热电冷三联产
- 格式:ppt
- 大小:509.50 KB
- 文档页数:18
一、冷热电三联供概念:冷热电联产是指使用一种燃料,在发电的同时将产生的余热回收利用,做到能源阶梯级利用;冷热电联供系统一般由动力系统、燃气供应系统、供配电系统、余热利用系统、监控系统等组成。
按燃气原动机的类型不同,分为燃气轮机联供系统和内燃机联供系统。
与传统的击中式供电相比,这种小型化、分布式的供能方式。
可以使能源的综台使用率提高到85%以上。
一般情况可以节约能源成本的30—50%以上;由于使用天然气等清洁能源,降低了二氧化硫、氨氧化物和二氧化碳等温室气体的排放量,从而实现了能源的高效利用与环保的统一,减低了碳排放。
二、冷热电三联供技术优点1、系统整体能源利用效率非常高;2、自行笈电,提高了用电的可靠性;3、减少了电同的投资;4、降低了输配电网的输配电负荷;5、减少了长途输电的输电损失;6、节能环保、经济高效、安全可靠。
三、冷热电联供系统与传统制冷技术的对比优势(1)、使用热力运行,利用了低价的”多余能源”;(2)、吸收式冷水机组内没有移动件,节省了维修成本;(3)、冰水机组运行无噪音;(4)、运行和使用周期成本低;(5)、采用水为冷却介质,没有使用对大气层有害的物质。
四、采用冷热电联供的意义1. 实现能量综合梯级利用,提高能源利用效率具有发电、供热、制冷、能量梯级利用等优势,年平均能量的综合利用率高达80~90%图4.6-2 燃气热能的梯级综合利用流程关系示意图2.集成供能技术,系统运行灵活可靠三联供系统是供冷、供热、供电的技术集成,设备优化配置,集成优化运行,实现既按需供应,又可靠运行。
3.用电用气峰谷负荷互补,利于电网、气网移峰填谷对于电网、气网,负荷峰谷差越小,越有利于系统稳定、安全、节能运行。
五、冷热电联供的使用条件天然气近似为一种清洁能源,燃气冷热电三联供系统为主要的应用形式。
1.应具备的能源供应条件(1)保证天然气供应量,并且供气参数比较稳定;(2)燃气发出的电量,既可自发自用,亦可并入市电网运行,燃气发电停止运行时又可实现市电网供电;(3)市电网供电施行峰谷分时电价;(4)电网供电难以实施时,用户供电、供冷、供热负荷使用规律相似,用电负荷较稳定,发电机可采用孤网运行方式。
冷热电联产(CCHP)技术方案1.概述项目所在地无法提供外部电源供电系统,因此业主决定采用燃气发电机组孤岛运行,作为全厂电力供应。
本项目考虑配套余热锅炉,以回收燃气发电机组高温烟气余热,副产低压蒸汽作为工艺装置热源(脱酸单元再沸器、脱水再生气蒸汽加热器);同时配套溴冷机组回收燃气发电机组缸套水热量,并为工艺装置提供冷源(原料气预冷、冷剂压缩机段间冷却)的冷热电联产(CCHP)方案。
根据工艺装置所需的冷、热、电消耗,优选与之相配套的燃气发电机组、余热锅炉和溴冷机组,以达到最大程度的回收利用发电机组烟气余热,优化主体工艺装置设备选型以及降低运行能耗的目的。
2.设计范围该方案为燃气机组冷热电联产系统,即利用管输天然气及工艺装置所产BOG,通过燃气机组(燃气内燃机或燃气轮机)发电,机组高温尾气配套余热锅炉副产低压饱和蒸汽供工艺装置使用,机组冷却循环生成热水配套溴化锂机组副产7℃空调水供工艺装置制冷。
电、蒸汽、空调水全部自用,实现冷热电联产,提高能源利用率,获得最高的系统效率,减少大气污染。
3.设计基础甲方供气≤50×104Nm3/d,经20km长输管线进入厂区附近,降压至0.8MPaG,分为三部分:一部分(15×104Nm3/d)进入公司原有天然气液化工厂作原料气;一部分(30×104Nm3/d)加压后进入本次新建天然气液化工厂作原料气,剩余部分(3.6×104Nm3/d,折~1500Nm3/h)与BOG之间的关系进入燃气机组发电,配套余热锅炉副产低压蒸汽,同时配套热水溴化锂机组副产空调水,均供工艺装置使用。
1)电规格:10kV(±7%),50Hz(±1%),三相三线。
30×104Nm3/d天然气液化工厂全厂有功负荷~5.4MW(已考虑照明、空调、锅炉系统、发电机组自用电以及溴化锂机组用电,~0.6MW)。
2)低压蒸汽规格:0.6MPaG饱和蒸汽(~165℃)液化工厂脱酸单元共需蒸汽~1.6t/h。
