海洋平台设计原理大作业
- 格式:doc
- 大小:383.08 KB
- 文档页数:14
常见自升式海洋平台升降结构对比分析班级:学号:姓名:目录一、自升式平台简介 (3)二、现有常见升降结构 (4)1、圆柱型桩腿一单环梁液压升降装置 (4)2、方壳型桩腿—双环梁液压升降装置 (6)3、桁架型桩腿一齿轮齿条升降装置 (7)三、升降系统的对比 (8)1、桩腿结构形式对比 (8)2、触底形式对比 (9)3、升降装置对比 (10)4、动力源对比 (11)一、自升式平台简介自升式平台是一种海上活动式钻井装备,目前是我国海洋石油勘探中使用最多的一种钻井平台,由于其作业稳定性好和定位能力强,在大陆架海域的油气勘探开发中居极其重要的地位。
自升式平台主要由平台主体、桩腿、升降锁紧装置、钻井装置(包括动力设备和起重设备)以及生活楼(包括直升飞机平台)等组成。
平台在工作时用升降装置将平台主体提升到海面以上,使之免受海浪冲击,依靠桩腿的支撑稳定的站立在海底进行钻井作业。
完成任务后,降下平台主体到海面,拔起桩腿并将其升至拖航位置,即可拖航到下一个井位作业。
因此,支撑升降系统的结构对自升式海洋工作平台的安全有着至关重要的作用。
自升式平台的工作状态如图一所示。
图一二、现有常见升降结构支撑升降系统作为自升式平台中的核心部分,在平台的设计建造中历来受到高度重视,其性能的优劣直接影响到平台的安全和使用效果。
最常用的升降装置是齿轮齿条式和顶升液压缸式。
具体可见下表壳体桩腿是封闭型桩腿,其桩腿截面有圆形和方形两种形式;桁架式桩腿截面有三角形和四方形两种形式。
不同截面形状的桁架式和壳体式桩腿与不同类型的升降驱动方案相互组合,衍生出多种能够实现升降平台功能的支撑升降系统类型。
1、圆柱型桩腿一单环梁液压升降装置销子、销孔和项升液压缸是一种升降装置。
系统原理图如图二。
图二每一桩腿有两组液压动作的插销和一组顶升液压缸。
当装在环梁上的一组环梁销插入到桩腿的销孔中时,一组顶升液压缸的同步动作即可使环梁及销子带动桩腿(或平台主体)升降一个节距,然后进行换手:将锁紧销推入到桩腿的销孔中,退出环梁销,液压缸和环梁复位,下一个工作循环开始。
海洋平台设计原理海洋平台是一种特殊的建设项目,可以在海上进行各种活动,如石油开采、风力发电、旅游观光等。
它需要经过精心的设计和规划,以确保其在恶劣海洋环境下的安全和可靠运行。
本文将介绍海洋平台设计的原理和相关要点。
首先,海洋平台设计的原理之一是稳定性。
由于海上环境的多变性,平台必须能够经受住各种风力、海浪和潮汐的冲击。
因此,设计师会考虑到平台的稳定性,采用合适的形状和结构来确保其不会倾覆。
其次,海洋平台设计的原理之一是材料的选择。
海水的腐蚀性是设计师必须考虑的重要因素。
他们会选择耐腐蚀的材料,如不锈钢或防腐蚀涂层,以延长平台的使用寿命。
同时,设计师还会考虑到材料的强度和刚度,以确保平台能够承受各类载荷。
此外,海洋平台设计还需要考虑到环境影响和生态保护。
平台可能会对海洋生态系统造成影响,设计师需要尽量减少对生态环境的破坏。
他们会采用环保技术和措施,如噪声控制、废水处理和废气排放控制,以保护周围海洋生态系统的完整性和稳定性。
另外,海洋平台设计还需要考虑到人员安全。
这些平台经常需要人员进行维护和操作,因此设计师必须确保平台提供良好的工作环境和安全设施,以预防事故和伤害。
他们会考虑到紧急撤离设备、消防系统、安全护栏等因素,以确保人员的安全。
此外,在海洋平台设计中,还需要考虑到平台的可维护性和可持续性。
由于平台将长期暴露在恶劣的海洋环境中,定期维护和保养是必需的。
因此,设计师会考虑到维护便利性和可持续性,以减少平台的维护成本和对环境的影响。
最后,海洋平台设计还需要考虑到经济性和可行性。
设计师需要在满足技术需求和安全要求的基础上,尽量降低平台的建设成本和运营成本,以实现项目的经济可行性。
总之,海洋平台设计涉及到多个方面的考虑,包括稳定性、材料选择、环境影响、人员安全、可维护性、可持续性、经济性和可行性等。
设计师需要综合考虑这些因素,以确保海洋平台在恶劣海洋环境中的安全运行和可持续发展。
