2013-2014学年 高中数学 人教A版选修1-1 第三章 章末复习课
- 格式:ppt
- 大小:2.24 MB
- 文档页数:21
第三章 章末检测(B)(时间:120分钟 满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1. 已知函数y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定2.任一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度是( )A .0B .3C .-2D .3-2t3.已知曲线y =2ax 2+1过点(a ,3),则该曲线在该点处的切线方程为( ) A .y =-4x -1 B .y =4x -1 C .y =4x -11 D .y =-4x +74.若点P 在曲线y =x 3-3x 2+(3-3)x +34上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( )A.⎣⎡⎦⎤0,π2B.⎣⎡⎦⎤0,π2 ∪2,3ππ⎡⎫⎪⎢⎣⎭C. 2,3ππ⎡⎫⎪⎢⎣⎭D.⎣⎡⎦⎤0,2π3 5.函数f (x )=x 3+ax -2在区间(1,+∞)内是增函数,则实数a 的取值范围是( )A .[3,+∞)B .[-3,+∞)C .(-3,+∞)D .(-∞,-3)6.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -27.已知a >0,函数f (x )=-x 3+ax 在[1,+∞)上是单调减函数,则a 的最大值为( ) A .1 B .2 C .3 D .48.若函数f (x )=a sin x +13cos x 在x =π3处有最值,那么a 等于( )A.33 B .-33 C.36 D .-369.函数y =x -sin x ,x ∈⎣⎡⎦⎤π2,π的最大值是( )A .π-1 B.π2-1C .πD .π+110. 函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个11.函数f (x )=x1-x的单调增区间是( )A .(-∞,1)B .(1,+∞)C .(-∞,1),(1,+∞)D .(-∞,-1),(1,+∞)12.某银行准备新设一种定期存款业务,经预测,存款量与存款利率成正比,比例系数为k (k >0),贷款的利率为4.8%,假设银行吸收的存款能全部放贷出去.若存款利率为x (x ∈(0,0.048)),则存款利率为多少时,银行可获得最大利益( )A .0.012B .0.024C .0.032D .0.036 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________________________________________________________________________.14.设函数f (x )=ax 3-3x +1 (x ∈R ),若对于x ∈[-1,1],都有f (x )≥0,则实数a 的值为________________________________________________________________________.15. 如图,内接于抛物线y =1-x 2的矩形ABCD ,其中A 、B 在抛物线上运动,C 、D 在x 轴上运动,则此矩形的面积的最大值是________.16.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示过原点的曲线,且在x =±1处的切线的倾斜角均为34π,有以下命题:①f (x )的解析式为f (x )=x 3-4x ,x ∈[-2,2]. ②f (x )的极值点有且只有一个.③f (x )的最大值与最小值之和等于零. 其中正确命题的序号为________.三、解答题(本大题共6小题,共70分)17.(10分)若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.18.(12分)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值.(1)求a ,b 的值与函数f (x )的单调区间;(2)若对x ∈[-1,2],不等式f (x )<c 2恒成立,求c 的取值范围.19.(12分)某大型商厦一年内需要购进电脑5 000台,每台电脑的价格为4 000元,每次订购电脑的其它费用为1 600元,年保管费用率为10%(例如,一年内平均库存量为150台,一年付出的保管费用60 000元,则60 000150×4 000=10%为年保管费用率),求每次订购多少台电脑,才能使订购电脑的其它费用及保管费用之和最小?20.(12分)已知a ≥0,函数f (x )=(x 2-2ax )e x .(1)当x 为何值时,f (x )取得最小值?证明你的结论; (2)设f (x )在[-1,1]上是单调函数,求a 的取值范围.21.