数据通信基础
- 格式:doc
- 大小:165.00 KB
- 文档页数:13
数据通信基础知识数据通信是现代社会中不可或缺的一部分,它依赖于各类不同的网络技术、传输媒介以及各种通信设备来实现信息的传输。
数据通信作为计算机网络的一个分支领域,在信息技术的发展历史中,一直扮演着至关重要的角色。
因此,对于数据通信的基础知识的掌握,对于从事计算机行业的人员来说显得格外重要。
一、数据通信的基本概念数据通信指的是通过各种可以传输数据的设备或网络工具将数据以特定的格式从一处传输到另一处的通信过程。
数据本身是以二进制编码方式来存储和传输,这种编码方式只包括数字0和1。
在数据通信领域,每一个0和1被定义为一个比特,也就是二进制信息位。
数据通信是实现计算机之间连接的基础,我们是通过数据通信技术将计算机与其他设备和网络连接起来。
二、数据通信的主要组成部分1.信源:信源指的是产生和发送信息的物理设备。
比如计算机、手机等都是信源的代表。
信源产生的数据信号可能是按照数字或者模拟信号来产生。
2.编码器:在数据信号经过信源后,信源产生的信号不一定是经过处理的二进制码流,因此需要对信源产生的信号进行编码操作,将原始信号转换为正确的数码形式,这就要用到编码器。
3.信道:信道就是传输信息信号的传输媒介,信道的种类很多,例如:电缆、光纤、无线电波等等。
4.解码器:按照收发双方协议规定,收到的信息信号需要进行解码操作,将数码形式转换为指定的信号形式并还原原始信息。
5.信宿:信宿是指接收信息的物理设备,例如计算机、手机等。
三、数据通信的传输模式在数据通信中有两种主要的传输模式:串行传输和并行传输。
串行传输:串行传输是指每一个二进制数位依次流动地发出,它的传输速度比并行传输要慢很多,但是传输的反差强度高。
串行传输通常应用在一些要求传输距离较远、传输速度较慢但是信号质量要求比较高的场合,如电子标签、传感器等。
并行传输:并行传输就是将多个二进制数同时传输,它的传输速度比串行传输要快,但受到电磁干扰的影响也比串行传输严重。
数据通信基础一.基础概念1.信号(signal)信息(information)是事物现象及其属性标识的集合,它是对不确定性的消除。
数据(data)是携带信息的载体。
信号(signal)是数据的物理表现,如电气或电磁。
根据信号中代表消息的参数的取值方式不同,信号可以分为两大类:(1)模拟信号:连续信号,代表消息的参数的取值是连续的。
(2)数字信号:离散信号,代表消息的参数的取值是离散的。
2.频率(frequency)物理学中的频率是单位时间内完成振动的次数,是描述振动物体往复运动频繁程度的量。
信号通信中的频率往往是描述周期性循环信号在单位时间内所出现的脉冲数量多少的计量。
频率常用符号f或v表示,单位为赫兹(秒-1)。
常用单位换算:1kHz=1000Hz,1MHz=1000kHz,1GHz=1000MHz。
人耳听觉的频率范围约为20~20000Hz,超声波不为人耳所觉察;人的视觉停留大概是1/24秒,故影视帧率一般为24~30fps;中国电源是50Hz的正弦交流电,即一秒钟内做了50次周期性变化;GSM(全球移动通信系统)系统包括 GSM 900:900MHz、GSM1800:1800MHz 及 GSM1900:1900MHz等几个频段;WiFi(802.11b/g)和蓝牙(bluetooth)的工作频段为2.4GHz。
3.信号带宽(Signal Bandwidth)信号带宽即信号频谱的宽度,它是指信号中包含的频率范围,取值为信号的最高频率与最低频率之差。
例如对绞铜线为传统的模拟电话提供300~3400Hz的频带,即电话信号带宽为3400-300=3100Hz。