冷热电三联产系统发展现状探究冷热电三联产系统是一种集电力、热力和制冷三种能源为一体的能源系统。
通过集成利用废热和废冷,将其转化为电能和热能,达到能源高效利用的目的。
随着我国经济的快速发展和能源需求的不断增加,冷热电三联产系统的应用也越来越广泛。
究竟冷热电三联产系统的发展现状如何?它在我国的应用情况如何?本文将对冷热电三联产系统的发展现状进行探究。
我们来探讨一下冷热电三联产系统的发展历程。
冷热电三联产系统最早出现在20世纪80年代初期,当时主要是在发达国家进行研究和应用。
随着国内外环保意识的提高和能源危机的出现,人们对冷热电三联产系统的关注度也在逐渐增加。
1990年代初期,我国开始引进和研发冷热电三联产系统,并进行了一些示范工程。
到了21世纪初期,冷热电三联产系统逐渐成为了我国建筑节能的重要手段之一。
随着技术的不断进步和政策的支持,目前冷热电三联产系统已经在一些大型建筑和工业企业得到了广泛应用。
我们来分析一下冷热电三联产系统的应用现状。
目前,我国冷热电三联产系统主要应用于一些大型工业和商业建筑,如医院、学校、写字楼等。
这些建筑具有较大的热电需求,同时也产生大量的废热和废冷。
利用冷热电三联产系统,可以将这些废热和废冷转化为电能和热能,不仅能够满足建筑内部的能源需求,还能够降低能源消耗和污染排放。
一些工业企业也开始应用冷热电三联产系统来满足自身的能源需求,提高能源利用率。
冷热电三联产系统在我国的应用还存在一些问题和挑战。
冷热电三联产系统的投资成本较高,对于一些中小型企业和建筑来说,很难承担这样的成本。
由于我国能源政策和市场体系的不完善,冷热电三联产系统的发展受到了一定的限制。
冷热电三联产系统的技术标准和监管制度也需要进一步完善,以确保系统的安全稳定运行。
冷热电三联产系统是一种能源高效利用的系统,它的发展对于我国的能源安全和环保建设具有重要意义。
目前,冷热电三联产系统在我国的应用正在逐步扩大,但仍面临着一些问题和挑战。
建材发展导向2018年第09期376应用程度,加强房建施工的质量。
5 结语总而言之,目前绿色施工技术处于初步发展阶段,国家应大力支持进行财政补贴,居民也应该逐渐学会接受由绿色施工建设的房屋,促进资源可持续发展减少污染浪费,建筑业企业也应加强环保意识大力推广绿色施工技术的应用,减少物料浪费。
参考文献:[1] 祁振峰.绿色施工技术在房建施工中的应用[J].工程建设与设计, 2017(18):12-13.[2] 刘昱辰.绿色施工技术在房建施工中的应用[J].建材与装饰,2017 (31):40-41.[3] 王玉.绿色施工技术在房建施工中的应用[J].城市建设理论研究(电子版),2017(16):73-74.[4] 赵世明.绿色施工技术在房建工程中的运用[J].江西建材,2015 (13):112+114.能量品质、能源价格、空气品质、电网稳定性以及全球性气候改变,是21世纪人类所要面临的重要问题。
伴随着社会与经济的发展进步,这些问题将会变得越来越尖锐。
在传统的利用燃料生产电能的过程当中,有将近2/3的输入能量没被有效的利用,然后就释放到环境之中,带来严重的能量损失。
通过利用总能系统代替原来的传统电力系统,便可有效地利用热机将热量排放给环境,生产热水、蒸汽或者可以用于通风、制冷、除湿等功能,可称这种系统为冷热电联产系统(CCHP),或者被简称为热电联产系统(CHP)。
由于对输入的燃料能量利用进行梯级分类,冷热电联产系统在节能的方面具备很大的优势;使用燃料量的减少以及对于低排放技术的采用,能够很大程度上降低了系统的污染物排放,进而减轻对于环境的压力,此外能够产生出多种能量的输出,并有效的应对多种用户的不同需求。
冷热电联产系统相比于电网的独立运行,能够降低了对于大电网的依赖性,同时也可以增加电力供应的安全性。
在夏季采用吸收式制冷方式,不仅能够有效的减少制冷高峰时期对于电网产生的压力,与此同时也能够增加天然气使用量,进而提升天然气网络运行的可靠性。
分布式燃气冷热电三联产的设计班级:电气13-4班学号04131586 姓名:仓传林一、简介分布式燃气冷热电三联产系统(DES/CCHP系统)是一种建立在能量梯级利用概念基础上,以天然气为一次能源,同时产生电能和可用热(冷)能的分布式供能系统。