(12分)设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.22.(12分)已知函数f (x )=x 2+ln x .(1)求函数f (x )在[1,e]上的最大值和最小值;(2)求证:当x ∈(1,+∞)时,函数f (x )的图象在g (x )=23x 3+12x 2的下方.第三章 导数及其应用(B) 答案1.B [f ′(x A )和f ′(x B )分别表示函数图象在点A 、B 处的切线斜率,故f ′(x A )<f ′(x B ).] 2.B [物体的初速度即为t =0时物体的瞬时速度,即函数s (t )在t =0处的导数. s ′(0)=s ′|t =0=(3-2t )|t =0=3.]3.B [∵曲线过点(a ,3),∴3=2a 2+1,∴a =1, ∴切点为(1,3).由导数定义可得y ′=4ax =4x , ∴该点处切线斜率为k =4,∴切线方程为y -3=4(x -1),即y =4x -1.] 4.B5.B [f ′(x )=3x 2+a .令3x 2+a ≥0, 则a ≥-3x 2,x ∈(1,+∞),∴a ≥-3.]6.A [∵y ′=x ′(x +2)-x (x +2)′(x +2)2=2(x +2)2,∴k =y ′|x =-1=2(-1+2)2=2,∴切线方程为:y +1=2(x +1),即y =2x +1.] 7.C8.A [f ′(x )=a cos x -13sin x ,由题意f ′⎝⎛⎭⎫π3=0, 即a ·12-13×32=0,∴a =33.]9.C [y ′=1-cos x ≥0,所以y =x -sin x 在⎣⎡⎦⎤π2,π上为增函数.∴当x =π时, y max =π.]10.A [由图象看,在图象与x 轴的交点处左侧f ′(x )<0,右侧f ′(x )>0的点才满足题意,这样的点只有一个B 点.]11.C [∵f ′(x )=x ′(1-x )-x (1-x )′(1-x )2=1-x +x (1-x )2=1(1-x )2>0,又x ≠1, ∴f (x )的单调增区间为(-∞,1),(1,+∞).]12.B [由题意知,存款量g (x )=kx (k >0),银行应支付的利息h (x )=xg (x )=kx 2, x ∈(0,0.048).设银行可获得收益为y ,则y =0.048kx -kx 2.于是y ′=0.048k -2kx ,令y ′=0,解得x =0.024,依题意知y 在x =0.024处取得最大值.故当存款利率为0.024时,银行可获得最大收益.]13.3解析 由切点(1,f (1))在切线y =12x +2上,得f (1)=12×1+2=52.又∵f ′(1)=12,∴f ′(1)+f (1)=12+52=3.14.4解析 若x =0,则不论a 取何值,f (x )≥0,显然成立;当x ∈(0,1]时,f (x )=ax 3-3x +1≥0可转化为a ≥3x 2-1x3,设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间⎝⎛⎭⎫0,12上单调递增,在区间⎝⎛⎦⎤12,1上单调递减, 因此g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4; 当x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可转化为a ≤3x 2-1x3,设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间[-1,0)上单调递增. 因此g (x )min =g (-1)=4,从而a ≤4, 综上所述,a =4. 15.439解析 设CD =x ,则点C 坐标为⎝⎛⎭⎫x2,0. 点B 坐标为⎝⎛⎭⎫x2,1-⎝⎛⎭⎫x 22, ∴矩形ABCD 的面积S =f (x )=x ·⎣⎡⎦⎤1-⎝⎛⎭⎫x 22 =-x34+x (x ∈(0,2)).由f ′(x )=-34x 2+1=0,得x 1=-23(舍),x 2=23,∴x ∈⎝⎛⎭⎫0,23时,f ′(x )>0,f (x )是递增的,x ∈⎝⎛⎭⎫23,2时,f ′(x )<0,f (x )是递减的, 当x =23时,f (x )取最大值439.16.①③解析 f ′(x )=3x 2+2ax +b , 由题意得f (0)=0,f ′(-1)=f ′(1)=tan 3π4=-1.∴⎩⎪⎨⎪⎧c =03-2a +b =-13+2a +b =-1,∴a =0,b =-4,c =0.∴f (x )=x 3-4x ,x ∈[-2,2].故①正确.由f ′(x )=3x 2-4=0得x 1=-233,x 2=233.根据x 1,x 2分析f ′(x )的符号、f (x )的单调性和极值点.x =233是极小值点也是最小值点.f (x )min +f (x )max =0.∴②错,③正确. 17.解 f ′(x )=x 2-ax +a -1,由题意知f ′(x )≤0在(1,4)上恒成立, 且f ′(x )≥0在(6,+∞)上恒成立. 由f ′(x )≤0得x 2-ax +a -1≤0, 即x 2-1≤a (x -1).