天然气冷热电三联供分布式能源的发展
- 格式:ppt
- 大小:13.18 MB
- 文档页数:82
分布式燃气冷热电三联供技术分布式燃气冷热电三联供技术是一种将燃气能源进行有效利用的技术,能够同时提供冷、热和电能源。
这种技术通过灵活的设备配置和优化的能源管理,将能源利用效率最大化,同时降低能源消耗和环境污染。
在分布式燃气冷热电三联供技术中,燃气被转化为电力、热能和冷能。
具体而言,燃气通过内燃机或燃气轮机产生电力,同时也产生热能,这些热能可以用于加热建筑物或生产过程中的蒸汽。
此外,燃气中的废热可以通过吸收式制冷机等冷能设备转化为冷能,用于空调或工业过程中的冷却。
分布式燃气冷热电三联供技术具有多项优势。
首先,它能够充分利用燃气资源,提高能源利用效率。
相比于传统的电力供应方式,该技术能够更高效地将燃气能源转化为电力。
同时,废热能够被充分利用,不仅降低了能源消耗,还减少了废物排放。
其次,该技术具有很强的灵活性和可扩展性。
设备配置可根据需要进行调整,能够适应不同规模的供暖或制冷需求。
此外,该技术也能够应对电力中断的问题,起到备用电源的作用。
除了以上的优势之外,分布式燃气冷热电三联供技术还有一些挑战需要克服。
首先,设备的投资成本较高,需要进行长期的经济评估。
其次,技术的运维和管理也需要一定的专业知识和维护成本。
此外,该技术在一些地方可能受到政府政策和监管的限制。
总体而言,分布式燃气冷热电三联供技术是一种具有广泛应用前景的能源技术。
通过充分利用燃气资源,提高能源利用效率,并减少能源消耗和环境污染,该技术可以为人们提供可靠而高效的能源供应。
然而,技术的投资成本和管理问题仍然需要进一步研究和解决,以实现该技术的商业化和大规模应用。
分布式燃气冷热电三联供技术在当今的能源领域备受关注。
随着全球能源需求的不断增加和对可再生能源的追求,这项技术成为了一个具有潜力的解决方案。
这篇文章将继续探讨分布式燃气冷热电三联供技术的相关内容。
分布式燃气冷热电三联供技术的核心是利用燃气能源,通过内燃机或燃气轮机产生电能,同时产生的热能可以为建筑物供暖或生产过程提供蒸汽,而废热则可以通过吸收式制冷机等冷能设备转化为冷能,用于空调或工业过程中的冷却。
科技成果——天然气热冷电高效三联供技术
技术开发单位北京大学
成果简介
天然气与石油和煤炭等相比是一种清洁型能源。
该技术可以有效利用天然气以及生物燃料等清洁能源同时进行发电、供冷以及供热等,可以提供冷暖空调等。
天然气在燃机中燃烧,高温燃气驱动轮机发电,在轮机出口处为高温,可以进行二次发电,或者设置锅炉得到热水。
进一步还可以设置利用热吸收式制冷设备,从而得到冷能,实现制冷空调等。
应用范围
该技术可以作为分布式清洁能源供应系统,应用于居民小区、商业大厦、宾馆、学校以及饭店等处,为这些地方提供电力以及空调,热水/供暖等。
该系统不受集中电网的影响,可以随时随地的为各类用户提供稳定的电力、冷气、热水等。
技术优势
该技术利用柴油发动机发电,发电效率可以达到约45%,还可以制冷和提供热水等,总效率可以达到75%以上。
同时排放的污染物与同类发电设备要少得多,清洁环保。
技术水平国际先进水平
项目所处阶段在研阶段
市场前景
该技术作为一种分布式清洁能源供应系统方便地用在居民小区
等处,为用户提供电力和制冷空调以及热水等,排放的污染物少,清洁环保高效。
预测其市场的潜力巨大。
项目计划进度及所需经费
