八年级数学上册知识点归纳:等边三角形
- 格式:docx
- 大小:15.78 KB
- 文档页数:4
八年级数学上册知识点归纳:等边三角形八年级数学上册知识点归纳:等边三角形等边三角形英文:equilateraltriangle,“等边三角形”也被称为“正三角形”。
如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形为等边三角形:1.三边长度相等。
2.三个内角度数均为60度。
3.一个内角为60度的等腰三角形等边三角形尺规作法其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),等边三角形的尺规作图再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
等边三角形的性质⑴等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
⑵等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或对角的平分线所在的直线。
⑷等边三角形的重要数据空间对称群二面体群(D3)角和边的数量3施莱夫利符号{3}内角的大小60°⑸等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。
(四心合一)⑹等边三角形内任意一点到三边的距离之和为定值(等于其高)等边三角形的判定⑴三边相等的三角形是等边三角形(定义)⑵三个内角都相等(为60度)的三角形是等边三角形⑶有一个角是60度的等腰三角形是等边三角形(4)两个内角为60度的三角形是等边三角形说明:可首先考虑判断三角形是等腰三角形。
等边三角形的性质与判定理解:首先,明确等边三角形定义。
三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。
等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
等边三角形定义:三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。
是特殊的等腰三角形。
如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:1.三边长度相等;2.三个内角度数均为60度;3.一个内角为60度的等腰三角形。
等边三角形知识点一、等边三角形的性质和判定知识概念:1、至少有两边相等的三角形,叫做等腰三角形2、三边相等的三角形,叫做等边三角形思考:下列两个说法是正确的还是错误的?(1)等边三角形是等腰三角形()(2)等腰三角形是等边三角形()所以,等边三角形_______等腰三角形,但等腰三角形_______等边三角形等边三角形的性质:1、三边相等2、三个内角都是60°3、三线合一等边三角形的判定:1、三边相等2、三个内角都是60°3、两边相等,一个角60°知识点二、含30°的直角三角形定理:30°所对直角边为斜边的一半例1、如图,在△ABC中,∠C=90°,∠BAC=60°,AB的垂直平分线交AB于D,交BC于E,若CE=3cm,求BE 的长.1、已知等腰三角形的一个外角是120°,则它是()A、等腰直角三角形B、一般的等腰三角形C、等边三角形D、等腰钝角三角形2、如图,是屋架设计图的一部分。
点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则BC= cm 、DE= cm3、如图,在Rt△ABC中,∠A=30°,AB+BC=12cm,则AB=______cm4、如图,∠AOB= 30°,P是角平分线上的点,PM⊥OB于M,PN//OB交OA于N,PM=1cm,则PN=________.5、如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为6、等腰三角形一腰上的高线等于腰长的一半,则此三角形的三个角的度数分别是__________7、等边三角形的两条中线相交所成的钝角的度数是________.8、如图在△ABC中,AB=AC=2a,∠ABC=∠ACB=15°,CD是腰AB上的高,求CD的长9、如图,在△ABC中,∠BAC=90°,∠B=30°,AD⊥BC于D。
