对顶角 余角与补角的性质说课
- 格式:pdf
- 大小:173.87 KB
- 文档页数:6
《余角和补角》说课稿一、说教材1、说内容、地位和作用本节教材是新人教版标准实验教科书初中数学七年级第四章第3节教材的内容。
本节课主要学习余角、补角概念,余角、补角的性质,方位角.余角和补角是在学习了角的度量及角的比较与运算的基础上,对角的数量关系作进一步探讨,在后面学习对顶角相等及平行线的判定和性质时即将用到,并为今后证明角的相等提供一种依据和方法.另外教材在此已开始对学生提出“简单说理”的要求,为以后推理证明题作准备.对于方位角的知识,学生在根据题意画出方位角以及运用方位角的知识确定物体的方位是不熟悉的.方位角的知识在“解直角三角形”等内容中有广泛的应用,并且为今后学习平面直角坐标系等知识奠定基础.2、说目标在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。
了解方位角,能确定具体物体的方位。
经历观察、操作、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和表达能力。
体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。
3、说教材的重点和难点重点:余角和补角的概念和性质难点:余角、补角性质的综合运用。
二、学情分析对七年级学生而言,他们对新鲜事物特别有兴趣。
因此,我在教学过程中创设生动活泼,直观形象,贴近他们生活的问题情境,会引起学生的极大关注,学生能够敢想、敢说、敢做,动手操作,亲自实践。
我在这里为学生提供充足的阳光和适宜的土壤。
而且,在本节课中我采用了“开放·探索”式教学模式进行教学,充分利用多媒体,化静为动,使学生始终处于主动探索问题的积极状态中。
同时,我们也必须承认学生之间的个体差异,对学有余力的学生有拔高拓展的机会,对学困生也要有一定的展示平台,在难点的突破上要多动脑筋,让他们最大程度的参与其中。
三、说教法与学法、教学手段1、教法:针对初一学生的年龄特点和心理特征,以及他们的知识水平,采用启发式、发现法教学等教学方法,让学生始终处于主动学习的状态,课堂上教师起主导作用,让学生有充分的思考机会,使课堂气氛活泼,有新鲜感。
余角补角说课稿范文余角补角说课稿范文尊敬的各位领导、各位专家:您们好!今天我说课的内容是七年级下册第二章平行线与相交线的第一课时——《余角与补角》,下面我从教材分析、学情分析、教学过程、课后反思等方面对本节课的教学加以说明,不当之处恳请各位领导、专家批评指正.一、教材分析(一)教材的地位及作用在生活中,我们随处可见平行线与相交线,像两条笔直的铁轨,城市的街道以及我们家里的门窗中就蕴含着大量的平行线与相交线,从本节课开始我们就要学习平行线与相交线的有关知识.其中,余角与补角是学好“相交线”的基础,也为进一步学习几何知识作了必要的知识储备,对于培养学生的探索精神和创新意识都有重要的意义.因此,本节课无论在知识上,还是对学生能力的培养上,都起着十分重要的作用.(二)教学目标根据学生已有的认知基础及本课教材的地位及作用,依据课程标准,我确定本节课的教学目标为:1.知识与技能(1)了解余角、补角及对顶角的定义;(2)理解余角、补角及对顶角的性质.2.过程与方法(1)经历观察、操作、推理、交流等过程,进一步发展学生的推理能力和有条理表达的能力;(2)在具体情境中了解余角、补角及对顶角的性质并能解决一些实际问题.3.情感态度与价值观通过本节课的探索,使学生认识数学与生活的密切联系,在数学活动中体验探索的乐趣,通过合作交流,培养学生团结协作的精神.(三)教学重点与难点1.教学重点:余角、补角和对顶角的概念及其性质.2.教学难点:余角、补角和对顶角的性质的探索过程.二、学情分析对七年级学生而言,他们对新鲜事物特别有兴趣.因此,在教学过程中创设生动活泼,直观形象,贴近他们生活的问题情境,会引起学生的极大关注,学生能够敢想、敢说、敢做,动手操作,亲自实践,为学生提供充足的阳光和适宜的土壤.因此,在本节课中我采用了“开放·探索”式教学模式进行教学,充分利用多媒体,化静为动,使学生始终处于主动探索问题的积极状态中.