海洋平台设计原理1)海洋平台按运动⽅式分为哪⼏类?列举各类型平台的代表平台?固定式平台:重⼒式平台、导管架平台(桩基式);活动式平台:着底式平台(坐底式平台、⾃升式平台)、漂浮式平台(半潜式平台、钻井船、FPSO);半固定式平台:牵索塔式平台(Spar):张⼒腿式平台(TLP)2)海洋平台有哪⼏种类型?各有哪些优缺点?固定式平台。
优点:整体稳定性好,刚度较⼤,受季节和⽓候的影响较⼩,抗风暴的能⼒强。
缺点:机动性能差,较难移位重复使⽤活动式平台。
优点:机动性能好。
缺点:整体稳定性较差,对地基及环境条件有要求半固定式平台。
优点:适应⽔深⼤,优势明显。
缺点:较多技术问题有待解决3)导管架的设计参数有哪些?(P47)1、平台使⽤参数;2、施⼯参数;3、环境参数:a、⼯作环境参数:是指平台在施⼯和使⽤期间经常出现的环境参数,以保证平台能正常施⼯和⽣产作业为标准;b、极端环境参数:指平台在使⽤年限内,极少出现的恶劣环境参数,以保证平台能正常施⼯和⽣产作业为标准4、海底地质参数4)导管架平台的主要轮廓尺⼨有哪些?(P54)1、上部结构轮廓尺度确定:a、甲板⾯积;b、甲板⾼程2、⽀承结构轮廓尺度确定:a、导管架的顶⾼程;b、导管架的底⾼程;c、导管架的层间⾼程;d、导管架腿柱的倾斜度(海上导管架四⾓腿柱采⽤的典型斜度1:8);e、⽔⾯附近的构件尺度;f、桩尖⽀承⾼程5)桩基是如何分类的?主桩式:所有的桩均由主腿内打出;群桩式:在导管架底部四周均布桩柱或在其四⾓主腿下⽅设桩柱6)受压桩的轴向承载⼒计算⽅法有哪些?(P93)1、现场试桩法:数据可靠,费⽤⾼,深⽔实施困难;2、静⼒公式法:半经验⽅法,试验资料+经验公式,考虑桩和⼟塞重及浮⼒,简单实⽤;3、动⼒公式法:能量守恒原理和⽜顿撞击定理,不能单独使⽤;4、地区性的半经验公式法:地基状况差别,经验总结。
7)简述海洋平台管节点的设计要求?(P207)1、管节点的设计应降低对延展性的约束,避免焊缝⽴体交叉和焊缝过度集中,焊缝的布置应尽可能对称于构件中⼼轴线;2、设计中应尽量减少由于焊缝和邻近母材冷却收缩⽽产⽣的应⼒。
1前言随着中国经济的发展 ,特别是作为支柱产业的石油化工和汽车工业的快速发展 ,石油和天然气供应不足的矛盾日益突出。
石油天然气资源是发展石油工业的前提条件和基础 ,探明储量是制定石油工业长期发展规划和建设项目的依据 ,剩余可采储量的多少决定了石油工业发展潜力所在。
目前我国陆上石油后备资源严重不足 ,原油产量增长缓慢。
由于长期的强化开采 ,大多数主力油田在基本稳定基础上陆续进入产量递减阶段 ,开采条件恶化 ,开发难度增大。
鉴于陆上资源的日渐枯竭 ,资源开发向海洋、尤其是深海进军已成必然趋势。
因此,如何控制海上石油平台的震动,保护平台的安全可靠成为一个亟待解决的问题。
1.1海洋平台简介在陆地上钻井时,钻机等都安装在地面上的底座上;在海上钻井时,不可能将钻井设备安放在海里,因此就需要一个安放钻井设备等的场所,这个场所就是海洋钻井平台。
海上钻井平台分类[2]如下:按运移性分为:固定式钻井平台,移动式钻井平台。
移动式钻井平台又分为坐底式钻井平台、自升式钻井平台、半潜式钻井平台、浮式钻井平台。
按钻井方式分为:浮动式钻井平台和稳定式钻井平台。
浮动式钻井平台分又为,半潜式钻井平台、浮式钻井船和张力腿式平台;稳定式钻井平台又分为,固定式钻井平台、自升式钻井平台和坐底式钻井平台。
固定式海洋平台是从海底架起的一个高出水面的构筑物,上面铺设甲板作为平台,用以放置钻井机械设备,提供钻井作业场所及工作人员生活场所。
海洋平台的安装包括:导管架的安装和工作平台的安装。
其中导管架的安装方法有:提升法、滑入法和浮运法。
工作平台的安装方法有:吊装和浮装。
海洋平台的组成部分有:导管架和桩基、栈桥、上部模块、生活楼直升机甲板和火炬臂。
图1.1 海洋平台1.2固定式海洋平台的特点固定平台包括导管架式平台、混凝土重力式平台、深水顺应塔式平台等。
钢质导管架式平台使用水深一般小于300米,通过打桩的方法固定于海底,它是目前海上油田使用广泛的一种平台。
第一章测试
1
【单选题】(2分)
下列哪项不属于船体设计?()
A.
