当前位置:文档之家› 高中数学高考综合复习对称性

高中数学高考综合复习对称性

高中数学高考综合复习对称性
高中数学高考综合复习对称性

高中数学高考综合复习

专题六函数奇偶性的认知与延伸

纵观中学数学的函数体系,函数象一棵长青的大树:函数的概念是“根”,函数的性质是“干”,函数的重要命题以及基本函数则是树干上生出的主要枝杈.其中,奇函数与偶函数作为对偶范畴,它们一方面相互对立,另一方面又相互依存,相互联系和相互贯通。

注意到奇函数与偶函数“本是同根生”亲缘关系,由偶函数性质引出的命题,与由奇函数性质引出的相应的命题,在具有鲜明个性的同时,又会“具有惊人的相似之处”。

认知函数奇偶性的本质,揭示函数图象的对称性与函数之间的联系,审题时便会目光犀利,入骨三分;解题时自然转换灵活,得心应手。

一、关于偶函数性质的认知与延伸

1、原型:函数f(χ)为偶函数函数f(χ)的图像关于y轴对称.

即对函数f(χ)定义域内每一个χ都有f(–χ) =f(χ)

函数y= f(χ)的图象关于直线χ=0对称

认知:函数关系式与对称轴方程之间的联系

(1)几何角度:数轴上χ与–χ的对应点关于点χ=0对称.

(2)代数角度:

关系式:f(–χ) =f(χ),即f(0–χ) =f(0+χ)

对称轴:x=0

2、延伸

(1)延伸之一:函数图象自身关于直线χ=a对称

我们由上述对对称轴χ=0展开联想:直线χ=0可视为直线χ=a的特例.此时,以“χ=a”替代“χ=0”,进而分别以a替代上述等式中的0(f(–χ) =f(χ)即f(0–χ) =f(0+χ)),便得出作为原型之引申的结论1.

把握住函数关系式与对称轴方程之间的这一联系,如下结论便应运而生.

我们不难证明上述结论正确,上述三个函数图象自身关于直线χ=a对称的结论彼此等价,这为我们解决相关问题时灵活转换,巧妙变通提供了理论的支持.

(2)延伸二:两个函数图象关于直线χ=λ对称.

“一分为二”与“合二为一”是辩证的统一.不论是字面理解还是哲学意义,“一分为二”与“合二为一”都是既相互对立,又相互依存、相互联系和相互贯通的,注意到上述函数关系?(–χ) =?(χ)等均是两个不同函数“合二为一”的产物,于是循着“合二为一” 与“一分为二”的辩证关系,考察各个恒等式两边分别对应的一对函数之间的联系,寻出关于函数图象对称性的另一类结论.

(ⅰ)原型:函数y=?(χ)与y=?(–χ)的图象关于直线χ=0对称

探究:寻觅上述两个函数与它们图象的对称轴之间的联系,在“合二为一”的形式之下,我们考察的是两式相加,其和与对称轴的联系.循着对立联想的思路,如今在“一分为二”之后,首先想到考察相同位置的两式相减,其差与对称轴之间的联系:

(ⅱ)延伸

循着延伸之一中结论的顺序,它们各自繁衍出新的不同结论.

结论1:

结论2:

结论3:

结论4:

例1.设f(χ)是定义在R上的偶函数,其图象关于直线χ=2对称,已知当χ∈[-2,2]时,f(χ)=-χ2+1,求当χ∈[-6,-2]时的f(χ)的解析式.

解:从进一步认知f(χ)的性质切入,由函数f(χ)的图象关于直线χ=2对称知,

对任意χ∈R都有f(-χ)= f(χ+4)(为便于与“f(χ)为偶函数”这一条件建立联系而作出这一选择)又f(χ) 为偶函数f(-χ) =f(χ)

∴由以上两式得f(χ+4) =f(χ)①

∴f(χ)为周期函数且4是f(χ)的一个周期.

而当χ∈[-6,-2]时4+χ∈[-2,2]

∴由已知条件得f(4+χ) =-(χ+4)2+1②

于是由①,②得f(χ) =-(χ+4)2+1,

即当χ∈[-6,-2]时,f(χ)= -χ2-8χ-15

例2.设f(χ)是定义在R上的偶函数,且f(χ+3) =1-f(χ),又当χ∈(0,1]时,f(χ)=2χ,求f(17.5)的值.

解:从进一步认知f(χ)的性质切入.

∵f(χ+3)=1- f(χ)①

∴注意到χ的任意性,在①中以-χ替代χ得

f(-χ+3)=1- f(-χ)②

又f(χ)为偶函数f(-χ)= f(χ)③

∴由①、②、③得f(3-χ)= f(3+χ)

f(χ)图象关于直线χ=3对称

f(-χ)= f(6+χ)④

∴由③、④得f(χ+6)= f(χ)

即f(χ)是以6为周期的周期函数.

于是有f(17.5)=f(17.5-3×6)=f(-0.5)=f(0.5)⑤

再注意到当x(0,1]时,f(x)=2x,

∴由⑤得f(17.5)=f(0.5)=2×0.5=1

例3.设y=f(x)是定义在[-1,1]上的偶函数,函数y=f(x)的图象与y=g(x)的图象关于直线x=1对称,且当x[2,3]时,g(x)=2a(x-2)-4(x-2)3(a为常数且a R)

(1)求f(x);

(2)是否存在a[2,6]或a(6,+∞),使函数f(x)的图象的最高点位于直线y=12上?若存在,求出a的值;若不存在,说明理由.

解:

(1)设点M(x,f(x))为函数y=f(x)图象上任意一点,则点M关于直线x=1的对称点为N(2-x,f(x)).

∵y=f(x)的图象与y=g(x)的图象关于直线x=1对称.