同时,我们也必须须承认学生之间的个体差异,对学有余力的学生有拔高拓展的机会,对学困生也要有一定的展示平台,在难点的突破上要多动脑筋,让他们最大程度的参与其中.三、教学过程(一)创设情境,引入新课在本节课的探索中,结合学生的认知特点,首先观看物理中光的反射实验,在光的反射现象中,反射光线、入射光线和法线都在同一个平面内,反射光线、入射光线分居法线两侧,反射角等于入射角,通过观看视频,为引入新课做了铺垫.为了进一步引导学生思考问题,体验生活乐趣,举出了有关台球桌面上的角的事例,通过动手操作,我们可以发现:如果白球确定一个角度后击打红球,红球可以反弹入袋,由此看来,在打台球的侍候也用到了角有的有关知识,通过生活中的实际问题引入了新课.(二)启发诱导,探索新知结合光的反射现象中的反射角等于入射角的事实,抽象出几何图形,继而得到互为余角、互为补角的概念,通过这样的生活实例,体现了数学来源于生活,又服务于生活,数学的应用价值得到了体现.在进行互为余角、互为补角的概念的学习中,要强调:(1)互为余角和互为补角是对两个角而言的;(2)互为余角和互为补角仅仅表明了两个角的数量关系,而没有限制角的位置关系.(三)合作交流,解读探究在得到互为余角、互为补角的概念之后,通过两个动手操作的实验,让学生体会角度之间的`关系,在探究的过程中,教师要注意正确的引导,两个探究实验分别为:1.探索乐园之一探索乐园之一主要是探索余角的性质.2.探索乐园之二探索乐园之二主要是探索补角的性质.(展示学生分组探索的情境)在完成两个探究活动之后,通过“想一想”的活动,得到互为余角、互为补角的性质,即:同角或等角的余角相等;同角或等角的补角相等.通过对“想一想”的解决,巩固了互为余角、互为补角的性质的理解和记忆,同时,为了更好的体会其性质,然后将文字语言转化为数学语言进行填空:1.若∠α+∠β=90°,∠β+∠γ=90°,则∠α= .2.若∠α+∠β=180°,∠β+∠γ=180°,则∠α= .(四)应用举例,巩固性质为了培养学生的数学应用意识,根据学生的实际情况及心理特点,我设计了两个数学问题让学生进行思考:1.吊桥与铅垂方向所成的角是30°,若要把吊桥放平,则吊桥需沿什么方向转动?转动多少度?2.已知一个角的补角是它的余角的4倍,求这个角的度数.通过对数学问题的解决,不仅使学生对所学知识进行了及时的巩固,也培养了学生的数学应用意识.(五)结合生活,延伸知识通过“议一议” 的活动,结合动画效果,学生进行讨论:(1)用剪刀剪东西时,哪对角同时变大或变小?(2)如果将左图简单地表示为右图,∠1与∠2的位置有什么关系?它们的大小有什么关系?为什么?通过上面的讨论活动,从而引出了对顶角的概念,由对顶角的概念引导学生了解对顶角的本质特征,从而得到了“对顶角相等”的性质.(六)应用举例,感受生活考虑到对顶角与余角、补角的区别,我安排了两个实际问题加以强化学生对顶角的概念和性质的理解:1.如图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?你的根据是什么?2.如图,小明、小华的家与他们的学校在同一条直上,小明的家在学校的北偏东40o方向,那么小华的家在学校的什么方向呢?你能说出其中的理由吗?通过练习,学生体会到了新知识在实际生活中的应用价值,培养了学生解决实际问题的能力,同时让学生感受数学就在身边,对数学产生了亲切感.(七)自主评价,反馈提高“思有所得”“学有所获”,不同的学生肯定会有不同的收获,为了巩固本节课所学的知识内容,提高学生的数学应用意识,我安排了4个2009年的中考题目加以巩固:1.(2009年·福州中考)已知∠1=30°,则∠1的余角度数是()A.160° B.150° C.70° D.60°2.(2009年·泉州中考)如图,直线AB、CD相交于点O,∠1=50°,则∠2= 度.第2题图第3题图3.(2009年·郴州中考)如图,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,∠1与∠2的和总是保持不变,那么∠1与∠2的和是度.4.(2009年·资阳中考)若两个互补的角的度数之比为1∶2,则这两个角中较小角的度数是度.通过对以上题目的自主评价,不仅可以让学生对本节课的学习效果进行自我检测,及时补救学习中尚存疑虑的问题,还可以培养学生初步的评价和反思能力。