通风设计
B.
总体设计
C.
舾装设计
D.
结构设计
2
【单选题】(2分)
下列哪一个参数不属于船舶动力装置?()
A.
主机的类型
B.
主机燃油系统
C.
主机的台数
D.
主机的转速
E.
主机的功率
3
【单选题】(2分)
船舶舯横剖面图描述了设计船()。
A.
船舯0.4L区的船体纵横结构
B.
机舱的结构型式
C.
舯部以及上层建筑的结构型式
D.
全船的结构型式
4
【多选题】(2分)
船舶设计的指导原则有哪些?()
A.
贯彻国家的技术政策
B.
遵守国际国内相关公约、规则、规范和法规
C.
充分考虑船东的要求
D.
节能与环保的要求
E.
最佳经济性的要求
5
【多选题】(2分)
船型的建筑特征应包括()。
A.
货舱划分
B.
甲板层数
C.
船舶吃水
D.
甲板间高
E.
机舱部位
F.
上层建筑
6
【多选题】(2分)
船舶技术规格书中,相关结构方面有()。
A.
结构形式
B.
甲板负荷。
海洋平台设施的结构与设计原理海洋平台设施是为了支撑和保护海洋石油、海底矿产等海洋资源开发和利用活动而建造的一种重要设备。
它承载着海洋作业的各种设备和人员,并提供了必要的生活、办公和储存空间。
本文将探讨海洋平台设施的主要结构和设计原理。
在设计海洋平台设施时,首要考虑因素是其安全性和稳定性。
考虑到海洋环境的复杂性、恶劣的气象和水域条件,海洋平台设施的结构需要具备抵御大风、巨浪、海啸和冰冻等自然灾害的能力。
此外,设施的设计也必须能够适应不同的水深、底质和地形条件。
海洋平台设施的主要结构包括:顶部结构、支撑系统和浮力系统。
顶部结构是海洋平台设施上方的建筑物,包括办公楼、居住区、作业平台和设备等。
支撑系统是将顶部结构固定在海底的重要框架,通常由支腿、桥墩或钢管构成。
浮力系统则通过各种浮力体,如船体、浮筒或弹簧吊架来提供平台的浮力。
为了确保在海洋环境下的安全和稳定,海洋平台设施的主要设计原理包括以下几个方面:1. 抗风稳定性:考虑到海上风力较大的环境,海洋平台设施的顶部结构和支撑系统都需要具备较强的抗风能力。
设计中通常会采用钢结构和一定的空气动力学设计,以减小风力对结构的影响。
2. 抗浪稳定性:巨浪是海洋环境的重要威胁之一。
为了保证海洋平台设施的抗浪能力,通常会考虑采用斜坡或斜板来减小波浪对结构的冲击。
此外,在设计过程中还会结合海浪预测模型进行合理的结构设计。
3. 抗冰稳定性:在极地和寒冷地区,海洋平台设施还需要考虑抗冰稳定性。
设计中通常会采用合适的材料和措施来预防冰冻,例如热水灌注、防冰材料覆盖等。
4. 浮力系统设计:海洋平台设施的浮力系统是保证平台上浮并保持平衡的重要组成部分。
设计中通常会考虑到平台的总重量、浮力体积和浮力中心的位置,以保证平台在水体中的稳定性。
5. 地基设计:由于海洋平台设施需要在海底固定,地基设计也是关键因素之一。
不同的地质条件可能需要采用不同的支撑系统和固定方式,如钻井或地基桩基础。
海洋平台工程施工组织设计原理海洋平台工程是指在海洋上建设各种用于石油、天然气、风电等资源开发的人工结构物。
为了确保工程的顺利进行,施工组织设计是至关重要的一环。
本文将就海洋平台工程施工组织设计的原理进行探讨,并提出相应的解决方案。
1. 工程背景及需求分析在开始施工组织设计之前,必须先充分了解工程背景及需求,包括工程的规模、工期、预算等。
通过对工程特点的分析,确定施工组织设计的目标和原则,为后续的施工工作奠定基础。
2. 施工方法选择根据海洋平台工程的不同类型和特点,选择适用的施工方法。
常见的施工方法包括浮动式施工、沉管式施工和宜人式施工等。
需要根据工程实际情况,综合考虑施工效率、施工成本、安全性等因素,选择最合适的施工方法。
3. 施工工序安排根据工程的具体要求和施工方法的选择,对施工过程进行分解和安排,确保施工工序的合理性和连贯性。