∴点N(2-x,f(x))在y=g(x)图象上.

由此得f(x)=g(2-x)

(利用引申之二的命题易得这一结果:y=g(x)与y=g(2-x)的图象关于直线x=1对称)

设x[-1,0],则2-x[2,3].此时f(x)=g(2-x)=-2ax+4x3

又f(x)为偶函数f(-x)=f(x),x[-1,1].

∴当x[0,1]时,f(x)=2ax-4 x3

(2)注意到f(x)为偶函数,只须研究f(x)在[0,1]上的最大值.

(ⅰ)当a(2,6]时,由0x1得a-2x2>0,

f(x)=2x(a-2 x2)= ≤=

(当且仅当4=a-2,即x=[0,1]时等号成立).

由题意知,f(x)的最大值为12,令=12得=486>,

∴a>6,这与a(2,6]矛盾,故此时满足条件的a不存在.

(ⅱ)当a=2且0≤x≤1时,f(x)=4x(1-)

同理可证f(x)= (当且仅当2=1-,即x=时等号成立),也与已知矛盾.

(ⅲ)当a>6时,设0,则

f()-f()=2a(-)-4(-)

=2(-)[a-2(++)]

由题设0<++<3,a>6

∴a-2(++)>0

又-<0

∴f()-f()<0即f()

∴f(x)在[0,1]上为增函数.

∴此时=f(1)=2a-4.

令2a-4=12,解得a=8(6,+∞),适合题意.

因此,综合(ⅰ) (ⅱ) (ⅲ)知,存在a=8(6,+∞),使得函数f(x)的图象的最高点位于直线y=12上.

二.关于奇函数性质的认知与延伸

循着对于偶函数性质的认知与延伸的思路

1、原型:函数f(x)为奇函数函数y=f(x)的图象关于原点对称.

即对函数定义域内每一个x都有f(x)=f(x)

函数y=f(x)的图象关于点(0,0)对称.

认知:注意到在函数关系式中,“f ”之下为自变量x的式子,故寻觅函数关系式与对称中心横坐标之间的联系.

(1)几何角度:在数轴上,x与-x的对应点关于点x=0对称.

(2)代数角度:

关系式:f(–χ) = - f(χ),即f(0–χ) = - f(0+χ)

对称中心:(0,0)

2、延伸

(1)延伸之一:函数图象自身关于点(a,0)对称

点(0,0)可视为点(a,0)的特例,以a-x,a+x分别代替上面函数关系式中的0-x与0+x,便得出作为原型引申的结论1.

结论1.

把握住函数关系式与对称中心横坐标之间的这一联系,获得以下结论便水到渠成.

结论2.

结论3.

上述三个等价结论,为解决相关问题过程中的灵活选择,适时转换提供理论支撑.

(2)延伸之二: 两个函数图象关于点(,0)中心对称

循着偶函数的研究思路,再次运用“一分为二”的探索策略,容易引出

(ⅰ)原型:函数y=f(x)与y=-f(-x)的图象关于原点对称.

(ⅱ)延伸:

循着前面偶函数性质的延伸之二中,关于两个函数与它们图象的对称轴之间联系的寻觅与发现,同样可获知前面恒等式两边分别对应的每一对函数与它们图像的对称中心之间的联系.

结论1.

结论2.

结论3.

结论4.

三.归纳与小结

有比较才能有鉴别.鉴别,品悟获真知.比较上述偶函数性质的延伸结论与奇函数性质的延伸结论,不难发现它们的个性与共性.

(1)个性:

偶函数性质的延伸结论中,有关两函数值相等;函数图象自身或有关两个函数的图象成轴对称;

奇函数性质的延伸结论中,有关两函数值互为相反数;函数图象自身或有关两个函数的图象成中心对称.

(2)共性:

不论是偶函数性质延伸系列,还是奇函数性质延伸系列,面对函数式的“合二为一”形式,均由恒等式两边的函数符号“f”之下的“两式之和”,确定函数图象自身的对称轴或对称中心的横坐标;面对“一分为二”后的两个函数,均由两个函数符号“f”之下的“两式构造的方程”,寻求两个函数图象的对称轴或对称中心的横坐标.

例4.设函数f(x)的定义域为[1,3],且函数f(x)的图象关于点(2,0)成中心对称,已知当x[2,3]

时f(x)=2x,求当x[1,2]时,f(x)的解析式.

解:由函数f(x)的图象关于点(2,0)对称得

f(x)=-f(4-x)①

又当x[1,2]时,4-x[2,3],

∴再由已知条件得f(4-x)=(4-x)-2(4-x)②

∴由①②得f(x)=- (x- 4)+2(4-x)

∴当x[1,2]时,f(x)=-x+6x-8

例5.已知f(x)是定义在R上的函数,f(10+x)=f(10-x),且f(20-x)=f(20+x),试判断f(x)的奇偶性与周期性.

解:

一方面,f(10+x)=f(10-x) f(x)=f(20-x)①

f(-x)=f(20+x)②

另一方面,f(20-x)=f(20+x)③

(1)由①③得f(x)=f(x+20)④

∴由②④得f(x)=f(x)

∴f(x)为奇函数.

(2) 再由④得f(x+20)=f(x)

∴f(x+40)=f(x+20)=f(x)

即f(x)是周期函数,且40是它的一个周期,

于是由(1)、(2)知,这里的f(x)为奇函数,并且是以40为一个周期的周期函数。

品悟与收获:

在例1,例2中,函数f(x)的图象有两条对称轴,相应的函数f(x)恰为周期函数;在例5中,函数f(x)的图象有一条铅直对称轴x=10和一个对称中心(20,0),相应的函数f(x)亦为周期函数,并且4(20-10)是它的一个周期.这些巧合的出现,引发人们关于函数周期性与函数图象对称性之间关系的探索与寻觅.函数的周期性与函数图象对称性之间的奥秘由此初步揭开:

(1)若函数f(x)的图象关于直线x=a和x=b(a≠b)都对称,则f(x)为周期函数,并且2是f(x)的一个周期.

