力计、分析仪器(如气相色谱仪)等。
确保所有设备校准正确,以保证实验数据的准确性。
4. 实验步骤:- 准备工作:检查所有设备是否正常,准备实验所需的化学试剂和标准溶液。
- 实验操作:按照实验指导书进行操作,包括设定气体和液体的流速、温度和压力等参数。
- 数据记录:准确记录实验过程中的所有观察和测量数据,包括气液流量、塔内温度和压力等。
- 结果分析:根据实验数据,计算吸收效率,分析影响吸收效果的因素。
5. 安全注意事项:在实验过程中,要严格遵守实验室安全规则,使用个人防护装备,处理化学品时要小心谨慎。
6. 实验结果分析:通过对收集到的数据进行分析,可以确定吸收塔的效率和操作条件对吸收效果的影响。
此外,还可以通过对比理论值和实验值,来评估实验的准确性和可靠性。
7. 结论:基于实验结果和分析,得出关于吸收过程效率和操作参数对吸收效果影响的结论。
同时,提出可能的改进措施和建议。
8. 参考文献:列出实验报告中引用的所有文献和资料,确保信息来源的准确性和可靠性。
以上是吸收实验的主要内容要点,每个实验报告的具体内容可能会根据实验的具体要求和条件有所不同。
姓名院 专业 班 年 月 日 实验内容 指导教师一、 实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数K Y a .三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。
但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。
(一)、空塔气速与填料层压降关系气体通过填料层压降△P 与填料特性及气、液流量大小等有关,常通过实验测定。
若以空塔气速o u [m/s]为横坐标,单位填料层压降ZP ∆[mmH 20/m]为纵坐标,在双对数坐标纸上标绘如图2-2-7-1所示。
当液体喷淋量L 0=0时,可知Z P ∆~o u 关系为一直线,其斜率约1.0—2,当喷淋量为L 1时,ZP ∆~o u 为一折线,若喷淋量越大,折线位置越向左移动,图中L 2>L 1。
每条折线分为三个区段,Z P ∆值较小时为恒持液区,Z P ∆~o u 关系曲线斜率与干塔的相同。
Z P ∆值为中间时叫截液区,ZP ∆~o u 曲线斜率大于2,持液区与截液区之间的转折点叫截点A 。
Z P ∆值较大时叫液泛区,吸收实验姓名院 专业 班 年 月 日 实验内容 指导教师 ZP ∆~o u 曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B 。
在液泛区塔已无法操作。
塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。
图2-2-7-1 填料塔层的ZP ∆~o u 关系图图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。
若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名院 专业 班 年 月 日 实验内容 指导教师 平均推动力可用对数平均浓度差法进行计算。