作为能源集成系统,冷热电联产系统按照功能可分成三个子系统:动力系统(发电)、供热系统(供暖、热水、通风等)和制冷系统(制冷、除湿等)。
目前多采用燃气轮机或燃气内燃机作为原动机,利用高品位的热能发电,低品位的热能供热和制冷,从而大幅度提高系统的总能效率,降低了燃气供应冷热电的成本。
联产技术的具体应用取决于许多因素,包括:电负荷大小,负荷的变化情况、空间的要求、冷热需求的种类及数量、对排放的要求、采用的燃料、经济性和并网情况等。
二、发展条件1.供能系统分布化趋向;2.天然气使用推广;3.电力和天然气的季节性峰谷差;4.能源利用效率的要求。
三、设计方法(一)设计的原则与要求DES/CCHP系统在系统设置、负荷匹配合理的情况下,冷热电联产系统的优越性才能真正体现出来。
根据国内外分布式冷热电联产系统应用的经验,设计时必须注意的问题为:1.严格按设计流程先进行方案设计;2.准确预测冷热电负荷及负荷变化规律;3.根据负荷规律合理确定运行方式;4.合理选择发电机组类型和容量;5.最终优化设计冷热电系统。
DES/CCHP系统设计通常依据下述原则:一种是以电定冷(热),即根据建筑配电负荷来确定发电机功率,根据发电机尾气余热来配套制冷和制热设备,这种方式注重了余热回收效率,再考虑楼宇冷热负荷要求;另一种方式是以热(冷)定电,即根据建筑的冷热负荷确定发电机功率。
由于项目对能源的需求主要是电力、采暖、制冷和生活热水,其中热力和制冷一般是无法得到外部支持的,而电力可以依靠电网补充,所以在燃气发电装置的选择上,主要依照“以热(冷)定电”的原则,这样可以兼顾余热利用效率和楼宇能源负荷,综合性能好。
热电冷联供(CCHP: combined cooling, heating and power) 系统是以燃料作为能源.同时满足小区域或建筑物内的供热(冷)和供电需求的分布式能源供应系统。
节能、削峰填谷、安全、环保和平衡能源消费是热电冷联供系统的主要优点。
由于热电冷联供系统可实现对能源的梯级利用.高品位能源用于发电.然后利用发电机组排放的低品位能源(烟气余热、热水余热)来制冷(供热).能源综合利用率高达80%以上(最高可达90%).对节约能源和促进国民经济可持续发展具有重要意义.用户也可大幅度节省能源费用。
热电冷联供系统中的主要设备从实现同时供热(冷)和供电需求的功能来说.热电冷联供系统中的主要设备有发电机组、制冷机组和供热机组。
其中.制冷机组多采用溴化锂吸收式制冷机。
因能量转换和余热利用方式的不同.有的系统中还需在发电机组和溴化锂吸收式制冷机之间配置余热锅炉.将发电机组排放的高温烟气热量转换成蒸汽热量或热水热量。
但在实际应用中.受负荷(空调负荷和电负荷)大小、负荷比例、负荷变化模式、运行控制目标、设备投资回收期等因素的影响.系统中还需要同时或分别配置直燃型溴化锂吸收式冷热水机组、电力螺杆式冷水机组、电力离心式冷水机组、燃油/燃气锅炉等冷(热)负荷调节设备才能使系统的综合经济性能达到最佳。
结论:1)在热电冷联供系统中配置溴化锂吸收式制冷机,可充分发挥其利用低品位能源的优势,有效提高系统的能源综合利用率,节约能源,提高系统经济性。
2)设计热电冷联供系统前,应进行必要的经济性分析,合理确定设备配置方案和配置容量,使系统达到节能、经济和高效的运行目的。
3)以燃气轮机发电机组和烟气型溴化锂吸收式冷热水机组为主要设备组成的热电冷联供系统,烟气系统的设计和安装连接是关键,烟气系统的烟气流动阻力必须小于等于燃气轮机的允许排烟背压,烟气系统控制部件的运行必须满足系统的控制要求,满足燃气轮机及烟气型溴化锂吸收式冷热水机组的安全运行要求。
冷热电三联供原理冷热电三联供是一种综合利用能源的供热供冷方式,它通过利用热泵技术和热电联供技术,将废热能和可再生能源转化为电能和热能,实现供热、供冷和发电的多种功能。
其原理是利用热泵技术回收废热能和可再生能源,将其转化为热能,并通过热泵系统为建筑物供暖和供冷。
同时,利用热电联供技术将废热能转化为电能,以满足建筑物的电力需求。