约需1-2年,经费约为800万元。
合作方式
联合开发、技术转让,技术转让费600万元。
燃气冷热电三联供发展现状及前景展望•燃气冷热电三联供由于其特有优势,将是未来能源利用的重要组成部分。
通过介绍国内及浙江省的燃气冷热电三联供发展现状,指出燃气冷热电三联供未来的发展趋势,同时从燃料价格及供应、投资成本、外部政策、投资主体和项目经济性的动态发展等方面对前景进行展望。
作者:韩高岩,吕洪坤,蔡洁聪,童家麟,李剑0、引言现阶段,能源环保问题在我国变得空前重—,碳排放也进入总量控制阶段,这促使能源消费结构优化变得尤为紧迫。
天然气作为清洁高效的低碳能源,其快速发展可有效改善环境、减少CO2排放、优化能源结构,尤其是燃气冷热电三联供可实现能源梯级利用,具有输配电损耗低、能效利用高、供能安全可靠、节能环保及个性化强等优点,成为现阶段能源发展的一大热点。
国家发改委发布的《关于加快推进天然气利用的意见》中提出—大力发展天然气分布式能源,建立天然气分布式能源示范项目。
燃气冷热电三联供项目由于处在我国油气和电力体制改革机遇期,且能与生物质、风能、太阳能、地热能、余压余热余气等能源形式耦合互补,在未来必将得到迅速发展,成为能源利用重—组成部分。
浙江省为创建清洁能源示范省,一方面—控制煤炭消费总量,加快淘汰燃煤锅(窑)炉,努力扩大电力、天然气等的消费曰另一方面—积极推动电力和油气体制改革等。
浙江省天然气发展3年行动计划(2018—2020年)提出—推进天然气供给、消费、体制革命,开展天然气分布式能源示范试点,并以此为基础推进天然气冷热电三联供核心设备科技攻关,为浙江省燃气冷热电三联供发展开创良好机遇和环境。
1、燃气冷热电三联供简介1.1燃气三联供原理及典型系统流程燃气冷热电三联供是指以天然气为主—燃料带动燃气轮机或内燃机等燃气发电设备运行,产生电力以满足用户电力需求,而系统排出的废热则通过余热锅炉或溴化锂等设备向用户供热、供冷。
三联供系统实现能源的梯级利用,其能源综合利用效率高达80%以上,典型能量梯级利用如图1所示:图1能量阶梯利用燃气冷热电三联供按照供能对象可分为区域型和楼宇型。
分布式燃气冷热电三联产的设计班级:电气13-4班学号04131586 姓名:仓传林一、简介分布式燃气冷热电三联产系统(DES/CCHP系统)是一种建立在能量梯级利用概念基础上,以天然气为一次能源,同时产生电能和可用热(冷)能的分布式供能系统。
作为能源集成系统,冷热电联产系统按照功能可分成三个子系统:动力系统(发电)、供热系统(供暖、热水、通风等)和制冷系统(制冷、除湿等)。
目前多采用燃气轮机或燃气内燃机作为原动机,利用高品位的热能发电,低品位的热能供热和制冷,从而大幅度提高系统的总能效率,降低了燃气供应冷热电的成本。
联产技术的具体应用取决于许多因素,包括:电负荷大小,负荷的变化情况、空间的要求、冷热需求的种类及数量、对排放的要求、采用的燃料、经济性和并网情况等。
二、发展条件1.供能系统分布化趋向;2.天然气使用推广;3.电力和天然气的季节性峰谷差;4.能源利用效率的要求。
三、设计方法(一)设计的原则与要求DES/CCHP系统在系统设置、负荷匹配合理的情况下,冷热电联产系统的优越性才能真正体现出来。
根据国内外分布式冷热电联产系统应用的经验,设计时必须注意的问题为:1.严格按设计流程先进行方案设计;2.准确预测冷热电负荷及负荷变化规律;3.根据负荷规律合理确定运行方式;4.合理选择发电机组类型和容量;5.最终优化设计冷热电系统。