其吸收速率方程可用下式表示: m Ya A Y H K N ∆⋅⋅Ω⋅= (1) 式中:N A ——被吸收的氨量[kmolNH 3/h];Ω——塔的截面积[m 2]H ——填料层高度[m]∆Y m ——气相对数平均推动力K Y a ——气相体积吸收系数[kmolNH 3/m 3·h]被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):)()(2121X X L Y Y V N A -=-= (2) 式中:V ——空气的流量[kmol 空气/h]L ——吸收剂(水)的流量[kmolH 20/h]Y 1——塔底气相浓度[kmolNH 3/kmol 空气]Y 2——塔顶气相浓度[kmolNH 3/kmol 空气]X 1,X 2——分别为塔底、塔顶液相浓度[kmolNH 3/kmolH 20]由式(1)和式(2)联解得:mYa Y H Y Y V K ∆⋅⋅Ω-=)(21 (3) 为求得K Y a 必须先求出Y 1、Y 2和∆Y m 之值。
实验名称:化原吸收实验实验时间:2023年10月26日实验地点:化工原理实验室实验人员:张三、李四、王五一、实验目的1. 了解吸收塔的结构和操作原理。
2. 掌握吸收实验的基本操作方法。
3. 熟悉吸收塔的传质过程。
4. 学习如何测定吸收速率和吸收效率。
二、实验原理吸收是气液两相接触过程中,溶质从气相转移到液相的过程。
在吸收塔中,气体混合物与吸收剂逆流接触,使气体中的溶质被吸收剂吸收,从而实现气体的净化。
三、实验仪器与药品1. 实验仪器:吸收塔、气泵、流量计、温度计、压力计、秒表、记录仪等。
2. 实验药品:氨气、水、硫酸、苯等。
四、实验步骤1. 准备实验装置,检查仪器设备是否正常。
2. 打开气泵,调节气体流量,使气体以一定的流速通过吸收塔。
3. 加入适量的吸收剂,调节吸收剂的流量。
4. 观察气体在吸收塔中的流动情况,记录气体在吸收塔中的压力、温度、流量等参数。
5. 观察吸收剂在吸收塔中的流动情况,记录吸收剂的流量、压力、温度等参数。
6. 测定气体在吸收塔进出口的浓度,计算吸收速率和吸收效率。
五、实验结果与分析1. 吸收速率:根据实验数据,计算吸收速率,结果如下:气体进出口浓度差:Δc = 0.05 mol/mol吸收时间:t = 10 min吸收速率:v = Δc/t = 0.005 mol/mol·min2. 吸收效率:根据实验数据,计算吸收效率,结果如下:吸收效率:η = (1 - c出/c入) × 100% = (1 - 0.05/0.10) × 100% = 95%六、实验结论通过本次实验,我们了解了吸收塔的结构和操作原理,掌握了吸收实验的基本操作方法,熟悉了吸收塔的传质过程。
实验结果表明,本实验装置能够有效地进行气体吸收,吸收速率和吸收效率均较高。
七、实验讨论1. 影响吸收速率的因素有哪些?2. 如何提高吸收效率?3. 吸收实验在实际生产中的应用有哪些?八、实验心得通过本次实验,我们深刻认识到化工原理实验的重要性,实验不仅能够帮助我们巩固理论知识,还能够提高我们的动手能力和实际操作能力。
实验名称:气体吸收实验实验目的:1. 理解气体吸收的基本原理和过程。
2. 掌握气体吸收实验装置的操作方法。
3. 通过实验数据,分析气体吸收过程中影响因素的变化规律。
实验原理:气体吸收是利用液体与气体接触时,气体在液体中的溶解度随压力和温度的变化而变化,使气体中的某组分转移到液体中,从而实现气体净化或组分分离的过程。
本实验采用填料塔作为吸收设备,通过测定气体进出口的组成和流量,计算吸收效率。
实验仪器与试剂:1. 填料塔:1台2. 气体流量计:1个3. 气体分析仪:1台4. 水泵:1台5. 水浴锅:1台6. 水泵控制箱:1台7. 气源:空气8. 水源:自来水9. 溶液:NaOH溶液实验步骤:1. 检查实验装置,确保各部件连接牢固。
2. 将气体流量计连接到填料塔入口,将气体分析仪连接到填料塔出口。
3. 打开水泵,调节气体流量,使气体流量稳定。
4. 将NaOH溶液加入水浴锅中,预热至实验温度。
5. 打开NaOH溶液阀门,使溶液循环流动。
6. 调节气体流量,使气体在填料塔中的停留时间符合实验要求。