共定点等边三角形的六大结论及应用六大结论基本模型:如图 △ABC 和△CDE 是共顶点(C )三角形 则有以下六大结论.结论1:△ACD ≌△BCE (SAS ) ∴AD =BE 结论2:∠AOB=60°结论3:△ACP ≌△BCQ (ASA ) ∴AP =BQ PC =QC 结论4:△PCQ 是等边三角形 结论5:∴PQ AE ∥ 结论6:点C 在∠AOE 的平分线上1.如图 C 为线段AE 上一动点(不与点A 、E 重合) 在AE 同侧分别作正三角形ABC 和正三角形CDE AD 与BE 交于点O AD 与BC 交于点P BE 与CD 交于点Q 连接PQ 以下七个结论:①AD BE =;②//PQ AE ;③AP BQ =;④DE DP =;⑤60AOB ∠=︒;⑥PCQ ∆是等边三角形;⑦点C 在AOE ∠的平分线上 其中正确的有( )A .3个B .4个C .5个D .6个【答案】D【解析】【分析】 由△ABC 和△CDE 是正三角形 其性质得三边相等 三个角为60° 平角的定义和角的和差得∠ACD =∠BCE 边角边证明△ACD ≌△BCE 其性质得结论①正确;由△ACD ≌△BCE 可得∠CAP =∠CBQ 可得60,AOB ACB 故⑤正确 角边角证明△ACP ≌△BCQ 得AP =BQ 其结论③正确;等边三角形的判定得△PCQ 是等边三角形 结论⑥正确;∠CPQ =∠ACB =60°判定两线PQ AE ∥ 结论②正确;反证法证明命题DE ≠DP 结论④错误;利用全等三角形的对应高相等 可证明点C 在∠AOE 的平分线上 结论⑦正确;即正确结论共6个.【详解】解:如图1所示:∵△ABC和△CDE是正三角形∴AC=BC DC=EC∠ACB=∠ECD=60°又∵∠ACD=∠ACB+∠BCD∠BCE=∠DCE+∠BCD ∴∠ACD=∠BCE在△ACD和△BCE中AC BCACD BCE CD CE=⎧⎪=⎨⎪=⎩∠∠∴△ACD≌△BCE(SAS)∴AD=BE∴结论①正确;∵△ACD≌△BCE∴∠CAP=∠CBQ,BPO APC60,AOB ACB故⑤正确又∵∠ACB+∠BCD+∠DCE=180° ∴∠BCD=60°在△ACP和△BCQ中CAP CBQ AC BC ACP BCQ∴△ACP≌△BCQ(ASA)∴AP=BQ PC=QC故③正确∴△PCQ是等边三角形故⑥正确∴∠CPQ=∠CQP=60°∴∠CPQ=∠ACB=60°∴PQ AE∥故②正确若DE=DP∵DC=DE∴DP=DC∴∠PCD=∠DPC又∵∠PCD=60°∴∠DPC=60°与△PCQ是等边三角形相矛盾假设不成立∴结论④错误;过点C分别作CM⊥AD CN⊥BE于点M、N两点如图2所示:∵CM ⊥AD CN ⊥BE,ACD BCE ≌∴CM =CN 又∵OC 在∠AOE 的内部∴点C 在∠AOE 的平分线上∴结论⑦正确;综合所述共有6个结论正确.故选:D .【点睛】本题综合考查了全等三角的判定与性质 等边三角形的判定与性质 三角形的内角和定理 平行线的判定 角平分线性质定理的逆定理和假设法证明命题等相关知识 重点掌握全等三角形的判定与性质 等边三角形的判定与性质 难点是用角平分线性质定理的逆定理作辅助线证明一点已知角的角平分线上.2.已知如图ABC 是锐角三角形 分别以边AB 、AC 为边向外作ABD △和ACE ABD △和ACE 均为等边三角形 且BE 和CD 交于点F 连接AF .(1)求证:ACD AEB ≅;(2)求出CFE ∠的度数;(3)求证:AFB BFC AFC ∠=∠=∠.【答案】(1)见解析;(2)60︒;(3)见解析.【解析】【分析】(1)由ABD ∆和ACE ∆均为等边三角形 可得边角关系 由SAS 即可证明ACD AEB ≌;(2)由ACD AEB ≌可得点A 、F 、C 、E 四点共圆 再由圆的性质即可求解;(3)由点A 、F 、C 、E 四点共圆 可得∠=∠FAC FEC 再由AFE ∆内角和为180︒可得60AFE ∠=︒ 由点A 、F 、B 、D 四点共圆 同理可得60AFD ∠=︒ 从而可得120,120,120∠=︒∠=︒∠=︒AFB AFC BFC 故可得AFB BFC AFC ∠=∠=∠.