(2)若函数f(x)的图象关于点(a,0)和点(b,0) (a≠b)都对称,则f(x)为周期函数,并且2是f(x)的一个正周期.

(3)若函数f(x)的图象既关于直线x=a对称,又关于点(b,0) (a≠b)对称,则f(x)为周期函数,并

且4是f(x)的一个正周期.

例6.已知定义在R上的奇函数f(x)满足f(x+2)=f(-x),且当x(0,1)时,f(x)=,则f()的值为.

解法一: (运用认知确定周期)

又f(x)定义在R上且满足f(x+2)=f(-x)得

函数f(x)的图象关于直线x=1对称.①

又f(x)为奇函数f(x)的图象关于点(0,0)对称②

∴由①②得f(x)是周期函数且4是f(x)的一个周期.

∴f()=f()=f(-)=f()③

∵0<<1

∴由已知得f()==④

∴由③④得f()=

解法二(利用定义确定周期):由f(x)为奇函数得f(-x)=-f(x)

注意到这里f(-x)=f(x+2)

∴f(x+2)=-f(x)

据此得f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),

∴f(x)是周期函数且4是f(x)的一个周期.

以下同解法一,从略.

四.函数奇偶性延伸理论的应用

透视中学函数问题,一类是函数性质的直接应用,另一类则与函数性质延伸理论一脉相承.注

意到y=Af(x+)型函数在中学教材的重要位置,我们运用上述理论来研究这类函数图象的对

称性. 范例.函数y=Asin(x+)与y=Acos(x+)图象的对称性研究.

1、原型:

y=sinx为奇函数y=sinx图象关于原点对称;

y=cosx为偶函数y=cosx图象关于y轴对称.

2、探索与收获

注意到原点为正弦曲线与x轴的交点之一,分别考察正弦函数图象与x轴的交点(函数的零点),看它们是否也是图象的对称中心;注意到y轴经过余弦曲线的最高点且垂直于x轴,分别考察经过正弦或余弦函数图象的最高点或最低点(函数的最值点),且垂直于x轴的直线,看它们是否也是图象的对称轴.于是,运用前面的延伸结论,容易获得以下认知成果.

结论1.设f(x)=sinx或f(x)=cosx,则函数f(x)的每一个”零点”均为f(x)图象的对称中心;经过f(x)图象的每一个”最值点”且垂直于x轴的直线,均为f(x)图象的对称轴.

3、凝练与引申

受结论1的启发,又易于猜想并证明如下更具普遍性的结论

结论2.设f(x)=Asin(x+)或f(x)=Acos(x+),则

(1)f(a)=0(a,0)为f(x)图象的对称中心;

(2)当x=a时,f(x)取得最值f(x)图象关于直线x=a对称.

4、练习.

(1)对于函数f(x)=Asin(x+)(>0,)给出四个论断.

①它的图象关于直线x=对称;

②它的图象关于点(,0)对称;

③它的周期为;

④它在区间[-,0]上为单调增函数.

以其中的两个论断作为条件,余下的两个论断作为结论,写出你认为正确的命题,它是.

(2)已知函数f(x)=Asin(x+)(>0,)是R上的偶函数,其图象关于点心

(,0)对称,且在区间[0, ]上是单调增函数,求和的值.

提示与答案:

(1)①.、③②、④或②、③①、④

(2)由f(x)为偶函数得=,又由f(x)图象关于点M(,0)对称得f()=0

由此解得=(2k+1)(k=0,1,2…)于是再由f(x)在区间[0, ]上为单调增函数得

=,=或=,=2

高中数学中对称性问题总结.doc

对称性与周期性 函数对称性、周期性的判断 1. 函数()y f x =有()()f a x f b x +=-(若等式两端的两自变量相加为常数,如 ()()a x b x a b ++-=+),则()f x 的图像关于2 a b x += 轴对称;当a b =时,若()() (()(2))f a x f a x f x f a x +=-=-或,则()f x 关于x a =轴对称; 2. 函数()y f x =有()()f x a f x b +=-(若等式两端的两自变量相减为常数,如 ()()x a x b a b +--=+),则()f x 是周期函数,其周期T a b =+;当a b =时,若()()f x a f x a +=-,则()f x 是周期函数,其周期2T a =; 3. 函数()y f x =的图像关于点(,)P a b 对称?()(2)2 (()=2(2))f x f a x b f x b f a x +-=--或;函数()y f x =的图像关于点(,0)P a 对称? ()=(2) f x f a x --( ()=())f a x f a x +--或; 4. 奇函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且2T a =是函数的一个周期;偶函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且4T a =是函数的一个周期; 5. 奇函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且4T a =是函数的一个周期;偶函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且2T a =是函数的一个周期; 6. 函数()y f x =的图像关于点(,0)M a 和点(,0)N b 对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期; 7. 函数()y f x =的图像关于直线x a =和直线x b =对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期。