7. 记录气体进出口的组成和流量,计算吸收效率。
8. 关闭实验装置,清理实验现场。
实验数据与结果分析:1. 实验数据:- 进口气体流量:1.5 L/min- 出口气体流量:1.2 L/min- 进口气体组成:CO2 0.5%,O2 0.5%,N2 99%- 出口气体组成:CO2 0.1%,O2 0.1%,N2 99.8%- 吸收效率:98%2. 结果分析:本实验中,CO2在NaOH溶液中的溶解度较大,故在气体吸收过程中,CO2被有效去除。
实验结果表明,本实验装置具有良好的气体吸收性能,吸收效率达到98%。
实验总结:1. 本实验验证了气体吸收的基本原理,掌握了气体吸收实验装置的操作方法。
2. 通过实验数据,分析了气体吸收过程中影响因素的变化规律,为实际工程应用提供了参考。
3. 实验过程中,应注意实验装置的连接牢固,确保气体流量稳定,以及NaOH溶液的循环流动。
化工原理实验报告_吸收
实验名称:吸收实验
实验目的:
1. 掌握吸收塔的操作方法;
2. 熟悉吸收塔的工作原理;
3. 了解吸收塔在化工过程中的应用。
实验原理:
吸收是指将气体中的某种成分溶解在液体中的过程。
在工业生产中,吸收常用于气体分离和净化。
吸收塔是常用的吸收装置,常见的吸收塔有塔板吸收塔和填料吸收塔两种类型。
实验仪器及材料:
1. 塔式吸收塔;
2. 气源;
3. 转子流量计;
4. 吸收液;
5. 相应的连接管道。
实验步骤:
1. 将吸收液倒入吸收塔中,注意液位不要过高;
2. 连接气源至吸收塔的底部,控制气源流量;
3. 打开气源,调节气源流量;
4. 连接转子流量计并调节流量;
5. 观察吸收液的变化并记录实验数据。
实验数据记录和分析:
根据实验步骤所得到的数据,可以计算出气体吸收的效率和吸收塔的传质系数。
根据数据分析,可以得到吸收塔的工作效果和适用范围。
实验结果和结论:
通过实验可以得到气体吸收的效率和吸收塔的传质系数,进而评估吸收塔的性能。
根据实验结果,可以判断吸收塔是否适用于化工过程中的气体分离和净化。
根据实验结果和结论,可以调整吸收塔的操作方法和参数,进一步优化吸收塔的性能。
实验注意事项:
1. 操作吸收塔时需注意安全,避免发生意外事故;
2. 控制气源流量时需谨慎,避免发生压力过大或流量过大的情况;
3. 实验结束后,及时清洗吸收塔和相关设备。
一、实验名称气体吸收实验二、实验目的(1)观察气、液在填料塔内的操作状态,掌握吸收操作方法。
(2)测定在不同喷淋量下,气体通过填料层的压降与气速的关系曲线。
(3)测定在填料塔内用水吸收CO2的液相体积传质系数X K α。
(4) 对不同填料的填料塔进行性能测试比较。
三、实验原理液体吸收是运用混合气体中各组分在同一溶剂的溶解度差异,通过气液充分接触,溶解度较大的气体组分较多地进入液相而与其他组分分离的操作。
填料塔的流体力学特性是吸收设备的重要参数,可计算填料塔所需动力消耗和确定最佳操作气速。
流体力学特性用气体通过填料层产生的压降表示,在填料因子、填料层高度、液体喷淋密度一定时随气体速度的变化而变。
本实验采用水吸收CO2-空气混合气中的CO2,常压下CO2在水中溶解度较小,用水吸收CO2的操作为液膜控制,在低浓度吸收时填料层高度12a X X X LdXZ K X X*=Ω-⎰即12a X X X L dXK Z X X*=Ω-⎰; 气液平衡关系符合亨利定律,则12aX m X X L K Z X -=•Ω∆,121122111222()()ln ln m X X X X X X X X X X X X X ****∆-∆---∆==∆-∆-; 由亨利定律得Y X m*=,其中,1E ym Y P y ==-;由测定物性参数水温、大气压确定亨利常数。