【详解】解:(1)∵ABD ∆和ACE ∆均为等边三角形∴60DAB EAC ∠=∠=︒ AE AC = AB AD =∴∠+∠=∠+∠BAC DAB BAC EAC 即DAC EAB ∠=∠∴在三角形ABD △和ACE 中AE AC DAC EAB AB AD =⎧⎪∠=∠⎨⎪=⎩∴()ACD AEB SAS ≌△△;(2)∵ACD AEB ≌∴DAC EAB ∠=∠∴点A 、F 、C 、E 四点共圆∴CFE CAE ∠=∠∵ACE ∆均为等边三角形∴60CAE ∠=︒∴60CFE ∠=︒;(3)由(2)点A 、F 、C 、E 四点共圆 点A 、F 、B 、D 四点共圆∴∠=∠FAC FEC在AFE ∆中180∠+∠+∠+∠=︒AEF CAE FAC AFE∴180∠+∠+∠+∠=︒AEF CAE FEC AFE即180∠+∠+∠=︒AEC CAE AFE∵60∠=∠=︒AEC CAE∴180606060∠=︒-︒-︒=︒AFE同理可得60AFD ∠=︒∵EFC BFD ∠=∠ 60EFC ∠=︒∴60BFD ∠=︒∴6060120∠+∠=︒+︒=︒AFD BFD6060120∠+∠=︒+︒=︒AFE EFC∴360120120120∠=︒-︒-︒=︒BFC∴AFB BFC AFC ∠=∠=∠.【点睛】本题考查了三角形全等的判定与性质 四点共圆的性质 三角形内角和定理 等边三角形的性质 解题的关键是熟练掌握各知识点 利用好数形结合的思想.3.已知:如图 △ABC 、△CDE 都是等边三角形 AD 、BE 相交于点O 点M 、N 分别是线段AD 、BE 的中点.(1)求∠DOE 的度数;(2)试判断△MNC 的形状 并说明理由;(3)连接OC 求证:OC 是∠AOE 的平分线.【答案】(1)∠DOE 的度数是60°(2)△MNC 是等边三角形 理由见解析(3)见解析【解析】【分析】(1)根据等边三角形的性质及角的和差关系可得∠ACD =∠BCE 利用SAS 可证明△ACD ≌△BCE 可得AD =BE ∠ADC =∠BEC 利用角的和差关系及外角性质可得∠AOE =120° 根据平角定义即可得答案;(2)根据全等三角形的性质可得∠CAD =∠CBE AD =BE AC =BC 根据中点的定义可得AM =BN 利用SAS 可证明△ACM ≌△BCN 可得CM =CN ∠ACM =∠BCN 利用角的和差关系可得∠MCN =60° 即可证明△MNC 是等边三角形;(3)连接OC过C作CG⊥AD垂足为G;过C作CH⊥BE 垂足为H根据全等三角形的性质可得AD=BE S△ACD=S△BCE即可得出CG=CH根据角平分线的判定定理即可得出结论.(1)∵△ABC、△CDE都是等边三角形∴AC=BC CD=CE∠ACB=∠DCE=60°∴∠ACB+∠BCD=∠DCE+∠BCD∴∠ACD=∠BCE在△ACD和△BCE中AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE∴AD=BE∠ADC=∠BEC∵等边三角形DCE∴∠CED=∠CDE=60°∴∠ADE+∠BED=∠ADC+∠CDE+∠BED =∠BEC+60°+∠BED=∠CED+60°=60°+60°=120°∴∠AOE=120°∴∠DOE=180°-∠AOE=60°.(2)△MNC是等边三角形理由如下:∵△ACD≌△BCE∴∠CAD=∠CBE AD=BE AC=BC∵点M、N分别是线段AD、BE的中点∴AM=12AD BN=12BE∴AM=BN在△ACM和△BCN中AC BCCAM CBNAM BN=⎧⎪∠=∠⎨⎪=⎩∴△ACM≌△BCN∴CM=CN∠ACM=∠BCN∵∠ACB=60°∴∠ACM+∠MCB=∠BCN+∠MCB=∠ACB=60°∴∠MCN=60°∴△MNC是等边三角形.(3)连接OC过C作CG⊥AD垂足为G;过C作CH⊥BE 垂足为H.∵△ACD≌△BCE∴AD=BE S△ACD=S△BCE∴1122AD CG BE CH⋅=⋅∴CG=CH∵CG⊥AD CH⊥BE∴OC是∠AOE的平分线.【点睛】本题主要考查了全等三角形的性质与判定、等边三角形的性质与判定、三角形外角性质及角平分线的判定定理能够熟练掌握等边三角形的性质与判定条件是解题关键.4.如图已知△CAD与△CEB都是等边三角形BD、EA的延长线相交于点F.(1)求证:△ACE≌△DCB.(2)求∠F的度数.(3)若AD⊥BD请直接写出线段EF与线段BD、DF之间的数量关系.【答案】(1)见解析;(2)60°;(3)EF=BD+2DF.【解析】【分析】(1)根据等边三角形的性质得到CB=CE CD=CA ∠BCE=∠DCA=60° 由全等三角形的判定定理即可得到结论;(2)设BC与EF相交于G 根据全等三角形的性质得到∠1=∠2 根据三角形的内角和即可得到结论;(3)根据垂直的定义得到∠ADF=90° 求得∠DAF=30° 根据直角三角形的性质得到AF=2DF 根据全等三角形的性质得到AE=BD 于是得到结论.