冷热电三联供的原理可以分为三个主要步骤:废热回收、热泵供热供冷和热电联供。
首先是废热回收。
在工业生产和能源利用的过程中,会产生大量的废热能。
冷热电三联供系统通过回收这些废热能,将其转化为可利用的热能。
例如,工厂的烟囱排出的热气可以通过热交换器回收废热,将其转化为热水或蒸汽。
接下来是热泵供热供冷。
热泵是一种利用热力学原理将低温热能转化为高温热能的设备。
在冷热电三联供系统中,热泵通过吸收废热能和可再生能源的热量,将其转化为高温热能,然后将其供应给建筑物进行供暖和供冷。
热泵可以根据需要调整工作模式,实现供暖和供冷的切换。
最后是热电联供。
热电联供是指利用废热能产生电能的过程。
在冷热电三联供系统中,通过将废热能输入到发电机中,利用废热驱动发电机发电。
这样既可以满足建筑物的电力需求,又可以将废热能转化为有用的能量,实现能源的综合利用。
冷热电三联供系统的优势在于能够实现能源的高效利用和减少对传统能源的依赖。
首先,通过回收废热能,可以降低能源消耗和环境污染。
其次,利用热泵技术进行供热供冷,能够提高能源利用效率,减少能源损失。
最后,通过热电联供技术将废热能转化为电能,实现能源的多功能利用。
冷热电三联供系统的应用范围广泛。
它可以应用于工业领域、商业建筑和居民区等不同场所。
在工业领域,冷热电三联供可以为工厂提供供热供冷和电力供应,同时减少废热的排放。
在商业建筑中,冷热电三联供可以为写字楼、商场等场所提供舒适的室内环境和稳定的电力供应。
在居民区,冷热电三联供可以为住宅楼和小区提供集中供热供冷和电力供应,提高能源利用效率。
冷热电三联产系统发展现状探究冷热电三联产系统是一种综合利用能源的高效能系统,通过集成化的设计和运行,同时实现电力、热能和制冷能的高效利用。
这种系统在能源利用效率、经济性和环境友好性方面都有着显著的优势,因而备受关注。
在全球能源危机加剧、环境问题日益突出的今天,冷热电三联产系统的发展具有重要意义。
本文将从技术、市场和政策等多个方面探讨冷热电三联产系统的发展现状。
一、技术方面:1.技术发展趋势:近年来,冷热电三联产系统的技术水平得到了不断提升,主要体现在以下几个方面:(1)集成化设计:采用智能化系统控制,实现电力、热能和制冷能的互补利用,最大限度地提高系统的能源利用效率。
(2)新型能源技术:如生物质能、太阳能、地热能等被广泛应用于冷热电三联产系统,进一步减少系统对传统能源的依赖。
(3)节能环保技术:采用高效换热器、节能空调设备等技术手段,减少系统能耗,降低对环境的影响。
(4)智能化运维:利用云计算、物联网等新兴技术,实时监测系统运行情况,提高系统的稳定性和可靠性。
2.技术挑战:尽管冷热电三联产系统的技术水平已经较为成熟,但在实际应用中仍存在一些挑战:(1)系统集成难度高:不同能源的互补利用涉及到系统设计、运行等多个环节,需要综合考虑各种因素,才能保证系统的高效运行。
(2)运维成本高:冷热电三联产系统需要专业团队进行运维管理,成本较高,这对中小型企业而言是一个挑战。
(3)政策环境不确定:目前我国对冷热电三联产系统的政策支持力度有限,这也给系统的发展带来了一定的不确定性。
二、市场方面:1.市场需求:随着全球能源危机的不断加剧、环境问题的日益凸显,人们对于高效能源系统的需求也在不断增加,冷热电三联产系统具有节能环保、经济实惠等优点,市场需求潜力巨大。
2.市场规模:目前,全球冷热电三联产系统市场规模正在逐渐扩大,主要集中在发达国家和地区,如欧洲、北美等地区。
我国也有一定的市场规模,但仍需要进一步扩大。
三、政策方面:1.政策支持:政府部门应该出台相关政策,鼓励和支持冷热电三联产系统的发展,包括税收优惠、补贴等政策手段,以提高系统的市场竞争力。
冷热电三联供的形式:内燃机+余热利用系统;燃气轮机+余热发电机组;燃气轮机+余热利用系统;微燃机+余热利用系统。
内燃机+余热利用系统:内燃机:四冲程内燃机;吸气冲程、压缩冲程、做功冲程、排气冲程。
内燃机余热:烟气、缸套水;余热利用系统:热水烟气直燃机、板式换热器。
余热利用系统:制冷:烟气→烟气热水型直燃机中烟气高发;缸套水→烟气热水直燃机中热水发生器。
制热:烟气→烟气热水型直燃机中烟气高发;缸套水→板式换热器。