同时测定CO2-空气混合气体进、出填料塔CO2含量(摩尔分率),即可获得X *。
通过气相色谱仪或CO2分析仪测塔底、塔顶气相中CO2摩尔分率,转子流量计测混合气体用量,涡轮流量计测吸收剂水用量,即可测定液体体积传质系数a X K 。
四、实验装置图及主要设备(包括名称、型号、规格)(1)吸收实验流程图如下图所示:1-气体调节阀;2-孔板流量计;3-闸阀;;4,12,13-空气切换阀;5-CO2流量计;6-混合气体流量计;7-涡轮流量计;8,10-水流量调节阀;9-拉西环填料塔;11-θ环填料塔;14-塔底液位调节阀(2)设备及仪表。
化工原理吸收与解吸实验报告一、实验目的:通过本次实验,学生们可以了解化工原理中吸收与解吸的基本原理,掌握吸收塔的操作技能,以及熟悉吸收剂的选择和使用方法。
二、实验原理:1. 吸收与解吸的基本原理吸收是指气体在接触液体时被液体所溶解或被化学反应转化为溶质的过程。
而解吸则是指气体从液体中逸出或分离出来的过程。
在化工生产过程中,常用于气体分离、纯化和回收等方面。
2. 吸收塔吸收塔是一种常见的设备,用于进行气液相接触和传质过程。
其主要结构包括进料口、出料口、填料层等。
填料层可以增加气液接触面积,提高传质效率。
3. 吸收剂吸收剂是指用于吸收气体的液体,在选择时需要考虑其对目标气体的亲和力、溶解度、稳定性以及成本等方面因素。
三、实验步骤:1. 将制备好的NaOH溶液倒入吸收塔中,并将塔内温度升至60℃左右。
2. 将CO2气体通过气体流量计和压力表接入吸收塔顶,调节气体流量和压力使其稳定。
3. 观察吸收塔内液位变化,记录液位高度和时间,计算出CO2的吸收速率。
4. 停止供气后,将塔内液体倒出并加入硫酸溶液进行解吸,记录解吸速率。
四、实验结果:1. 吸收速率:在60℃下,CO2的吸收速率为0.016mol/min。
2. 解吸速率:在添加硫酸溶液后,CO2的解吸速率为0.014mol/min。
五、实验分析:1. 实验结果表明,在所选条件下,NaOH溶液对CO2具有较好的亲和力和溶解度。
2. 在实际生产中,需要根据具体情况选择合适的吸收剂,并结合填料层设计等因素来提高传质效率。
六、实验结论:本次实验成功地展示了化工原理中吸收与解吸的基本原理,并通过操作塔内填料层等设备提高了传质效率。
同时还验证了NaOH溶液对CO2具有较好的亲和力和溶解度。
气体吸收实验1.实验目的(1)观测气、液在填料塔内的操作状态,掌握吸收操作方法。
(2)测定在不同喷淋量下,气体通过填料层的压降与气速的关系曲线。
(3)测定在填料塔内用水吸收CO2的液相体积传质系数K X a。
(4)对不同填料的填料塔进行性能测试比较。
2.实验原理(1)气体吸收是运用混合气体中各种组分在同一溶液中的溶解度的差异,通过气液充分接触,溶解度较大的气体组分进入液相而与其他组分分离的操作。
气体混合物以一定气速通过填料塔内的填料层时,与吸收剂液相想接触,进行物资传递。
气,夜两项在吸收塔内除物质传递外,其流动相互影响,还具有自己的流体力学特征。
填料塔的流体力学特征是吸收设备的重要参数,他包括了压降和液泛的重要规律。
填料塔的流体力学特征是以气体通过填料层所产生的压降来表示。
该压降在填料因子、填料层高度、液体喷淋密度一定的情况下随气体速度变化而变化,与压降与气速的关系如图。
气体通过干填料层时,其压降与空塔时,其压降与空气塔气速的函数关系在双对数坐标上为一条直线,其斜率为 1.8-2.0.当有液体喷淋时,气体低速流过填料层,压降与气速的关系几乎与L=0的关系线平行,随着气速的增加出现载点B与B’,填料层内持液量增加,压降与气速的关系关联线向上弯曲,斜率变大,当填料层持液越积越多时,气体的压降几乎是垂直上升,气体以泡状通过液体,出现液泛现象,P-U线出现载点C,称此点为泛点。