【详解】(1)∵△CAD与△CEB都是等边三角形∴CB=CE CD=CA ∠BCE=∠DCA=60°∴∠BCD=∠ECA∴△ACE≌△DCB(SAS);(2)设BC与EF相交于G由(1)可知△ACE≌△DCB∴∠1=∠2∵∠1+∠BGF+∠F=∠2+∠AGC+∠BCE=180°而∠BGF=∠AGC∴∠F=∠BCE=60°;(3)EF=BD+2DF 理由如下:∵AD⊥BD∴∠ADF =90°∵∠F =60°∴∠DAF =30°∴AF =2DF∵△ACE ≌△DCB∴AE =BD∴EF =AE+AF =BD+2DF .【点睛】本题考查了全等三角形的判定和性质 等边三角形的性质 直角三角形的性质 正确的识别图形是解题的关键.5.已知点C 为线段AB 上一点 分别以AC 、BC 为边在线段AB 同侧作△ACD 和△BCE 且CA=CD CB=CE ACD BCE ∠∠= 直线AE 与BD 交于点F .(1)如图1 证明:△ACE ≌△DCB ;(2)①如图1 若ACD 60∠=︒ 则AFB ∠=________;②如图2 若ACD α∠= 则AFB ∠=______;(用含α的式子表示)(3)将图2中的△ACD 绕点C 顺时针旋转任意角度(交点F 至少在BD 、AE 中的一条线段上) 如图3 试探究A FB ∠与α的数量关系 并予以证明.【答案】(1)证明见解析;(2)120° 180°-β;(3)∠AFB=180°-α 证明见解析.【解析】【分析】(1)求出∠ACE=∠DCB 根据SAS证出两三角形全等即可;(2)根据全等三角形性质得出∠AEC=∠DBC ∠CDB=∠CAE 求出∠EAB+∠DBA=∠ACD ∠AFB=180°-(∠EAB+∠DBC)代入求出即可得出①②的结论;(3)由“SAS”可证△ACE≌△DCB 可得∠AEC=∠DBC 由三角形内角和定理可求解.【详解】解:(1)证明:∵∠ACD=∠BCE∴∠ACD+∠DCE=∠BCE+∠DCE∴∠ACE=∠DCB在△ACE和△DCB中∵AC CDACE DCBCE CB=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCB;(2)①∵∠ACD=60°∴∠CDB+∠DBC=∠ACD=60°∵△ACE≌△DCB∴∠AEC=∠DBC ∠CDB=∠CAE∴∠CAE+∠DBC=60°∴∠AFB=180°-60°=120°故答案为:120;②当∠ACD=β时∠AFB=180°-β 理由是:∵∠ACD=β∴∠CDB+∠DBC=∠ACD=β∵△ACE≌△DCB∴∠AEC=∠DBC ∠CDB=∠CAE∴∠CAE+∠DBC=β∴∠AFB=180°-(∠CAE+∠DBC)=180°-β;故答案为:180°-β.(3)∠AFB=180°-α;证明:∵∠ACD=∠BCE=α 则∠ACD+∠DCE=∠BCE+∠DCE 即∠ACE=∠DCB.在△ACE和△DCB中∵AC DCACE DCBCE CB=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCB(SAS).则∠CBD=∠CEA如下图∵∠FGE=∠CGB∴∠EFB=∠ECB=α.∠AFB=180°-∠EFB=180°-α.【点睛】本题是三角形综合题考查了全等三角形的判定及其性质、三角形内角和定理等知识本题还综合了旋转的知识点是一道综合性比较强的题.要熟练掌握全等三角形的判定和性质定理.6.如图①在等边△ABC中线段AM为BC边上的中线.动点D在直线AM上时以CD为一边在CD的下方作等边△CDE 连结BE.(1)当点D在线段AM上时(如图①)则AD BE(填“>”“<”或“=”)∠CAM= 度;(2)当点D在线段AM的延长线上时(如图②)直线BE与直线AM的交点为O 求∠AOB的度数;(3)当动点D在线段AM的反向延长线上时直线BE与直线AM的交点为O 试判断∠AOB的度数是否发生变化?若变化请求出∠AOB的度数若不变请说明理由.