在施工工序安排时,要充分考虑各施工单元之间的协调与配合,尽量减少工序之间的等待时间和资源浪费。
4. 施工资源配置合理配置施工所需的各种资源,包括人力、物力、机械设备等。
通过综合考虑各种资源的供需状况,确保在施工过程中各种资源能够得到充分利用,提高施工效率和质量。
5. 安全管理措施在海洋平台工程施工过程中,安全是至关重要的。
必须制定详细的安全管理措施,建立安全管理体系。
包括对施工人员的安全培训、施工现场的安全设施和安全操作规程的制定等。
通过合理的安全管理措施,保障施工人员的生命安全和工程的顺利进行。
6. 施工质量控制为了确保海洋平台工程的质量达到设计要求,必须建立严格的施工质量控制体系。
包括对施工过程中关键环节的监控和检验,及时发现和纠正施工中存在的质量问题。
通过有效的施工质量控制,确保工程的安全可靠和长期运行的稳定性。
7. 环境保护措施海洋平台工程施工可能对海洋环境产生一定的影响,应采取相应的环境保护措施。
包括减少施工过程中对海洋生物的干扰,避免水质污染等。
倡导绿色施工理念,最大限度地保护海洋生态环境。
SHANGHAI JIAO TONG UNIVERSITY 《海洋平台设计原理》课程大作业姓名:王志强学号:5130109174专业:船舶与海洋工程1.引言 (2)2. 波浪理论 (2)2.1 波浪理论概述 (2)2.2 微幅波理论 (2)2.3 Stokes波浪理论 (3)2.4 波浪力及波浪力矩 (4)2.5 水流力 (5)3. 牛顿迭代法求解非线性方程组 (5)4. MATLAB计算实例 (6)4.1 程序流程 (6)4.2 海况等参数 (6)4.3 计算结果 (6)5. 总结 (8)6.附录:MATLAB源代码 (8)海洋覆盖着地球 3/4 的面积,海底蕴藏着丰富的油气资源,海洋已成为21 世纪人类最重要的能源基础之一。
1947 年在美国建成了世界上第一座钢结构平台,50 多年以来海底油气的开发和利用越来越受到各国重视。
而开发海底油气资源,首先必须设计海洋结构物。
波浪荷载是海洋结构物的主要控制荷载之一,要设计安全可靠的海洋结构物,就必须考虑波浪作用的影响。
目前人们对波浪与海洋结构物相互作用的研究主要通过三种手段进行:其一是通过现场观测研究;其二是用流体力学或数理统计或能量平衡方法,在某种假设基础上,把自然界的波浪归结为某一模式,用数学分析的方法进行研究;其三是模拟实验的方法。
随着电子计算机的发展和普及,波浪的数值模拟得到了迅速的发展,它弥补了实验室模拟的不足,而且易于实现、成本低廉,同时也弥补了纯数学演算的抽象和失真。
以数值模拟的波浪数据作为输入可计算海上和海岸建筑物或船体等的响应,又由于数值模拟的可控性更强,可通过输入得到海上和海岸建筑物等长期(甚至数百年)响应的某些重要特征,如最大响应和某些临界值等。
20 世纪 80 年代以来,波浪的数值模拟与物理模拟相结合,即计算机控制下的物理模拟,已成为波浪研究的更有力的手段。
随着社会经济的增长,人类对海洋的认识不断提高,利用海洋资源的能力不断增强,对海洋空间的探索也不断扩大。
越来越多的领域需要对波浪进行模拟。
特别在海洋工程领域,波浪的模拟已成为研究波浪特性、波浪作用的一个重要手段,因此在“海洋平台设计原理”这门课程中我也尝试采用莫里森公式计算多桩腿的波浪和水流作用力力矩。
2. 波浪理论2.1 波浪理论概述在海洋工程设计中,常采用的波浪理论有如下三种:(1) 微幅波理论;(2) Stokes波浪理论(二阶近似、三阶近似、五阶近似);(3) 流函数理论。
对于微幅波理论和Stokes 波浪理论,要计算水质点的速度和加速度,须首先知道波长,而波长需通过求解波长方程获得。
微幅波理论和Stokes二阶波浪理论波长方程相同,均是一元非线性方程。