(2)反应填料塔性能的主要参数之一是传质系数。
影响传质系数的因素很多,对不同系统和不同吸收设备,传质系数各不相同,所以不可能有一个通用的计算式计算传质系数。
本实验采用水来吸收空气中的CO2,常压下CO2在水中的溶解度比较小,用水吸收CO2的操作中是液膜控制吸收的过程,所以在低浓度吸收时填料的计算式为H=LKXaΩ∫dXX∗−XX1X2K Xa =LH.Ω∫dXX∗−XX1X2当气液平衡关系符合亨利定律时,K Xa =LH.Ω(x1−x2)∆Xm∆Xm=∆X1−∆X2ln∆X1∆X2=(X1∗−X1)−(X2∗−X2)lnX1∗−X1X2∗−X2实中:L——吸收剂的用量,kmol/h;Ω——填料塔截面积,m2;∆Xm——塔顶、塔底液相浓度差的对数平均值;KXa——液相体积传质系数,kmol/(m3.h. ∆Xm)H——填料层的高度,m;X1、X2——分别为塔底、塔顶液相中CO2比摩尔分率;X1∗——与塔底气相浓度平衡时塔底液相中CO2比摩尔分率;X2∗——与塔顶气相浓度平衡时塔顶液相中CO2比摩尔分率;对水吸收CO2-空气混合气中CO2的体系,平衡关系服从亨利定律,平衡时气相浓度,与液相浓度的平衡关系式近似为X*=Ym 其中m=EPY=y1−y式中:Y——塔内任意一截面气象中CO2的浓度(比摩尔分率表示)Y——塔内任意一截面气象中CO2的浓度(摩尔分率表示)X*——与气相平衡时的液相CO2浓度(比摩尔分率表示)m——相平衡常数E——亨利常数,MPaP——混合气体总压,近似大气压,MPa通过测定物性参数水温和大气压,查取有关数据。
吸收实验一、实验目的1、了解填料吸收塔的一般结构和工业吸收过程流程;2、掌握吸收总传质系数K a的测定方法;x3、考察吸收剂进口条件的变化对吸收效果的影响;4、了解处理量变化对吸收效果的影响。
二、实验原理1、概述吸收过程是依据气相中各溶质组分在液相中的溶解度不同而分离气体混合物的单元操作。
在化学工业中吸收操作广泛应用于气体原料净化、有用组分的回收、产品制取和废气治理等方面。
在吸收研究过程中,一般可分为对吸收过程本身的特点或规律进行研究和对吸收设备进行开发研究两个方向。
前者的研究内容包括吸收剂的选择、确定因影响吸收过程的因素、测定吸收速率等,研究的结果可为吸收工艺设计提供依据,或为过程的改进及强化指出方向;后者研究的重点为开发新型高效的吸收设备,如新型高效填料、新型塔板结构等。
吸收通常在塔设备内进行,工业上尤其以填料塔用的普遍。
填料塔一般由以K a下几部分构成:(1)圆筒壳体;(2)填料;(3)支撑板;(4)液体预分布装置;(5) x液体再分布器;(6)捕沫装置;(7)进、出口接管等等。
其中,塔内放置的专用填料作为气液接触的媒介,其作用是使从塔顶流下的流体沿填料表面散布成大面积的液膜,并使从塔底上升的气体增强湍动,从而为气液接触传质提供良好条件。
液体预分布装置的作用是使得液体在塔内有良好的均匀分布。
而液体在从塔顶向下流动的过程中,由于靠近塔壁处的空隙大,流体阻力小,液体有逐渐向塔壁处汇集的趋向,从而使液体分布变差。
液体再分布器的作用是将靠近塔壁处的液体收集后再重新分布。
填料是填料吸收塔最重要的部分。
对于工业填料,按照其结构和形状,可以分为颗粒填料和规整填料两大类。
其中,颗粒填料是一粒粒的具有一定几何形状和尺寸的填料颗粒体,一般以散装(乱堆)的方式堆积在塔内。
常见的大颗粒填料有拉西环、鲍尔环、阶梯环、弧鞍环、矩鞍环等等。
填料等材质可以使金属、塑料、陶瓷等。
规整填料是由许多具有相同几何形状的填料单元组成,以整砌的方式装填在塔内。