设计参数及原则设计参数:对象:办公楼,建筑面积:2万平冷负荷:50w/m2,热负荷:56w/m2电负荷:30-67w/m2采暖期:11月-4月,128天制冷期:6月-9月,88天每个工作日,机组运行10小时7:30-17:30周六日不起动,采用市网运行设计原则:以办公楼最低电负荷为标准选配发电机,产生的余热即烟气和缸套水进入烟气热水型直燃机和板式换热器制冷制热。
机组选型:电负荷:0.03×20000=600KW冷负荷:0.05×20000=1000KW热负荷:0.056×20000=1120KW发电机选型:J312额定发电功率:635KW 发电效率:40.4%额定余热功率:744KW 排热效率:46.5%可利用烟气:3400kg/h,402KW,500℃可利用热水:26.6m3/h,342KW,79-95℃:发电机组参数采用颜巴赫系列利用的余热主要为:烟气和缸套水余热机组选型:BZHE125型出力系数为:100%燃气、50%烟气、23%热水出力系数:在多能量源的条件下,某一能量源的额定功率占额定总功率的比例。
额定制冷量:1454KW 天然气:106m3/h额定制热量:1121KW 天然气:120m3/h烟气量:4873m3/h,热水量:41.1m3/h:余热机组参数采用远大系列。
负荷计算:制冷:该直燃机烟气出力最多为满负荷的50%,出力系数为0.5。
计算公式:制冷量=排烟量/额定排烟量×额定制冷功率×出力系数×发电机负荷比例。
XX大学20**届毕业设计(论文)题目:大型制药厂热电冷三联供工程设计研究班级:学号:姓名:指导教师:20** 年 6 月大型制药厂热电冷三联供工程设计研究摘要:热电冷系统利用吸收式制冷技术给设备供暖和制冷。
利用现有热电联产系统发展集中供热,供电和供冷为一体的能源综合利用系统。
该系统将溴化锂吸收式制冷机引入到热电厂的热电联产系统中,可增加热电厂的夏季热负荷,从而使冬夏热负荷平衡,保证热电厂更经济高效地运行。
本文根据热电冷三联供节约能源的原理,对一座较大型的药厂进行工程设计研究,结合药厂对温度,湿度要求高的特点,进行详细计算,仔细论证,对制冷设备参数提出要求。
通过调查和计算,将热、电、冷联产与热电和冷量分供系统加以比较,表明该系统不但可节能,而且具有增加电能生产和保护环境的效益。
主题词:热、电、冷三联供;吸收;环保Electricity Heat and Chilled Water Congenerating System in large-scale pharmaceutical factory is provided in the engineering design research.Abstract:Combined heat and power(CHP) systems often use absorption technology to supply heating and cooling to a facility.This paper puts forward an energy comprehensive utilization system, Electricity Heat and Chilled Water Congenerating System(EHCWCS).This system introduces H2O-LiBr Absorption Refrigenerating Machine into Heat and Power Plant to increase the heat load of the plant in summer,which can balance the heat load in summer and winter, so Heat and Power Plant can run in a high efficiency. This text is according to the thermo-electricity cold triple-generation system provide the principle that economize the