6.3余角、补角、对顶角(2)说课稿今天,我说课的课题是:苏科版七年级数学上册第六章第三节《余角、补角、对顶角》第二课时。
这节课的主要内容包括:对顶角的概念、对顶角的性质以及性质的应用。
下面,我将从六个方面对本节课的教学设计进行说明:一、教材分析(一)地位、作用本节课是在学生已经学习了直线、射线、线段、角以及余角、补角有关知识的基础上,进一步研究平面内两条直线相交所形成的角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生的识图能力,激发学生的学习兴趣具有推动作用,所以本节课具有很重要的地位和作用。
(二)、教学目标根据学生已有的知识基础,结合学生现阶段的认知能力,依据《教学大纲》的要求,确定本节课的教学目标为:1.理解对顶角的概念,会利用概念判定对顶角;2.探索并掌握对顶角的性质,能正确地运用对顶角的性质解决问题;3.经历“观察、操作—探索、猜想—推理(有条理地表述)”的认识过程,进一步发展空间观念和推理能力.(三)重点,难点根据学生已有的知识基础,依据教学大纲的要求,确定本节课的重难点为:重点:掌握对顶角的性质。
难点:运用余角、补角、对顶角的性质来解决问题。
二、教学方法在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体及投影、实验操作等手段。
增大了教学的直观性,让学生观察、比较、归纳、总结,使学生经历了从具体到抽象,从感性上升到理性的认识。
三、学法指导通过自主学习与小组相合作的形式让学生学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。
从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯。
四、学情分析七年级的孩子思维活跃,模仿能力强。
同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结。
但是受年龄特征的影响,他们的心智还不够成熟,对知识迁移能力不强,推理能力还需进一步培养。
余角、补角、对顶角【教课目的】1.在详细情境中认识余角、补角,知道等角(同角 )的余角相等、等角 (同角 )的补角相等。
2.会运用互为余角、互为补角的性质来解题。
3.经历察看、操作、说理、沟通等过程,进一步说明发展空间观点,学习有条理的表述。
【教课重难点】灵巧运用等角 (同角 )的余角相等、等角 (同角 )的补角相等。
【教课过程】一、情境创建、探究活动把一副三角尺搁置如图( 1)、(2)地点,分别探究发现,∠与∠ 的度数之间有什么特别关系?二、讲解新课(一)互为余角、互为补角的观点。
1.假如两个角的和是一个直角,这两个角叫做互为余角,简称互余,此中的一个角叫做另一个角的余角。
符号语言:由于900,因此与互为余角。
反过来,由于与互为余角,因此900,(或900 )。
2.假如两个角的和是一个平角,这两个角叫做互为补角,简称互补,此中的一个角叫做另一个角的补角。
符号语言:由于1800,因此与互为补角。
反过来,由于与互为补角,因此1800,(或1800 )。
(1)填一填:的度数40o 60o12’no(0 <n<90o)的余角60o的补角45o 120o(2)想想,1)一个锐角有余角和补角吗?如有,它们分别如何表示。
一个钝角 和直角 呢?2)同一个锐角的补角与它的余角之间有如何的数目关系?(3)算一算例题 1.已知一个角的补角是这个角的余角的 3 倍,求这个角的度数。
(4)找一找CD例题 2.如图, O 是直线 AB 上一点, OE 均分∠ AOC ,OD 均分∠ BOC ,那么图中共有: E234 ①几对互余的角;②几对互补的角。
1AOB2.互为余角、互为补角的性质(1)例题 3.假如∠ 1 与∠ 2 互余,∠ 1 与∠ 3 互余,那么∠ 2 与∠ 3 相等吗?为何?解:∠ 2 与∠ 3 相等。
由于∠ 1 与∠ 2 互余,∠ 1 与∠ 3 互余,2 31 因此∠ 2=90°-∠ 1,∠ 3=90°-∠ 1.因此∠ 2=∠ 3.思虑:若∠ 1 与∠ 2 互为余角,∠ 1 与∠ 3 互为余角,则∠ 2=∠。