化工原理吸收与解吸实验报告一、引言1.1 实验目的实验目的是通过对吸收与解吸过程的研究,了解吸收与解吸的基本原理,并掌握吸收与解吸实验的操作方法和计算技巧。
### 1.2 实验原理吸收是指气体或溶质与液体或固体之间相互作用,使溶质从气体相转变为液体或固体相的过程。
解吸则是溶质从液体或固体转变为气体相的过程。
吸收与解吸常用于气体的分离、净化和某些溶剂的回收等工艺中。
二、实验设备和试剂2.1 实验设备•吸收塔•解吸塔•气液分离器•气液流动调节器 ### 2.2 试剂•饱和盐水溶液•乙酸乙酯溶液三、实验步骤3.1 吸收实验1.将吸收塔与气液分离器连接。
2.将饱和盐水溶液注入吸收塔中。
3.将待吸收的气体通过塔底进气管导入吸收塔底部。
4.调节气体流量和液体流量,保持稳定。
5.收集吸收后的液体样品,进行后续分析。
3.2 解吸实验1.将解吸塔与气液分离器连接。
2.将乙酸乙酯溶液注入解吸塔中。
3.将吸收塔中的液体样品通过塔底进液管导入解吸塔底部。
4.调节气体流量和液体流量,保持稳定。
5.收集解吸后的气体样品,进行后续分析。
四、实验数据分析4.1 吸收实验数据采集吸收塔中的液体样品,并测量其溶质浓度。
### 4.2 解吸实验数据采集解吸塔中的气体样品,并测量其溶质浓度。
五、结果与讨论5.1 实验结果分析吸收实验数据和解吸实验数据,得出吸收和解吸过程中溶质的浓度变化情况,并绘制相关曲线图。
### 5.2 讨论分析吸收与解吸过程中可能出现的影响因素,探讨导致实验结果差异的原因。
六、结论通过吸收与解吸实验,我们深入了解了吸收与解吸的原理和操作方法,并获得了相关的实验数据。
实验结果表明,在特定条件下,吸收与解吸能够有效实现气体与液体或固体的相互转换。
实验过程中注意到仍存在一些影响因素,需进一步研究和优化实验条件。
七、参考文献[1] 张三, 李四, 王五. 吸收与解吸原理及应用[M]. 化学出版社, 20XX. [2] ABC. 吸收与解吸的研究进展[J]. 中国化学, 20XX, 38(3): 1-10.。
四川大学化工学院化工原理课程设计说明书题目:设计水吸收半水煤气体混合物中的二氧化碳的填料吸收塔专业:过程装备与控制工程年级: 2 0 1 1 级学生姓名学号:指导老师:设计时间:目录第一章设计任务 (3)第二章设计流程的选择 (4)第三章吸收塔的设计计算 (5)3.1 气液平衡关系 (6)3.2 确定吸收剂的用量 (6)3.3 计算热效应 (7)3.4 塔径的计算 (8)3.4.1 混合气体的密度 (8)3.4.2 填料的选择 (8)3.4.2 计算塔径 (11)3.5喷淋密度的校核 (12)K a计算 (13)3.6总传质系数X3.7 填料层高度的计算 (14)3.8 填料层阻力计算 (16)第四章附属设备的选型和计算 (16)4.1 液体喷淋装置 (16)4.2 液体再分布器 (18)4.3 塔附属高度 (19)4.4 填料支撑板 (19)4.5 填料限定装置 (20)4.6 气体入口装置 (20)4.7 除沫装置 (20)4.8 封头 (21)4.9 泵的选择 (21)第五章设计结果概览 (23)第六章设计评价 (25)主要符号说明 (27)参考文献 (28)第一章设计任务题目:设计水吸收半水煤气体混合物中的二氧化碳的填料吸收塔目的和意义:在合成氨工艺中,由任何含碳原料制得的原料气(半水煤气)都含有相当量的二氧化碳,这些二氧化碳在进入合成工序以前必须清除干净,因为在合成过程中为高温高压,在高压下,二氧化碳很容易化成干冰,会堵塞设备和管道,给操作带来很大的危害;另外,二氧化碳的存在还会使氨合成的催化剂中毒,而且还给清除少量一氧化碳过程带来困难,同时二氧化碳又是制造尿素、碳酸氢铵、纯碱和干冰的重要原料。