energy, proceeding to a large pharmaceutical factory the engineering design study, joining together the pharmaceutical factory to the temperature, the degree of humidity requests the high characteristics, proceeding the detailed calculation, carry on detailed calculation, put forward the request to the refrigeration equipments in system parameter. The result of analysis states that this system can not only save energy, but also increase the output of electricity of Heat and Power Plant and protect environment.Theme words: electricity heat and chilled water congenerating; absorption; ervironmental protection目录第一章绪论 (1)第二章工程概述 (2)第三章设计参数 (3)第一节室外设计参数 (3)第二节室内设计参数 (3)第四章负荷计算 (4)第一节冷负荷计算 (4)第二节热负荷计算 (8)第五章空调方案的选择及空气处理过程的确定 (10)第一节空调房间送风量和送风状态参数的确定 (10)第二节空调方案的选择 (12)第六章空气风系统设计及气流组织计算 (14)第七章方案比较 (17)第八章空调水系统设计 (18)第九章设备选型及安装 (20)第十章空气风系统设计及气流组织计算 (27)第十一章能效分析 (29)设计总结及收获 (33)致谢 (34)参考文献 (35)第一章绪论热电冷联产系统在大幅度提高能源利用率及降低碳和污染空气的排放物方面具有很大的潜力。
冷热电三联产系统发展现状探究冷热电三联产系统是一种集制冷、供热和发电于一体的节能环保系统,可以同时满足建筑物内的制冷、供暖和发电需求,具有高效节能、减少污染、减少能源损耗的优势。
随着人们对能源利用效率和环保要求的不断提高,冷热电三联产系统在建筑领域得到了越来越广泛的应用。
本文将探讨冷热电三联产系统的发展现状,分析其在实际应用中的优势与挑战,并展望其未来的发展趋势。
一、冷热电三联产系统概述冷热电三联产系统是一种集制冷、供热和发电于一体的高效节能系统,其核心设备包括燃气轮机、余热锅炉、蒸汽冷凝器、蒸汽吸收式制冷机组等。
系统通过燃气轮机发电的过程中产生的余热用于供热和制冷,实现了能源的综合利用,提高了能源利用效率。
与传统分散供暖、空调、发电系统相比,冷热电三联产系统具有设备投资少、占地面积小、运行成本低、环保节能等优势,因此在市场上受到了广泛的关注和认可。
目前,冷热电三联产系统已经在工业园区、商业综合体、大型公共建筑、医院、学校等领域得到了广泛的应用。
在工业园区,冷热电三联产系统可以满足厂区内不同企业的制冷、供暖和发电需求,提高了能源利用效率,降低了企业的运行成本。
在商业综合体和大型公共建筑中,冷热电三联产系统可以满足建筑物内多种能源需求,为建筑物提供了一种集约化的能源解决方案。
在医院和学校等公共服务场所,冷热电三联产系统可以保障建筑物内部空气质量和温度,满足了不同人群的舒适需求。
而在政策扶持和技术创新的推动下,冷热电三联产系统在我国得到了迅猛发展。
一方面,我国政府出台了一系列鼓励节能环保、推动清洁能源利用的政策法规,为冷热电三联产系统的推广应用提供了良好的政策环境。
冷热电三联产系统的核心技术也在不断地创新和完善,例如余热利用技术、燃气轮机性能改进、蒸汽吸收制冷机组的节能技术等,使得系统的性能和可靠性得到了显著提升。
冷热电三联产系统也面临着一些挑战。
系统的投资成本相对较高,需要长期考虑系统的投资回报周期。