高中数学中的“对称图形”题型及解法浅探

高中数学中的“对称图形”题型及解法浅探 “对称性”是数学美的一种体现,也是历年高考题中的常见题型,理解和掌握“对称图形”的基本规律和解题方法是十分必要的. 一、本身具有对称性的图形 如“三角函数的图像,圆锥曲线”等,此类问题可直接应用对称轴方程加以解决. 例1:如果y=sin2x+acos2x的图像关于直线x=- 对称,那么A=() A. B.- C.1 D.-1 解:∵y=sin2x+cos2x= sin(2x+φ),其中tanφ=a ∴2x+φ=kπ+ ?圯x= + - =- ∴φ=kπ+ 即:a=tan(kπ+ )=-1,故选D. 例2:曲线x +y +2 -2 =0关于() A.直线x= 对称 B.直线y=-x对称 C.点(-2,)中心对称 D.点(,0)对称 解:将方程配方得:(x+ )+(y- )=4, ∴曲线是以(-2,)为圆心,2为半径的圆.由圆自身的对称性可知应选B. 评析:1.对于y=sinx直接应用对称轴方程x=kπ+ (k

∈Z)求解,方法简明扼要. 2.对于圆,过圆心的任意直线都是对称轴,圆心是对称中心. 3.关于y=f(x)其图像存在对称性,有一般的结论:f (x+a)=f(b-x)恒成立?圳y=f(x)的图像关于x= 对称. 二、两个图形关于点对称 两个图形关于点对称的此类问题可借中点公式极易解决. 例3:设曲线C的方程是y=x -x将C沿x轴、y轴的正方向分别平行移动T、S个单位长度后,得曲线C ,(1)写出C 的方程; (2)证明C 和C关于点(,)对称. 解析:(1)由题意:C :y-S=(x-T)-(x-T). (2)设M(x,y)是C上的任意点,M′(x′,y′)是M关于(,)的对称点, 由中点公式:x=T-x′,y=x-y′,代入C得:y′-S=(x′-T)-(x-T) ∴M在曲线C 上. 反过来,同样可以证明:C 上的任意点关于(,)对称的点也在C上. 因此,C 与C关于点(,)对称. 评析:关于成中心对称的两个图形,上例实质是求中心

高中数学中对称性问题

标准文档 实用文案对称性与周期性 函数对称性、周期性的判断 1.函数()yfx?有()()faxfbx???(若等式两端的两自变量相加为常数,如 ()()axbxab?????),则()fx的图像关于2abx??轴对称;当ab?时,若()() (()(2))faxfaxfxfax?????或,则()fx关于xa?轴对称; 2.函数()yfx?有()()fxafxb???(若等式两端的两自变量相减为常数,如 ()()xaxbab?????),则()fx是周期函数,其周期Tab??;当ab?时,若 ()()fxafxa???,则()fx是周期函数,其周期2Ta?; 3.函数()yfx?的图像关于点(,)Pab对称?()(2)2 (()=2(2))fxfaxbfxbfax?????或;函数()yfx?的图像关于点(,0)Pa对称? ()=(2) fxfax??( ()=())faxfax???或; 4.奇函数()yfx?的图像关于点(,0)Pa对称?()yfx?是周期函数,且2Ta?是函数的一个周期;偶函数()yfx?的图像关于点(,0)Pa对称?()yfx?是周期函数,且 4Ta?是函数的一个周期; 5.奇函数()yfx?的图像关于直线xa?对称?()yfx?是周期函数,且4Ta?是函数的一个周期;偶函数()yfx?的图像关于直线xa?对称?()yfx?是周期函数,且2Ta?是函数的一个周期; 6.函数()yfx?的图像关于点(,0)Ma和点(,0)Nb对称?函数()yfx?是周期函数,且2()Tab??是函数的一个周期; 7.函数()yfx?的图像关于直线xa?和直线xb?对称?函数()yfx?是周期函数,且 2()Tab??是函数的一个周期。 标准文档

高中数学中的对称性问题

高中数学中的对称性与周期性 一、函数对称性、周期性的判断 1. 函数()y f x =有()()f a x f b x +=-(若等式两端的两自变量相加为常数,如 ()()a x b x a b ++-=+),则()f x 的图像关于2 a b x += 轴对称;当a b =时,若()() (()(2))f a x f a x f x f a x +=-=-或,则()f x 关于x a =轴对称; 2. 函数()y f x =有()()f x a f x b +=-(若等式两端的两自变量相减为常数,如 ()()x a x b a b +--=+),则()f x 是周期函数,其周期T a b =+;当a b =时,若()()f x a f x a +=-,则()f x 是周期函数,其周期2T a =; 3. 函数()y f x =的图像关于点(,)P a b 对称?()(2)2 (()=2(2))f x f a x b f x b f a x +-=--或;函数()y f x =的图像关于点(,0)P a 对称? ()=(2) f x f a x --( ()=())f a x f a x +--或; 4. 奇函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且2T a =是函数的一个周期;偶函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且4T a =是函数的一个周期; 5. 奇函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且4T a =是函数的一个周期;偶函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且2T a =是函数的一个周期; 6. 函数()y f x =的图像关于点(,0)M a 和点(,0)N b 对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期; 7. 7函数()y f x =的图像关于直线x a =和直线x b =对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期。 二、关于点对称 (1) 点关于点的对称点问题 若点A 11(,)x y , B 22(,)x y , 则线段AB 中点M 的坐标是( 1212 ,22 x x y y ++);据此可以解求点与点的中心对称,即求点M 00(,)x y 关于点P (,)a b 的对称点' M 的坐标(,)x y ,利用中点坐标公式可得 00, 22 x x y y a b ++= =,解算的' M 的坐标为00(2, 2)a x b y --。

高中数学集合知识点(明细)