4.数据通信系统(Data Communication System)数据通信系统实现信息的传递,一个完整的数据通信系统可划分为三大组成部分:(1)信源(源系统:发送端、发送方)(2)信道(传输系统:传输网络)(3)信宿(目的系统:接收端、接收方)5.信道带宽(Channel Bandwidth)信道是指通信系统中传输信号的通道,信道包括通信线路和传输设备。
信道的数据速率计算公式
在使用香农理论时!由于s/n(信噪比)通常较大,因此通常使用分贝(dB)表示,例如。
s/n=1000.分贝表示就是30dB.如果带宽是3KHZ,这时的极限速率是30Kb/s
通常误码率小于10E-6。
8.2 数据通信基础技术
1.信道特性
数据通信的目的就是传递信息,在一次通信中产生和发送信息的一端称为信源,接收信息的一端称为信宿,而信源和信宿之间的通信线路就称为信道。
信道最重要的一个特性就是信道容量——也就是信道上数据所能够达到的传输速率。
和信道相关的概念如下。
—带宽:是指发送器和传输媒体的特性限制下的带宽,通常用赫兹或每秒周期表示(对于模拟信道而言,其信道带宽W=最高频率f2-最低频率f1)。
通常是信道的电路制成后,带宽就决定了,因此它是影响信道传输速率的客观性因素。
—噪声:信息在传输过程中可能会受到外界的干扰,这种干扰就称为噪声,它会使得信道的传输速率降低。
在数据通信技术中,人们一方面通过研究新的传输媒介来降低噪声的影响,另一方面则是通过研究更先进的数据调制技术,从而能更加有效地利用信道的带
宽。
图8-2 信道的数据速率计算公式示意图
从图8-2中,可以看出在计算信道的数据速率时有两种考虑的方式。
—有噪声:这时应该使用香农理论。
在使用香农理论时,由于S/N(信噪比)的比值通常太大,因此通常使用分
(S/N)。
例如,S/N=1000时,用分贝表示就是30d 贝数(dB)来表示:dB=10 log
10
B。
如果带宽是3KHz,则这时的极限数据速率就应该是C=3000 log(1+1000)≈3000×9.97≈30Kb/s(考试是会考该知识点的,应该记住这里的转换公式)。
对于有噪声的信道,我们用误码率来表示传输二进制位时出现差错的概率(出错的位数/传送的总位数),通常要求小于10-6。
—无噪声:这时应该使用尼奎斯特定律(也称为奈式定律)。
在计算时,关键的地方在于理解码元和比特的转换关系。
码元是一个数据信号的基本单位,而比特是一个二制数位,一位可以表示两个值。
因此,如果码元可取两个离散值,则只需1比特表示;若可取4个离散值,则需要2比特来表示。
码元有多少个不同种类取决于其使用的调制技术,关于调制技术的更多细节参见后面的知识点,在此只列出常见的调制技术所携带的码元数,如表8-1所示。
无线传输媒介主要包括无线电波,需要专用的频率,易被窃听;微波,可分为地面微波和卫星微波,带宽高、容量大,但受天气影响大;红外,设备便宜、带宽高,但传输距离有限,易受室内空气状态影响。
3.数字编码
知识点详解:
二进制数字信息在传输过程中可采用不同的代码,这些代码的抗噪性和定时能力各不相同。
最基本的数字编码有单极性码、极性码、双极性码、归零码、不归零码、双相码6种,常用于局域网的有曼彻斯特编码、差分曼彻斯特编码,常用于广域网的4B/5B码、8B/10B码。
(1)基本编码。
—极性编码(如图8-3所示):极包括正极和负极,因此从这里就可以理解单极性码,即只使用一个极性,再加零电平(正极表示0,零电平表示1);极性码使用
了两极(正极表示0,负极表示1);双极性码则使用了正负两极和零电平(其
中有一种典型的双极性码是信号交替反转编码AMI,它用零电平表示0,1则使
电平在正、负极间交替翻转)。
(2)应用性编码。