三阶和五阶Stokes 波浪理论的波长方程均由色散关系式和附加方程组成,它们都是二元非线性方程组,由于该二元方程组表达式过于复杂,需要进行数值分析求解。
流函数理论直接假设了波面方程和水质点速度的形式,其波剖面参数和速度参数需通过优化方法获得。
在这里我们主要介绍微幅波理论和Stokes波浪理论(五阶)。
2.2 微幅波理论微幅波理论( Airy 理论)是应用势函数来研究波浪运动的一种线性波浪理论,是波浪理论中最基本、最重要的内容,也是海洋工程中应用的最为广泛的波浪理论。
微幅波理论的波面方程、速度势函数和色散关系式如下:波面方程:η=H2cos(kx−ωt)速度势:ϕ=gH2ωcℎk(z+d)cℎkdsin (kx−ωt)色散关系:ω2=gktℎkd式中:d为水深(m);H为波高(m);T为波浪周期(s);k为波数,k=2π/L;ω为圆频率,ω=2π/T。
2.3 Stokes波浪理论为了更准确的描述波浪运动, Stokes 提出了一种有限振幅重力波的高阶理论。
他的基本假定是,波浪运动能用小扰动级数表示,并且认为,考虑的量阶越高越接近实际波浪情形。
这样,就得到了计入不同量阶的波浪理论,即所谓的二阶、三阶和五阶Stokes 波浪理论等。
其中二阶 Stokes 波浪理论的波面方程、速度势函数和色散关系式如下:二阶 Stokes 波浪理论波面方程:二阶 Stokes 波浪理论速度势函数:五阶 Stokes 波理论是目前工程计算中应用广泛的波浪,与二阶、三阶Stokes 波浪理论相比,它更能反映波浪的非线性特性。
其波面方程、速度势函数和色散关系式如下:五阶 Stokes 波浪理论波面方程:kη=λcos(kx−ωt)+(λ2B22+λ4B24)cos2(kx−ωt)+(λ3B33+λ5B35)cos3(kx−ωt)+λ4B44cos4(kx−ωt)+λ5B55cos5(kx−ωt)五阶 Stokes 波浪速度势方程:kϕc=(λA11+λ3A13+λ5A15)cℎk(z+d)sin(kx−ωt)+(λ2A22+λ4A24)cℎ2k(z+d)sin2(kx−ωt)+(λ3A33+λ5A35)cℎ3k(z+d)sin3(kx−ωt)+λ4A44cℎ4k(z+d)sin4(kx−ωt)+λ5A55cℎ5k(z+d)sin5(kx−ωt)波高H与波面高度η之间符合下列关系:H=η|θ=0−η|θ=π将波面高度代入到上式,得到:πH d =1dL(λ+λ3B33+λ5(B35+B55))色散关系式:kc2=C02(1+λ2C1+λ4C2)其中:C02=gtℎkd,c=ωk=L/T,整理得:d L0=dLtℎ(2πdL)(1+λ2C1+λ4C2)其中:L0=gT22π。
已知波高H、波周期T、水深d后,由于系数B33、B35、B55、C1、C2仅仅是d/L的函数,联立求解非线性方程组即可确定系数λ和L,然后便可得出Stokes五阶波浪理论中的其他18个系数以及波浪特征参数,由此可以确定该波浪的速度势。
2.4 波浪力及波浪力矩在海洋工程实际工程应用中,当物体的尺度与波长相比是微小量的情况下,可忽略物体对波浪运动的影响,这个比值一般定为D/L≤0.2(其中D是物体的特征长度,如圆柱体则D 是直径,L是波长)。
D/L≤0.2的构件,一般称为小尺度构件。
对于小尺度构件上的波浪力,通常采用著名的Morison公式计算。
自升式平台,无论桩腿是圆柱式还是析架式(可折合成圆柱式计算)都可看作是小尺度构件。
Morison方程理论假定,柱体的存在对波浪运动无显著影响,认为波浪对柱体的作用主要是粘滞效应和附加质量效应。
取如图所示的坐标系,莫里森公式给出,作用于单个钢桩、高dz上的水平波浪力为:dF H=f H dz 12=C DρDu x|u x|dz+C MρπD24ðu xðtdz式中:C D为拖曳力系数;C M为惯性力系数。