苏科版数学七年级上册6.3《余角、补角、对顶角》说课稿1一. 教材分析《余角、补角、对顶角》是苏科版数学七年级上册第六章第三节的内容。
本节内容是在学生已经掌握了角的概念、分类以及度量的基础上进行教学的,是进一步深化学生对角的认识的重要环节。
通过学习本节内容,使学生理解余角、补角、对顶角的含义,掌握它们的性质和运用,为学生今后学习更高级的数学知识打下坚实的基础。
二. 学情分析根据我对学生的了解,他们在学习了角的概念、分类以及度量后,对于新的数学知识充满了好奇心和求知欲。
但是,由于他们刚刚接触数学中的高级概念,对于余角、补角、对顶角的理解可能会有一定的困难。
因此,在教学过程中,我需要根据学生的实际情况,采取适当的教学方法,帮助他们理解和掌握这些概念。
三. 说教学目标1.知识与技能:通过本节课的学习,使学生了解余角、补角、对顶角的含义,掌握它们的性质和运用。
2.过程与方法:通过观察、思考、交流等数学活动,培养学生的逻辑思维能力和团队合作能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生对数学的热爱,使学生感受到数学的乐趣和魅力。
四. 说教学重难点1.教学重点:余角、补角、对顶角的含义及其性质。
2.教学难点:余角、补角、对顶角的运用和理解。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、实物模型、几何画板等教学手段,直观展示余角、补角、对顶角的概念和性质,帮助学生理解和掌握。
六. 说教学过程1.导入新课:通过复习角的概念、分类以及度量,引出本节课的内容——余角、补角、对顶角。
2.讲解新课:讲解余角、补角、对顶角的含义,通过示例让学生理解并掌握它们的性质。
3.课堂练习:设计一些有关余角、补角、对顶角的练习题,让学生在练习中巩固所学知识。
4.小组讨论:让学生分组讨论,分享彼此的学习心得和解决问题的方法。
苏科版数学七年级上册6.3.2《余角补角对顶角》说课稿一. 教材分析苏科版数学七年级上册6.3.2《余角补角对顶角》这一节的内容,主要介绍了余角、补角和对顶角的定义及其性质。
这部分内容是学生学习初中数学的基础知识,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。
在教材中,首先通过生活实例引入余角和补角的概念,让学生感知数学与生活的联系。
接着,通过图形直观地展示余角和补角的性质,引导学生运用观察、操作、推理等方法探索和验证结论。
最后,介绍对顶角的性质,并通过例题让学生运用所学知识解决问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,掌握了基本的运算能力和简单的逻辑推理能力。
但是,对于抽象的数学概念和性质,学生的理解可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生通过观察、操作、推理等方法自主探索,从而更好地理解和掌握余角、补角和对顶角的性质。
三. 说教学目标1.知识与技能:理解和掌握余角、补角和对顶角的定义及其性质,能够运用所学知识解决简单的问题。
2.过程与方法:通过观察、操作、推理等方法,探索余角、补角和对顶角的性质,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:培养学生对数学的兴趣,增强学生克服困难的信心,培养学生合作交流的能力。
四. 说教学重难点1.教学重点:余角、补角和对顶角的定义及其性质。
2.教学难点:对顶角的性质及其运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、小组合作法等,引导学生自主探索,培养学生的动手操作能力和逻辑思维能力。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过生活实例引入余角和补角的概念,让学生感知数学与生活的联系。
2.探索性质:让学生观察图形,引导学生运用推理等方法探索余角和补角的性质,验证结论。
3.介绍对顶角:通过对顶角的定义和性质进行讲解,让学生理解对顶角的概念。