DES/CCHP系统设计通常依据下述原则:一种是以电定冷(热),即根据建筑配电负荷来确定发电机功率,根据发电机尾气余热来配套制冷和制热设备,这种方式注重了余热回收效率,再考虑楼宇冷热负荷要求;另一种方式是以热(冷)定电,即根据建筑的冷热负荷确定发电机功率。
由于项目对能源的需求主要是电力、采暖、制冷和生活热水,其中热力和制冷一般是无法得到外部支持的,而电力可以依靠电网补充,所以在燃气发电装置的选择上,主要依照“以热(冷)定电”的原则,这样可以兼顾余热利用效率和楼宇能源负荷,综合性能好。
冷热电三联供简介及其优化措施一、冷热电三联供的概念分布式能源系统(Distributed Energy System)是指将冷热电系统以小规模。
小容量(几千瓦至50MW、模块化、分散式的方式布置在用户附近,可独立的输出冷、热、电能的系统,减少了能源输送系统的投资和能量损失。
分布式能源的先进技术包括太阳能利用、风能利用、燃料电池和燃气冷热电三联供等多种形式。
冷热电三联供,即CCHP (Combined Cooling, Heating and Power) 是指以天然气为主要燃料带动燃气轮机或内燃机发电机等燃气发电设备运行,产生的电力用于满足用户的电力需求,系统所排出的废热通过余热回收利用设备(余热锅炉或者余热直燃机等)向用户进行供热、供冷经过对能源的梯级利用使能源的利用效率从常规发电系统的40%左右提高到80%左右,能源梯级利用效率达到60%〜80%,大量节约一次能源。
因此说,燃气冷热电三联供系统是分布式能源的先进技术之一,也是最具实用性和发展活力的系统。
典型的燃气冷热电三联产系统一般包括动力系统和发电机、余热回收装置、制冷或供热系统等组成部分,主要用到的发电设备有小型和微型燃气轮机、燃气内燃机、燃料电池等;空调设备有余热锅炉、余热吸收式制冷机以及以蒸汽为动力的压缩式制冷机等。
针对不同的用户需求,冷热电联产系统可以有多种多样的组织方式,方案的可选择范围较大。
二、冷热电三联供的优点①提高能源綜合利用率传统火电的综合能源利用效率低,燃气冷热电三联供供能系统的综合能源利用效率可达到60%-80%.燃气锅炉直接供热的效率虽然能达到90%,但是它的最终产出能量形式为低品位的热能,而燃气冷热电三联供供能系统中有45%左右的高品位电能产出.因此燃气冷热电三联供供能系统的能源综合利用效率比传统的大电网供电和燃气锅炉直接供热的传统供能方式有大幅度提高。
②电力燃气消耗双重削峰填谷、改善城市能源结构在传统的能源结构中,夏季大量电空调的使用和冬季大量燃气锅炉采暖的使用造成了夏季用电量远高于冬季、冬季用气量远高于夏季的情况,这种不合理的能源结构导致了相关市政设施的低投资效率,造成了资源浪费。
天然气冷热电三联供系统热力学分析摘要:天然气冷热电三联供系统的应用显著提高了能源利用率,具有经济环保的作用,被大力推广。
其工作原理是先利用燃气轮发电机将天然气的内能转化为电能带动发电,再将燃气轮的高温烟气用于推动制冷剂制冷,然后用换热器回收烟气中残余的热量进行生活用水的加热,从而使得能源被充分利用,节约能源,有利于可持续发展。
关键词:天然气;冷热电三联供;热力学分析1、前言目前,全球面临着能源枯竭,物种多样性减少,环境污染严重,全球气候改变等紧迫问题,给人类的进一步发展进步带来严重的威胁。