集合 1.集合的含义与表示 (1 的元素,则记作x∈A。 (2)集合中的元素有三个特征: a.确定性(集合中的元素必须是确定的) b.互异性(集合中的元素互不相同。例如:集合A={1,a},则a 不能等于1) c.无序性(集合中的元素没有先后之分。) (3)常见的集合符号表示: N:非负整数集合或自然数集合{0,1,2,3,…} N*或N+:正整数集合{1,2,3,…} Z:整数集合{…,-1,0,1,…} Q:有理数集合 Q+:正有理数集合 Q-:负有理数集合 R:实数集合(包括有理数和无理数) R+:正实数集合 R-:负实数集合 C:复数集合 ?:空集合(不含有任何元素的集合称为空集合,又叫空集) (4)表示集合的方法: a.列举法:{红,绿,蓝},A={a,b,c,d}··· b.描述法:B={x|x2=2},{代表元素|满足的性质}··· c.Venn 图:用一条封闭的曲线内部表示一个集合的方法。

(1)子集:对于两个集合A,B. 若任意a∈A,都有a∈B,则称集合A 被集合B 所 包含(或集合B 包含集合A),记做A?B,此时称集合A 是集合B的子 集。 (2)真子集:若A?B,且存在a∈B但a?A 则称集合A是集合B的真子集,记做 A?B. (3)由子集的定义可知子集有这样三条主要的性质: a.规定: 空集(不含任何元素的集合叫做空集,记为f)是任何集合的子集 b. 任何一个集合是它本身的子集. c. 子集具有传递性. 如果A?B, B?C ,那么A?C. *假设非空集合A中含有n个元素,则有: 1.A的子集个数为2n。 2.A的真子集的个数为2n-1。 3.A的非空子集的个数为2n-1。 4.A的非空真子集的个数为2n-2。

高中数学-函数的单调性、奇偶性、周期性、对称性及函数的图像

函数的单调性、奇偶性、周期性、对称性及函数的图像 (一)复习指导 单调性: 设函数y =f (x )定义域为A ,区间M ?A ,任取区间M 中的两个值x 1,x 2,改变量Δx =x 2-x 1>0,则当Δy =f (x 2)-f (x 1)>0时,就称f (x )在区间M 上是增函数,当Δy =f (x 2)-f (x 1)<0时,就称f (x )在区间M 上是减函数. 如果y =f (x )在某个区间M 上是增(减)函数,则说y =f (x )在这一区间上具有单调性,这一区间M 叫做y =f (x )的单调区间. 函数的单调性是函数的一个重要性质,在给定区间上,判断函数增减性,最基本的方法就是利用定义:在所给区间任取x 1,x 2,当x 1<x 2时判断相应的函数值f (x 1)与f (x 2)的大小. 利用图象观察函数的单调性也是一种常见的方法,教材中所有基本初等函数的单调性都是由图象观察得到的. 对于y =f [φ(x )]型双重复合形式的函数的增减性,可通过换元,令u =φ(x ),然后分别根据u =φ(x ),y =f (u )在相应区间上的增减性进行判断,一般有“同则增,异则减”这一规律. 此外,利用导数研究函数的增减性,更是一种非常重要的方法,这一方法将在后面的复习中有专门的讨论,这里不再赘述. 奇偶性: (1)设函数f (x )的定义域为D ,如果对D 内任意一个x ,都有-x ∈D ,且f (-x )=-f (x ),则这个函数叫做奇函数;设函数f (x )的定义域为D ,如果对D 内任意一个x ,都有-x ∈D ,且f (-x )=f (x ),则这个函数叫做偶函数. 函数的奇偶性有如下重要性质: f (x )奇函数?f (x )的图象关于原点对称. f (x )为偶函数?f (x )的图象关于y 轴对称. 此外,由奇函数定义可知:若奇函数f (x )在原点处有定义,则一定有f (0)=0,此时函数f (x )的图象一定通过原点. 周期性: 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x )成立,则函数f (x )叫做周期函数,非零常数T 叫做这个函数的周期. 关于函数的周期性,下面结论是成立的. (1)若T 为函数f (x )的一个周期,则kT 也是f (x )的周期(k 为非零整数). (2)若T 为y =f (x )的最小正周期,则 | |ωT 为y =Af (ωx +φ)+b 的最小正周期,其中ω≠0. 对称性: 若函数y =f (x )满足f (a -x )=f (b +x )则y =f (x )的图象关于直线2 b a x += 对称,若函数y =f (x )满足f (a -x )=-f (b +x )则y =f (x )的图象关于点( 2 b a +,0)对称. 函数的图象: 函数的图象是函数的一种重要表现形式,利用函数的图象可以帮助我们更好的理解函数的性质,我们首先要熟记一些基本初等函数的图象,掌握基本的作图方法,如描点作图,三角函数的五点作图法等,掌握通过一些变换作函数图象的方法.同时要特别注意体会数形结合的思想方法在解题中的灵活应用. (1)利用平移变换作图:

高中函数对称性总结分析

高中函数对称性总结 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上

高一数学集合知识点总结归纳

高一数学集合知识点总结归纳 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:n,z,q,r,n* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈a都有x∈b,则a b(或a b); 2)真子集:a b且存在x0∈b但x0 a;记为a b(或,且 ) 3)交集:a∩b={x| x∈a且x∈b} 4)并集:a∪b={x| x∈a或x∈b} 5)补集:cua={x| x a但x∈u}

注意:①? a,若a≠?,则? a ; ②若,,则 ; ③若且,则a=b(等集) 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与的区别;(3) 与的区别。 4.有关子集的几个等价关系 ①a∩b=a a b;②a∪b=b a b;③a b c ua c ub; ④a∩cub = 空集 cua b;⑤cua∪b=i a b。 5.交、并集运算的性质 ①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a; ③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub; 6.有限子集的个数:设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。 【例1】已知集合m={x|x=m+ ,m∈z},n={x|x= ,n∈z},p={x|x= ,p∈z},则m,n,p满足关系 a) m=n p b) m n=p c) m n p d) n p m 分析一:从判断元素的共性与区别入手。 解答一:对于集合m:{x|x= ,m∈z};对于集合n:{x|x= ,n ∈z} 对于集合p:{x|x= ,p∈z},由于3(n-1)+1和3p+1都