莫里森等认为作用于柱体任意高度z处的水平波浪力包括两个分量:一是波浪水质点运动的水平速度u x,引起的对柱体的作业力一水平拖曳力,另一是水质点运动的水平加速度a x 引起的对柱体的作业力——水平惯性力。
又认为波浪作用在柱体上的拖曳力的模式与单向定常水流作用在柱体上的拖曳力模式相同,即它与波浪水质点的水平速度的平方和单位柱高垂直于波向的投影面积成正比。
不同的是波浪水质点作周期性的往复的振荡运动,水平速度是时正时负,因而对柱体的拖曳力也是时正时负,故在式中,取u x|u x|代替u x了以保持拖曳力的正负性质。
整个钢桩受到的水平波浪力为:F H=∫dF Hη−d =∫f H dzη−d=∫12C DρDu x|u x|dzη−d+∫C MρπD24ðu xðtdzη−d整个钢桩的总水平波力矩(对海底求矩)为:M H=∫zf H dzη−d =∫z(f D+f I)dzη−d=∫12C DρDu x|u x|zdzη−d+∫C MρπD24ðu xðtzdzη−d2.5 水流力取水流为剪切流,水流速度沿深度方向的变化分布由挪威船级社(DNV)推荐的公式计算:V z=V0(d+z d)α式中:α为速度分布指数,取为1/7。
作用于单个钢桩,高dz上的水平波浪力为:dF C=f C dz=12C DρDV z|V z|dzF C=∫dF Cη−d =∫f C dzη−d=∫12C DρDV z|V z|dzη−d3. 牛顿迭代法求解非线性方程组牛顿迭代法(Newton's method)是一种在实数域和复数域上近似求解方程的方法。
多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。
方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。
另外该方法广泛用于计算机编程中。
用牛顿迭代法解非线性方程,是把非线性方程f(x)=0 线性化的一种近似方法。
把f(x)在点x0的某邻域内展开成泰勒级数:取其线性部分(即泰勒展开的前两项),并令其等于0,即以此作为非线性方程f(x)=0 的近似方程,若,则其解为这样,得到牛顿迭代法的一个迭代关系式:4. MATLAB计算实例4.1 程序流程1.在MATLAB中定义函数c(x),s(x),以及A11,B35等,以备后续计算调用;2.定义前面所述的波面高度以及色散关系方程组;3.设置误差范围eps以及最大迭代次数N,利用newton迭代法数值求解2中定义的非线性方程组;4.将3中所解未知数的数值作为自变量带入已定义的A11,B35等函数中计算出所有stokes五阶波中所有参数的数值,进而得到速度势方程;5.通过速度势方程得到速度方程;6.利用morison方程和5中所得速度方程计算波浪力和波浪力矩,用梯形法积分得到整个钢柱的波浪力和力矩;7.计算水流力。
4.2 海况等参数4.3 计算结果1.输入水深、波高、周期之后用newton迭代法解非线性方程组得到:L=171.197479487617mλ=0.07930800925395002.计算30s的波浪力、波浪力矩和水流力,计算之后绘图如下:水平波浪力随时间的变化图:波浪力矩随时间变化图:水流力随时间变化图:5. 总结虽然我们专业的名称是船舶与海洋工程,但是专业必修课全部以船舶为对象的讨论,船舶与海洋工程结构物虽然有很多相似的地方,但也有很多不同之处,所以选修这门“海洋平台设计原理”对于拓展知识面非常有帮助,在这门课程中也了解了很多关于海洋平台的知识,对于未来的学习、工作都很有帮助。
这门课程的大作业是自己编程计算海洋平台桩腿的波浪力,在编程的过程中遇到了很多问题,比如如何解非线性方程组、如何用梯形法求积分,在查阅了很多资料之后最终一一解决了这些问题完成了大作业,也体会到了解决问题的快乐。