其中,能源储量降低,能源日益枯竭问题是影响全球经济发展的最紧迫问题之一,而分布式能源的出现给问题的解决提供了一定的方向。
分布式能源能量利用率高、性能可靠、方便灵活且污染小,在当前各大城市得到了普遍的应用,冷热电三联供技术作为分布式能源系统的基础,在分布式能源的推广中具有十分重要的价值。
2、天然气冷热电三联供系统典型的天然气冷热电三联供系统表现为对能量的充分利用,首先三联供系统利用燃烧天然气的热量带动发电机工作为建筑物内提供电能,燃烧之后排出的高温烟气可以直接驱动溴化锂吸收式制冷机或者利用烟气的余热加热锅炉为建筑物制冷、供暖或提供生活热水。
一般来说,一个完整的天然气冷热电三联供系统包括的装置为原动机(燃气内燃机、燃气轮机等)和发电机组成的动力装置、吸收式制冷剂和离心式制冷机等设备组成的制冷装置、辅助锅炉热泵和余热锅炉等组成的供热装置。
3、天然气冷热电三联供系统热量分析上文中提到,天然气冷热电三联供系统由供电系统、制冷系统和供热系统三部分装置组成,在运行过程中实现了能量的充分利用。
在研究中,我们利用能量平衡法来分析三联供系统能源利用的特点,在这里,首先假设系统稳定运行,设备效率不发生改变。
在工作过程中,燃气轮发电机燃烧天然气进行发电,同时会把高温烟气排放进吸收式制冷机推动制冷机工作。
那么此时Pe与燃气轮发电机Q的关系如式3-1所示。
天然气冷热电三联供的节能分析摘要:分布式冷热电三联供系统可以实现能源的阶梯利用,提高能源利用效率。
本文主要介绍天然气冷热电三联供的种类、技术特点、各项节能性和经济性的评价指标以及主要供能形式。
关键词:天然气冷热电三联供;评价指标;供能形式天然气冷热电三联供系统是一种节能高效的分布式能源系统,利用对环境负荷较小的天然气作为燃料,产生的高品位热能用于供电,低品位热能用于供热或者被吸收式热源设备利用来供冷,从而实现一能多用以及能源的梯级利用。
相比传统的集中式供能,天然气冷热电三联供系统是建立在用户侧的小型的、模块化的能源供给系统,避免了长距离能源输送的损失,为能源供应增加了安全性、可靠性和灵活性。
一、天然气冷热电三联供分类天然气冷热电三联供系统应用于商业、工业等各个领域,一般分为楼宇型和区域型两种。
楼宇型冷热电三联供系统,规模较小,主要用于满足单独建筑物的能量需求(如医院、学校、宾馆、大型商场等公共设施)。
单独建筑物一天内的负荷变化较大,会出现高峰或低谷的情况,而系统的运行需要不断进行调整,与负荷需求相匹配。
因此,楼宇型冷热电三联供系统对设备的启停机及变工况运行性能有较高的要求,同时在系统集成方面,发电设备、热源设备、蓄能设备之间的优化设计以及与电网配合的优化运行模式也十分必要。
区域型分布式冷热电三联供系统主要应用于一定区域内的由多栋建筑物组成的建筑群。
区域内建筑物用途具有多样性,各个建筑物对用能需求的时间段也不同,由于不同用途建筑物负荷之间的相互耦合,使得区域能源需求虽然比较大,但是供能曲线相对比较平稳,设备的变工况运行要求不高。
当规模较大时,一般采用高效的燃气蒸汽联合循环机组二、评价指标1.节能性节能率是反映三联供系统先进性的一个重要指标,三联供系统的节能主要体现在天然气就近梯级利用的高效与传统大电网供电方式到用户端较低的供电效率相比较的优势。
具体指的是在满足对象区域冷热电负荷的情况下,采用天然气冷热电三联供之后,和传统供能系统相比,一整年节约的一次能源消费量。