因此,合成氨生产中,二氧化碳的脱除极其回收利用往往是脱碳过程的双重目的。
已知数据(一)气体混合物:2.气体量:42003/Nm h3.温度:30C4.压力:17003/KN m(二)气体出口要求(V%):2CO0.65%(三)吸收剂:水第二章 设计流程的选择吸收装置的流程主要有一下几种:(1)逆流吸收:气体自塔底进入由塔顶排出,液相自塔顶进入由塔底排出,此即逆流操作。
化工原理实验—吸收1. 引言吸收是化工领域中常见的物质分离和净化方法之一。
它通过将气体或液体中的有害或有用成分吸附到溶液或固体表面上来实现分离和净化的目的。
在本实验中,我们将学习和探索吸收的基本原理和应用。
2. 实验目的本实验的主要目的是通过实验操作和数据分析,加深对吸收原理的理解,掌握吸收过程中的计算和分析方法,并了解吸收在化工工程中的应用。
3. 实验原理吸收是指气体或液体中的溶质在吸收剂(例如溶液或固体)中被吸附或溶解的过程。
吸收剂可以选择根据目标溶质的特性,吸附剂的选择要考虑化学亲和力、溶解度、扩散速率等因素。
在吸收过程中,传质是一个重要的因素。
传质可以通过质量传递和动量传递来实现。
质量传递包括分子扩散、对流传质和表面吸附等。
動量传递則以氣體相、液體相間的質量轉移的能力來表現。
吸收实验可以使用装置,如吸收柱或喷淋塔,为气体和液体之间的接触提供更大的界面积。
此外,经过精确设计和调整,吸收装置可以提高传质效率,实现高效的吸收效果。
4. 实验步骤步骤一:准备工作•确保所有实验设备和试剂已准备齐全。
•检查实验装置是否正常,无泄漏和损坏。
步骤二:实验装置的组装和调整•根据吸收实验的要求,安装吸收柱或喷淋塔。
•调整气体和液体的流量控制,以确保适当的接触和传质效率。
步骤三:实验操作•启动气体和液体的进料系统,调整流量。
•收集样品以进行后续分析,记录有关流量、温度、压力等参数的数据。
步骤四:数据分析•根据收集的样品数据,计算吸收效率、传质系数等参数。
•对数据进行统计和图表分析,以便进行实验结果的评估和比较。
5. 实验注意事项•在实验操作过程中,要注意设备和试剂的安全使用。
•在实验前要明确吸收剂和溶质的性质,并根据需要进行必要的预处理。
•实验过程中要注意将气体和液体的流速和温度适当控制,以保证实验结果的准确性。
6. 实验结果与讨论根据实验数据进行分析后,我们可以得到吸收效率和传质系数等参数的计算结果。
对于不同的吸收剂和溶质,我们可以根据实验结果评估其吸附和溶解的效果,并对吸收过程中的传质机制进行讨论。
气体吸收实验
1.实验目的
(1)观测气、液在填料塔内的操作状态,掌握吸收操作方法。
(2)测定在不同喷淋量下,气体通过填料层的压降与气速的关系曲线。
(3)测定在填料塔内用水吸收CO2的液相体积传质系数K X a。
(4)对不同填料的填料塔进行性能测试比较。
2.实验原理
(1)气体吸收是运用混合气体中各种组分在同一溶液中的溶解度的差异,通过气液充分接触,溶解度较大的气体组分进入液相而与其他组分分离的操作。
气体混合物以一定气速通过填料塔内的填料层时,与吸收剂液相想接触,进行物资传递。
气,夜两项在吸收塔内除物质传递外,其流动相互影响,还具有自己的流体力学特征。
填料塔的流体力学特征是吸收设备的重要参数,他包括了压降和液泛的重要规律。
填料塔的流体力学特征是以气体通过填料层所产生的压降来表示。
该压降在填料因子、填料层高度、液体喷淋密度一定的情况下随气体速度变化而变化,与压降与气速的关系如图。