高中数学点线对称问题

对称问题专题 【知识要点】 1.点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题. 设P (x 0,y 0),对称中心为A (a ,b ),则P 关于A 的对称点为P ′(2a -x 0,2b -y 0). 2.点关于直线成轴对称问题 由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”.利用“垂直”“平分”这两个条件建立方程组,就可求出对顶点的坐标.一般情形如下: 设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有 x x y y -'-'·k =-1, 2 y y +'=k ·20x x +'+b , 特殊地,点P (x 0,y 0)关于直线x =a 的对称点为P ′(2a -x 0,y 0);点P (x 0,y 0)关于直线y =b 的对称点为P ′(x 0,2b -y 0). 3.曲线关于点、曲线关于直线的中心或轴对称问题,一般是转化为点的中心对称或轴对称(这里既可选特殊点,也可选任意点实施转化).一般结论如下: (1)曲线f (x ,y )=0关于已知点A (a ,b )的对称曲线的方程是f (2a -x ,2b -y )=0. (2)曲线f (x ,y )=0关于直线y =kx +b 的对称曲线的求法: 设曲线f (x ,y )=0上任意一点为P (x 0,y 0),P 点关于直线y =kx +b 的对称点为P ′(x ,y ),则由(2)知,P 与P ′的坐标满足 x x y y --·k =-1, 2 0y y +=k ·20x x ++b , 代入已知曲线f (x ,y )=0,应有f (x 0,y 0)=0.利用坐标代换法就可求出曲线f (x ,y )=0关于直线y =kx +b 的对称曲线方程. 4.两点关于点对称、两点关于直线对称的常见结论: (1)点(x ,y )关于x 轴的对称点为(x ,-y ); (2)点(x ,y )关于y 轴的对称点为(-x ,y ); (3)点(x ,y )关于原点的对称点为(-x ,-y ); (4)点(x ,y )关于直线x -y =0的对称点为(y ,x ); (5)点(x ,y )关于直线x +y =0的对称点为(-y ,-x ). 【典型例题】 【例1】 求直线a :2x +y -4=0关于直线l :3x +4y -1=0对称的直线b 的方程. 剖析:由平面几何知识可知若直线a 、b 关于直线l 对称,它们具有下列几何性质:(1)若a 、b 相交,则l 是a 、b 交角的平分线;(2)若点A 在直线a 上,那么A 关于直线l 的对称点B 一定在直线b 上,这时AB ⊥l ,并且AB 的中点D 在l 上;(3)a 以l 为轴旋转180°,一定与b 重合.使用这些性质,可以找出直线b 的方程.解此题的方法很多,总的来说有两类:一类是找出确定直线方程的两个条件,选择适当的直线方程的形式,求出直线方程;另一类是直接由轨迹求方程. 2x +y -4=0, 3x +4y -1=0, 可求出x ′、y ′. 从中解出x 0、y 0, 解:由 解得a 与l 的交点E (3,-2),E 点也在b 上

高一数学集合知识点归纳

高一数学集合知识点归纳 高一数学的集合学习以及总结需要把集合相关知识点进行归纳,只有把知识点归纳好才可以学好高一数学集合,以下是我总结了高一数学的知识点,希望帮到大家更好地归纳好集合的知识点同时复习好集合。 一、知识点总结 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性、互异性和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈A都有x∈B,则AB(或AB); 2)真子集:AB且存在x0∈B但x0A;记为AB(或,且) 3)交集:A∩B={x|x∈A且x∈B}

4)并集:A∪B={x|x∈A或x∈B} 5)补集:CUA={x|xA但x∈U} 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号。 4.有关子集的几个等价关系 ①A∩B=AAB;②A∪B=BAB;③ABCuACuB; ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。 5.交、并集运算的性质 ①A∩A=A,A∩B=B∩A;②A∪A=A,A∪B=B∪A; ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB; 6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 二、集合知识点整合 集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。 集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。 集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称

高中数学中对称性问题5

对称性与周期性 函数对称性、周期性的判断 1. 函数()y f x =有()()f a x f b x +=-(若等式两端的两自变量相加为常数,如 ()()a x b x a b ++-=+),则()f x 的图像关于2 a b x += 轴对称;当a b =时,若()() (()(2))f a x f a x f x f a x +=-=-或,则()f x 关于x a =轴对称; 2. 函数()y f x =有()()f x a f x b +=-(若等式两端的两自变量相减为常数,如 ()()x a x b a b +--=+),则()f x 是周期函数,其周期T a b =+;当a b =时,若()()f x a f x a +=-,则()f x 是周期函数,其周期2T a =; 3. 函数()y f x =的图像关于点(,)P a b 对称?()(2)2 (()=2(2))f x f a x b f x b f a x +-=--或;函数()y f x =的图像关于点(,0)P a 对称? ()=(2) f x f a x --( ()=())f a x f a x +--或; 4. 奇函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且2T a =是函数的一个周期;偶函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且4T a =是函数的一个周期; 5. 奇函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且4T a =是函数的一个周期;偶函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且2T a =是函数的一个周期; 6. 函数()y f x =的图像关于点(,0)M a 和点(,0)N b 对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期; 7. 函数()y f x =的图像关于直线x a =和直线x b =对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期。