∵x ∈(1,4),∴x -1∈(0,3),∴a ≥x 2-1x -1=x +1.又∵x +1∈(2,5),∴a ≥5, ① 由f ′(x )≥0得x 2-ax +a -1≥0, 即x 2-1≥a (x -1).∵x ∈(6,+∞),∴x -1>0,∴a ≤x 2-1x -1=x +1.又∵x +1∈(7,+∞),∴a ≤7, ② ∵①②同时成立,∴5≤a ≤7.经检验a =5或a =7都符合题意, ∴所求a 的取值范围为5≤a ≤7. 18.解 (1)f (x )=x 3+ax 2+bx +c , f ′(x )=3x 2+2ax +b ,由f ′⎝⎛⎭⎫-23=129-43a +b =0, f ′(1)=3+2a +b =0得a =-12,b =-2.f ′(x )=3x 2-x -2=(3x +2)(x -1),令f ′(x )>0,得x <-23或x >1,令f ′(x )<0,得-23<x <1.所以函数f (x )的递增区间是⎝⎛⎭⎫-∞,-23和(1,+∞),递减区间是⎝⎛⎭⎫-23,1. (2)f (x )=x 3-12x 2-2x +c ,x ∈[-1,2],由(1)知,当x =-23时,f ⎝⎛⎭⎫-23=2227+c 为极大值, 而f (2)=2+c ,则f (2)=2+c 为最大值, 要使f (x )<c 2,x ∈[-1,2]恒成立,则只需要c 2>f (2)=2+c ,得c <-1或c >2.19.解 设每次订购电脑的台数为x ,则开始库存量为x 台,经过一个周期的正常均匀销售后,库存量变为零,这样又开始下一次的订购,因此平均库存量为12x 台,所以每年的保管费用为12x ·4 000·10%元,而每年的订货电脑的其它费用为5 000x·1 600元,这样每年的总费用为5 000x ·1 600+12x ·4 000·10%元.令y =5 000x ·1 600+12x ·4 000·10%,y ′=-1x 2·5 000·1 600+12·4 000·10%.令y ′=0,解得x =200(台).也就是当x =200台时,每年订购电脑的其它费用及保管费用总费用达到最小值,最小值为80 000元.20.解 (1)对函数f (x )求导数,得 f ′(x )=(x 2-2ax )e x +(2x -2a )e x =[x 2+2(1-a )x -2a ]e x .令f ′(x )=0,得[x 2+2(1-a )x -2a ]e x =0, 从而x 2+2(1-a )x -2a =0.解得x 1=a -1-1+a 2,x 2=a -1+1+a 2, 其中x 1<x 2.当x 变化时,f ′(x )、f (x )的变化如下表:12当a ≥0时,x 1<-1,x 2≥0.f (x )在(x 1,x 2)为减函数,在(x 2,+∞)为增函数. 而当x <0时,f (x )=x (x -2a )e x >0;当x =0时,f (x )=0,所以当x =a -1+1+a 2时,f (x )取得最小值.(2)当a ≥0时,f (x )在[-1,1]上为单调函数的充要条件是x 2≥1,即a -1+1+a 2≥1,解得a ≥34.综上,f (x )在[-1,1]上为单调函数的充分必要条件为a ≥34.即a 的取值范围是⎣⎡⎭⎫34,+∞.21.(1)解 由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R .令f ′(x )=0,得x =ln 2. 于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ).(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R , 于是g ′(x )=e x -2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增. 于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0, 即e x -x 2+2ax -1>0, 故e x >x 2-2ax +1.22.(1)解 ∵f (x )=x 2+ln x ,∴f ′(x )=2x +1x.∵x >1时,f ′(x )>0,∴f (x )在[1,e]上是增函数,∴f (x )的最小值是f (1)=1,最大值是f (e)=1+e 2. (2)证明 令F (x )=f (x )-g (x ) =12x 2-23x 3+ln x , ∴F ′(x )=x -2x 2+1x =x 2-2x 3+1x=x 2-x 3-x 3+1x =(1-x )(2x 2+x +1)x.∵x >1,∴F ′(x )<0,∴F (x )在(1,+∞)上是减函数,∴F (x )<F (1)=12-23=-16<0.∴f (x )<g (x ).∴当x ∈(1,+∞)时,函数f (x )的图象在g (x )=23x 3+12x 2的下方.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