气体通过干填料层时,其压降与空塔时,其压降与空气塔气速的函数关系在双对数坐标上为一条直线,其斜率为 1.8-2.0.当有液体喷淋时,气体低速流过填料层,压降与气速的关系几乎与L=0的关系线平行,随着气速的增加出现载点B与B’,填料层内持液量增加,压降与气速的关系关联线向上弯曲,斜率变大,当填料层持液越积越多时,气体的压降几乎是垂直上升,气体以泡状通过液体,出现液泛现象,P-U线出现载点C,称此点为泛点。
(2)反应填料塔性能的主要参数之一是传质系数。
影响传质系数的因素很多,对不同系统和不同吸收设备,传质系数各不相同,所以不可能有一个通用的计算式计算传质系数。
本实验采用水来吸收空气中的CO2,常压下CO2在水中的溶解度比较小,用水吸收CO2的操作中是液膜控制吸收的过程,所以在低浓度吸收时填料的计算式
为H=
L
K
Xa
Ω
∫dX
X∗−X
X1
X2
K Xa =L
H.Ω
∫dX
X∗−X
X1
X2
当气液平衡关系符合亨利定律时,
K Xa =L
H.Ω
(x1−x2)
∆Xm
∆Xm=∆X1−∆X2
ln
∆X1
∆X2
=
(X1∗−X1)−(X2∗−X2)
ln
X1∗−X1
X2∗−X2
实中:L——吸收剂的用量,kmol/h;
Ω——填料塔截面积,m2;
∆Xm——塔顶、塔底液相浓度差的对数平均值;
K
Xa
——液相体积传质系数,kmol/(m3.h. ∆Xm)
H——填料层的高度,m;
X1、X2——分别为塔底、塔顶液相中CO2比摩尔分率;
X1∗——与塔底气相浓度平衡时塔底液相中CO2比摩尔分率;
X2∗——与塔顶气相浓度平衡时塔顶液相中CO2比摩尔分率;
对水吸收CO2-空气混合气中CO2的体系,平衡关系服从亨利定律,平衡时气相浓度,与液相浓度的平衡关系式近似为
X*=Y
m 其中m=E
P
Y=y
1−y
式中:Y——塔内任意一截面气象中CO2的浓度(比摩尔分率表示)
Y——塔内任意一截面气象中CO2的浓度(摩尔分率表示)
X*——与气相平衡时的液相CO2浓度(比摩尔分率表示)
m——相平衡常数
E——亨利常数,MPa
P——混合气体总压,近似大气压,MPa
通过测定物性参数水温和大气压,查取有关数据。
因为吸收剂是水,从塔顶喷到填料层,所以塔顶的CO2浓度X2=0,塔底液相中CO2的浓度可由吸收塔物料衡算求取,即
V(Y1-Y2)=L(X1-X2)
因为X2=0,所以
X1=V/L*(Y1-Y2)
式中:V——惰性气体空气流量,kmol/h
Y1、Y2——分别为塔底、塔顶气相中CO2比摩尔分率。
实验步骤
(1)理清流程,熟悉测试仪表的使用。
(2)确定要测定填料塔,全开气体切换球阀1阀35和液体切换阀6;关闭其余填料塔的气体、液体切换阀;全开空气进口阀31以及气体切换阀29;启动风机,让空气进入填料塔底部。
用空气进口阀31调节空气流量,流量从小到大,每调节一次风量,测定一次填料层压降∆P,共采集7-10组数据,由此可作出干填料时,风量与压降的关系曲线。
(3)通过调节阀4调节水量,维持喷淋量不变,用空气进口阀31调节空气流量从小到大,没调一次风量,测定一次填料层压降∆P,共采集7-10组数据,由此测出是填料操作时,风量与压降的关系曲线。
在操作过程中,注意观察液封装置,以避免空气从液封中溢出。
(4)通过调节阀4,改变入塔水量,重复第三操作步骤,可测得不同水量下风量与压降之间的关系曲线,完成气液在填料塔内的流体力学性能测定。
(5)开启风机,让空气进入填料塔。
(6)通过取样点23取样,用CO2气体分析仪分析其CO2的含量。
(7)调节清水阀4,流量从小到大,需采集4-6组数据。
每调节一次,稳定3min-5min,记录水量、和空气流量,采集26出塔样点进行CO2分析,确定Y2,完成填料塔内液相体积传质系数的测定。
(8)测定水温和大气压。
(9)完成测定后,停水,关风机。