—曼彻斯特编码和差分曼彻斯特编码:曼彻斯特编码(以下简称“曼码”)是一种双相码,用低到高的电平转换表示0,用高到低的电平转换表示1(注意:某种教程中关于此描述是错误的),因此它也可以实现自同步,常用于以太网(802.3 10M以太网)。
差分曼彻斯特编码(以下简称“差分曼码”)是在曼彻斯特编码的基础上加上了翻转特性,遇1翻转,遇0不变(如图8-5所示),常用于令牌环网。
要注意的一个知识点是:使用曼码和差分曼码时,每传输1bit的信息,就要求线路上有2次电平状态变化(2波特),因此要实现100M b/s的传输速率,就需要有200Mhz的带宽,即编码效率只有50%。
图8-5 曼彻斯特和差分曼彻斯特编码
—4B/5B编码、8B/6T编码和8B/10B编码:正是因为曼码的编码效率不高,所以在带宽资源宝贵的广域网和速度要求更高的局域网中,就面临困难。
因此就出现了m b n b编码,也就是将m比特位编码成为n波特(代码位)的编码,如表8-4所示。
表8-4 4B/5B编码、8B/6T编码和8B/10B编码的特性及应用
在高速的调制技术中,主要是通过采取多个相位值,使每个码元能够表示的二进制位数增多,从而提高数据传输速度。
例如:可以使用(0°,90°,180°,270°)4个相位,也可以取(45°,135°,225°,315°)4个相位来表示00,01,10,11。
前一种方案刚好是90°的倍数,因此称为QPSK(正交相移键控),后者则为普通的DPSK(四相键控)。
另外,以上三种基本的调制技术经常结合使用,最常见的组合是PSK与ASK结合。
(2)编码技术。
最常用的编码技术是脉冲编码调制技术(PCM),简称为脉码调制。
PCM原理中有以下几个关键知识点。
—PCM要经过取样、量化、编码三个步骤。
—根据奈奎斯特取样定理,取样速率应大于模拟信号的最高频率的2倍。
我们都知道44K Hz的音乐让人感觉到最逼真,这是因为人耳可识别的最高频率约为22KHz,因此当采样率达到44KHz就可以达到最满意的效果。
—量化是将样本的连续值转成离散值,采用的方法类似于求圆周长时用内切正多边形的方法。
而我们平时说的8位、16位的声音,指的就是28,216位量化。
—编码就是将量化后的样本值变成相应的二进制代码。
8.3 传输与交换技术
1.数据通信与交换方式
知识点详解:
(1)数据通信方式。
—按照数据传输方向,可以分为三种:单工通信,即信息只能在一个方向传送,如无线电广播、有线电视等;半双工通信,即双方可交替发送和接收信息,但不能够同时接收和发送,如无线电台、对讲机,由于相对全双工而言,设备价格更低,因此通常在要求不高时使用;全双工通信,即可以同时双向信息传送,如现代电话通信。
—按同步方式可以分为两种:一是异步传输,即将各个字符分开传输,字符间插入诸如“起始位”、“终止位”的同步信息,而且通常还需要加入“校验信息”,适合长距离传输;二是同步传输,即顺序地连续传输,通常是在传输前进行同步,然后在传输时双方以同一频率工作,这种通信方式通常用于短距离高速数据传输,如磁盘访问。
2.复用技术
知识点详解:
多路复用技术是把多个低速信道组合成一个高速信道的技术,它可以有效地提高数据链路的利用率,从而使得一条高速的主干链路同时为多条低速的接入链路提供服务,也就是使得远程网络的干线可以同时运载大量的话音和数据传输。
多路复用技术最常用的是两个设备:一是多路复用器,在发送端根据约定规则把多个低带宽信号复合成一个高带宽信号;二是多路分配器,根据约定规则再把高带宽信号分解为多个低带宽信号。
这两种设备统称为多路器(MUX)。
多路复用原理如图8-6所示。
图8-6 多路复用原理示意图
(1)多路复用技术。
常见的多路复用技术包括频分多路复用(FDM)、时分多路复用(TDM)和波分多路复用(WDM),其中时分多路复用又包括同步时分复用和统计时分复用。
表8-7中列出了它们的关键知识点。