描述:例题:高中数学选修1-1(人教A版)知识点总结含同步练习题及答案第三章 导数及其应用 3.3 导数在研究函数中的应用一、学习任务1. 了解函数的单调性与导数的关系;能利用导数研究函数的单调性;会求不超过三次的多项式函数的单调区间.2. 了解函数的极大(小)值、最大(小)与导数的关系;会求函数的极大(小)值,以及在指定区间上函数的最大(小)值.二、知识清单导数与函数的图象 利用导数研究函数的单调性 利用导数求函数的极值利用导数求函数的最值三、知识讲解1.导数与函数的图象(1)导数 表示函数 在点 处的切线斜率.当切线斜率为正值时,切线的倾斜角小于 ,函数曲线呈上升状态;当切线的斜率为负值时,切线的倾斜角大于 且小于 ,函数曲线呈下降状态.(2)如果在区间 内恒有 ,那么函数 在区间 内是常函数.()f ′x 0y =f (x )(,f ()x 0x 090∘90∘180∘(a ,b )(x )=0f′y =f (x )(a ,b ) 是函数 的导函数, 的图象如图所示,则 的图象最有可能是下列选项中的( )解:C导函数的图象在 轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在 轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由 时导函数图象在 轴的上方,表示在此区间上,原函数图象呈上升趋势,可排除 B、D 选项;由 时导函数图象在 轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除 A 选项.(x )f ′f (x )y =(x )f ′f (x )x x x ∈(−∞,0)x x ∈(0,1)xy=f(x)已知函数 的图象如图所示,则导函数f(x)(a,b)则函数 在开区间答案:解析:3. 已知函数 , 的导函数的图象如下图,那么 , 的图象可能是.A.B .C .D .D 和 都是单调递增的,但 增长的越来越慢, 增长的越来越快,并且在 处, 的切线的斜率应该相等.y =f (x )y =g (x )y =f (x )y =g (x )()f (x )g (x )f (x )g (x )x 0f (x ),g (x)高考不提分,赔付1万元,关注快乐学了解详情。
3.2导数的计算[教材研读]预习课本P81~85,思考以下问题1.幂函数f(x)=x2,f(x)=x 12的导数是什么?2.根据导数的运算法则,积f(x)g(x)的导数与f′(x),g′(x)有何关系?[要点梳理]1.基本初等函数的导数公式2.导数运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );当g (x )=c 时,[cf (x )]′=cf ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). [自我诊断]判断(正确的打“√”,错误的打“×”)1.y =1x ,y =x ,y =x 2等求导函数,都可以看成y =x α(α∈Q *),并用其导数公式求导.( )2.y =ln x 在x =2处的切线的斜率为12.( )3.f (x )=e x 在点(0,1)处的切线的方程为x -y +1=0.( )[答案] 1.√ 2.√ 3.√题型一 利用导数公式求函数的导数思考:如何充分利用基本初等函数的导数公式?提示:若函数解析式不能直接使用导数公式,则化成能应用导数公式的形式.求下列函数的导数:(1)y =10x ;(2)y =lg x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x 2+cos x 22-1. [思路导引] 把解析式化简成能应用公式的形式.[解] (1)y ′=(10x )′=10x ln10.(2)y ′=(lg x )′=1x ln10.(5)∵y =⎝⎛⎭⎪⎫sin x 2+cos x 22-1 =sin 2x 2+2sin x 2cos x 2+cos 2x 2-1=sin x ,∴y ′=(sin x )′=cos x .(1)若给出的函数解析式符合基本初等函数的导数公式,则直接利用公式求导.(2)若给出的函数解析式不符合导数公式,则通过恒等变换对解析式进行化简或变形后求导,如根式要化成指数幂的形式求导.[跟踪训练]求下列函数的导数:(1)y =⎝ ⎛⎭⎪⎫1e x ; (2)y =⎝ ⎛⎭⎪⎫110x ; (3)y =lg5;(4)y =3lg 3x ;(5)y =2cos 2x 2-1.[解] (1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x ln 1e =-1e x =-e -x . (2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x ln 110=-ln1010x =-10-x ln10. (3)∵y =lg5是常数函数,∴y ′=(lg5)′=0.(4)∵y =3lg 3x =lg x ,∴y ′=(lg x )′=1x ln10.(5)∵y =2cos 2x 2-1=cos x ,∴y ′=(cos x )′=-sin x .