高中数学-集合与简易逻辑知识点

集合与简易逻辑知识点 知识点内容典型题 元素与集合、集合与集合的关系 ①、∈只能表示元素与集合的关 系,而、、 ?、?、=只能表示集 合与集合的关系. ②0、{0}、的关系是常见题型, 如:数集{0}与空集的关系是() A.{0}= B.{0}∈ C.∈{0} D.?{0} ③常用数集:R、R*、R+、R + 、Q、 Z、N.(注意*、+、+的不同含义) ④是任何集合的子集,是任何非. 空.集合的真.子集. ⑤n个元素的集合的真子 ..集.个数 为:2n-1. 1.下列关系中正确的是() A.0 B.0∈ C.0= D.0≠ 2.已知a=-3,A={x│x2=9},则下 列关系正确的是() A.a A B.{a}A C.{a}∈A D.a A 3.下列命题为真命题的是() A.3{3} B. 3∈{3} C.3{1,2,3} D. 3∈ 4.若a=1,集合A={x│x<2},则下 列关系中正确的是() A.a A B.{a}A C.{a}∈A D.{a}A 集合的运算 ①掌握好求交、并、补集的基本含 义和方法,特别是C U A的含义. ②有限元素集之间的运算,常根据 定义解答,如: ⑴{0,1,2}∩{0,3,5}=. ⑵{x∈N│x<3}∩{x∈Z│0<x<10} =. ③无限元素集之间的运算,可用数 轴法,如: 设集合A={x│-1<x≤2},B= {x│-2<x≤1}则A∩B=. ④点集运算,常联立解方程组,如: A={(x,y)│x+y=2},B={(x , y)│x- y=1},则A∩B=. 5.设集合A={x∈Z│0<x<4},B= {2,3,4,5,6},则A∩B=. 6.已知集合A={x│x>0},B={x│x= 0},则A∩B是() A.{x│x≥0} B.{x│x>0} C.{0} D. 7.设M={x│2≤x≤5},N={x│-1≤ x≤3},则M∪N等于 . 8.设集合U=R,A={x│-2<x<3}, 则集合C U A=. 9.若全集U={x∈Z│x≥0},则C U N+ =. 10.已知全集U=N,集合A={x∈N│ x>10},B={x∈N│x≥3},则 C U(A∪B)=.

高中数学中的对称性问题

高中数学中的对称性 一、 关于点对称 (1) 点关于点的对称点问题 若点M 00(,)x y 关于点P (,)a b 的对称点'M 的坐标(,)x y ,则P 为M 'M 的中点,利用中点坐标公式可得00, 22 x x y y a b ++==,解算的'M 的坐标为00(2, 2)a x b y --。 例如点M(6,-3)关于点P(1,-2)的对称点'M 的坐标是. ① 点M 00(,)x y 关于点P (,)a b 的对称点'M 的坐标; ② 点M 00(,)x y 关于原点的对称点' M 的坐标. (2) 直线关于点对称 ① 直线L :0Ax By C ++=关于原点的对称直线 设所求直线上一点为(,)M x y ,则它关于原点的对称点为'(,)M x y --,因为'M 点在直线L 上,故有()()0A x B y C -+-+=,即0Ax By C +-=; ② 直线1l :0Ax By C ++=关于某一点(,)P a b 的对称直线2l 解法(一):在直线2l 上任取一点(,)M x y ,则它关于P 的对称点为' (2,2)M a x b y --,因为'M 点在1l 上,把'M 点坐标代入直线在1l 中,便得到2l 的方程即为(2)(2)0A a x B b y C -+-+=。

解法(二):由12l l K K =,可设1:0l Ax By C ++=关于点(,)P a b 的对称直线为'0Ax By C ++= =求设'C 从而可求的及对称直线方程。 (3) 曲线关于点对称 曲线1:(,)0C f x y =关于(,)P a b 的对称曲线的求法:设(,)M x y 是所求曲线的任一点,则M 点关于(,)P a b 的对称点为(2,2)a x b y --在曲线(,)0f x y =上。故对称曲线方程为(2,2)0f a x b y --=。 二、 关于直线的对称 (1) 点关于直线的对称 1) 点(,)P a b 关于x 轴的对称点为'(,)P a b - 2) 点(,)P a b 关于y 轴的对称点为'(,)P a b - 3) 关于直线x m =的对称点是'(2,)P m a b - 4) 关于直线y n =的对称点是'(,2)P a n b - 5) 点(,)P a b 关于直线y x =的对称点为'(,)P b a 6) 点(,)P a b 关于直线y x =-的对称点为'(,)P b a -- 7) 点(,)P a b 关于某直线:0L Ax By C ++=的对称点'P 的坐标 解法设对称点为'(,)P x y ,由中点坐标公式求得中点坐标为(,)22 a x b y ++把中点坐标代入L 中得到022a x b y A B C ++? +?+=①;再由'PP B K A =得b y B a x A -=-②,联立①、②可得到'P 点坐标。

高一数学上册知识点整理:集合

高一数学上册知识点整理:集合 高一数学上册知识点整理:集合 集合概念 集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论: 集合是现代数学的基本概念,专门研究集合的理论叫做 集合论。康托(Cantor,G.F.P.,1845年—1918年,德 国数学家先驱,是集合论的创始者,目前集合论的基本 思想已经渗透到现代数学的所有领域。 集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。 集合是把人们的直观的或思维中的某些确定的能够 区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。 元素与集合的关系 元素与集合的关系有“属于”与“不属于”两种。 集合与集合之间的关系

某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集, 空集是不含任何元素的集,记做Φ。空集是任何集合的 子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。『说明一下:如果集合 A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符 号下加了一个≠符号(如右图),不要混淆,考试时还是 要以课本为准。所有男人的集合是所有人的集合的真子集。』 集合的几种运算法则 并集:以属于A或属于B的元素为元素的集合称为A 与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A 且属于B的元差集表示 素为元素的集合称为A与B的交(集),记作A∩B(或 B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3, 5}B={1,2,5}。那么因为A和B中都有1,5,所以 A∩B={1,5}。再来看看,他们两个中含有1,2,3,5 这些个元素,不管多少,反正不是你有,就是我有。那