题型二 利用导数的运算法则求导数(链接教材P 84例2)求下列函数的导数:(1)y =x 3·e x ;(2)y =x -sin x 2cos x 2;(3)y =x 2+log 3x ;(4)y =e x +1e x -1.[思路导引] 尽量把解析式转化为能用和差的求导法则,减少求导法则的应用的烦索性.[解] (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x .(2)∵y =x -12sin x ,∴y ′=x ′-12(sin x )′=1-12cos x .(3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x(e x -1)2=-2e x(e x -1)2.(1)分析求导式符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定求导法则,基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数法则求导的原则是尽可能化为和、差,利用和、差的求导法则求导,尽量少用积、商的求导法则求导.[跟踪训练]求下列函数的导数:(1)y =cos x x ;(2)y =x sin x +x ;(3)y =1+x 1-x +1-x 1+x ; (4)y =lg x -1x 2.[解] (1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos x x 2. (2)y ′=(x sin x )′+(x )′=sin x +x cos x +12x .(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x-2, ∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln10+2x 3. 题型三 利用导数公式研究曲线的切线问题点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.[思路导引] 分析知,与曲线相切且与y =x 平行的直线与曲线的切点到直线y =x 的距离最小.[解]如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.(1)本例中的问题涉及切点、切点处的导数、切线方程三个主要元素.其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点.[跟踪训练]求过曲线y =cos x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.[解] ∵y =cos x ,∴y ′=(cos x )′=-sin x ,1.本节课的重点是基本初等函数的导数公式及导数运算法则,难点是灵活运用导数公式和运算法则解决相关问题.2.本节课要重点掌握的规律方法 (1)利用导数公式求导数. (2)利用导数运算法则求导数. (3)利用导数运算研究曲线的切线问题.3.本节课的易错点是导数公式(a x )′=a x ln a 和(log a x )′=1x ln a 以及运算法则[f (x )·g (x )]′与⎣⎢⎡⎦⎥⎤f (x )g (x )′的区别.1.已知f (x )=1x ,则f ′(3)=( ) A .-13 B .-19 C.19D.13[解析] ∵f (x )=1x ,∴f ′(x )=-1x 2,∴f ′(3)=-132=-19,故选B.[答案] B2.函数y =3x 2的导数为( ) A .y ′=3x2B .y ′=32xC .y ′=23x3D .y ′=233x[解析][答案] D3.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B .-1e C .-e D .e[解析][答案] D4.已知f (x )=e x ln x ,则f ′(x )=( ) A.e x x B .e x+1xC.e x (x ln x +1)xD.1x +ln x[解析] f ′(x )=(e x)′·ln x +e x·(ln x )′=e x·ln x +e x·1x =e x (x ln x +1)x,所以选C.[答案] C5.已知使函数y =x 3+ax 2-43a 的导数为0的x 值也使y 值为0,则常数a 的值为( )A .0或±3B .0C .±3D .非以上答案[解析] y ′=3x 2+2ax ,令y ′=0,即3x 2+2ax =0,∴x =0或x =-2a 3.分别代入y =x 3+ax 2-43a ,得0=-43a ,即a =0;-8a 327+4a 39-43a =0,即a =±3,∴a =0或a =±3.[答案] A6.曲线y =ln x 在点M (e,1)处的切线的斜率是__________,切线的方程为__________________.[解析] y ′=1x ,则k =y ′|x =e =1e ,切线方程y -1=1e (x -e),即x -e y =0.[答案] 1e x -e y =0。