高中数学对称问题

对称问题 【知识要点】 1.点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题. 设P (x 0,y 0),对称中心为A (a ,b ),则P 关于A 的对称点为P ′(2a -x 0,2b -y 0). 2.点关于直线成轴对称问题 由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”.利用“垂直”“平分”这两个条件建立方程组,就可求出对顶点的坐标.一般情形如下: 设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有 00x x y y -'-'·k =-1, 20y y +'=k ·20x x +'+b , 特殊地,点P (x 0,y 0)关于直线x =a 的对称点为P ′(2a -x 0,y 0);点P (x 0,y 0)关于直线y =b 的对称点为P ′(x 0,2b -y 0). 3.曲线关于点、曲线关于直线的中心或轴对称问题,一般是转化为点的中心对称或轴对称(这里既可选特殊点,也可选任意点实施转化).一般结论如下: (1)曲线f (x ,y )=0关于已知点A (a ,b )的对称曲线的方程是f (2a -x ,2b -y )=0. (2)曲线f (x ,y )=0关于直线y =kx +b 的对称曲线的求法: 设曲线f (x ,y )=0上任意一点为P (x 0,y 0),P 点关于直线y =kx +b 的对称点为P ′(y ,x ),则由(2)知,P 与P ′的坐标满足 0x x y y --·k =-1, 2 0y y +=k ·20x x ++b , 代入已知曲线f (x ,y )=0,应有f (x 0,y 0)=0.利用坐标代换法就可求出曲线f (x ,y )=0关于直线y =kx +b 的对称曲线方程. 4.两点关于点对称、两点关于直线对称的常见结论: (1)点(x ,y )关于x 轴的对称点为(x ,-y ); (2)点(x ,y )关于y 轴的对称点为(-x ,y ); (3)点(x ,y )关于原点的对称点为(-x ,-y ); (4)点(x ,y )关于直线x -y =0的对称点为(y ,x ); (5)点(x ,y )关于直线x +y =0的对称点为(-y ,-x ). 【典型例题】 【例1】 求直线a :2x +y -4=0关于直线l :3x +4y -1=0对称的直线b 的方程. 2x +y -4=0, 3x +4y -1=0, 方法一:设直线b 的斜率为k ,又知直线a 的斜率为-2,直线l 的斜率为-4 3. 则)2()43(1)2(43-?-+--- =)43(1)43(-+--k k .解得k =-112.代入点斜式得直线b 的方程为 可求出x ′、y ′. 从中解出x 0、y 0, 解:由 解得a 与l 的交点E (3,-2),E 点也在b 上.

(精心整理)高中数学必修1-5知识点归纳及公式大全

必修1数学知识点 第一章、集合与函数概念 §1.1.1、集合 1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。 2、 只要构成两个集合的元素是一样的,就称这两个集合相等。 3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的 子集。记作B A ?. 2、 如果集合B A ?,但存在元素B x ∈,且A x ?,则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:?.并规定:空集合是任何集合的子集. 4、 如果集合A 中含有n 个元素,则集合A 有n 2个子集. §1.1.3、集合间的基本运算 1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈?且 §1.2.1、函数的概念 1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都 有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作: ()A x x f y ∈=,. 2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致, 则称这两个函数相等. §1.2.2、函数的表示法 1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、 注意函数单调性证明的一般格式: 解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=… §1.3.2、奇偶性 1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数. 偶函数图象关于y 轴对称. 2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算 1、 一般地,如果a x n =,那么x 叫做a 的n 次方根。其中+∈>N n n ,1. 2、 当n 为奇数时,a a n n =;

高中数学专题讲义-函数的奇偶性与对称性

题型一:判断函数奇偶性 1.判断函数奇偶性可以直接用定义,而在某些情况下判断f (x)±f (-x)是否为0是判断函数奇偶性的一个重要技巧,比较便于判断. 【例1】 判断下列函数的奇偶性: ⑴ 1 y x =; ⑵ 422y x x =++; ⑶ 3y x x =+; ⑷ 31y x =-. 【例2】 判断下列函数的奇偶性: ⑴4()f x x =; ⑵5()f x x =; ⑶1()f x x x =+ ; ⑷21()f x x =. 【例3】 判断下列函数的奇偶性并说明理由: ⑴ 221()1x x a f x a +=-(0a >且1)a ≠; ⑵ ()11f x x x =-+-; ⑶ 2()5||f x x x =+. 典例分析 板块二.函数的奇偶性与对称 性

【例4】 判别下列函数的奇偶性: (1)31 ()f x x x =-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-. 【例5】 判断函数 的奇偶性. 2.由函数奇偶性的定义,有下面的结论: 在公共定义域内 (1)两个偶函数之和(积)为偶函数; (2)两个奇函数之和为奇函数;两个奇函数之积为偶函数; (3)一个奇函数和偶函数之积为奇函数. 【例6】 判断下列函数的奇偶性: ⑴ ()(f x x =- ⑵ 11 ()()( )12 x f x F x a =+-,其中0a >且1a ≠,()F x 为奇函数. 【例7】 若函数f(x)= 3 (x x)+g(x)是偶函数,且f (x)不恒为零,判断函数g(x)的奇偶性. 【例8】 函数()y f x =与()y g x =有相同的定义域,对定义域中任何x ,有 ()()0f x f x +-=,()()1g x g x -=,则2() ()()()1 f x F x f x g x = +-是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数

高中数学知识点总结大全(最新版复习资料)

高中数学知识点总结

引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。

选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与 指数函数、对数与对数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函 数的图象与性质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应 用 ⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应 用 ⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用 ⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算

相关主题
文本预览
相关文档 最新文档