【答案】(1)=;30;(2)60°;(3)不变见解析【解析】【分析】(1)根据SAS就可以得出△ADC≌△BEC 则AD=BE;根据等边三角形的性质可以直接得出∠CAM的度数;(2)根据等边三角形的性质就可以得出AC=BC DC=EC ∠ACB=∠DCE=60° 由等式的性质就可以∠BCE=∠ACD 根据SAS就可以得出△ADC≌△BEC 进而得到∠AOB的度数;(3)当点D在线段MA的延长线上时如图3 通过得出△ACD≌△BCE就可以得出结论.【详解】(1)∵△ABC与△DEC都是等边三角形∴AC=BC CD=CE ∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE.在△ADC和△BEC中AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE(SAS)∴AD=BE;∵△ABC是等边三角形∴∠BAC=60°.∵线段AM为BC边上的中线∴∠CAM=12∠BAC∴∠CAM=30°故答案为:= 30;(2)∵△ABC和△CDE都是等边三角形∴AC=BC DC=EC ∠ACB=∠DCE=60°∵∠ACD=∠ACB+∠DCB ∠BCE=∠DCE+∠DCB ∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴∠CAD=∠CBE∵∠AMC=∠BMO∴∠AOB=∠ACB=60°;(3)不变理由如下:∵点D在线段MA的延长线上且△ABC与△DEC都是等边三角形∴AC=BC CD=CE ∠ACB=∠DCE=60°∴∠ACD+∠ACE=∠BCE+∠ACE=60°∴∠ACD=∠BCE在△ACD和△BCE中AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD同理可得:∠CAM=30°∴∠CBE=∠CAD=150°∴∠CBO=30° ∠BAM=30°∴∠BOA=90°-30°=60°.【点睛】本题是三角形综合题 考查了等边三角形的性质的运用 等腰三角形的性质的运用 全等三角形的判定及性质的运用 解答时证明三角形全等是关键.7.已知点C 为线段AB 上一点 分别以AC 、BC 为边在线段AB 同侧作ACD △和BCE 且AC DC = CB CE = ACD BCE ∠=∠ 直线AE 与BD 交于点F .(1)如图① 试说明:ACE DCB ≌;(2)如图① 若60ACD ∠=︒ 则AFB ∠=________°;如图② 若90ACD ∠=︒ 则AFB ∠=________°;如图③ 若120ACD ∠=︒ 则AFB ∠=________°;(3)如图④ 若ACD α∠= 求AFB ∠的值(用含α的代数式表示);(4)若A 、B 、C 三点不在同一直线上 线段AC 与线段BC 交于点C (交点F 至少在BD 、AE 中的一条线) 如图⑤ 若ACD α∠= 试判断AFB ∠与α的数量关系 并说明理由.【答案】(1)见解析;(2)120 90 60;(3)180α︒-;(4)180AFB α∠=︒- 见解析【解析】【分析】(1)求出∠ACE =∠DCB 根据SAS 证出两三角形全等即可;(2)根据全等三角形性质得出∠AEC =∠DBC ∠CDB =∠CAE 求出∠EAB+∠DBA=∠ACD ∠AFB =180°-(∠EAB +∠DBC ) 代入求出即可;(3)根据全等三角形的性质、三角形的内角和与三角形的外角性质求出即可.(4)知道ACD BCE ∠=∠ 得到ACE DCB ∠=∠ 证明()ACE DCB SAS ∆≅∆即可求解.【详解】解:(1)ACD BCE ∠=∠ACD DCE BCE DCE ∴∠+∠=∠+∠ACE DCB ∴∠=∠在ACE ∆和DCB ∆中CE CB ⎪=⎩()ACE DCB SAS ∴∆≅∆(2)解:∵∠ACD =60°∴∠CDB +∠DBC =∠ACD =60°∵△ACE ≌△DCB∴∠AEC =∠DBC ∠CDB =∠CAE∴∠CAE +∠DBC =60°∴∠AFB =180°-60°=120°;当∠ACD =90°时∵∠ACD =90°∴∠CDB +∠DBC =∠ACD =90°∵△ACE ≌△DCB∴∠AEC =∠DBC ∠CDB =∠CAE∴∠CAE +∠DBC =90°∴∠AFB =180°-90°=90°;同理:∠ACD =120°时∠AFB =60°故答案为:120 90 60(3)由(1)可知ACE DCB ∆≅∆CAE CDB ∴∠=∠180180AFB CDB CDA DAE CDA DAE BAE CDA DAC ACD α∴∠=∠+∠+∠=∠+∠+∠=∠+∠=︒-∠=︒-故答案为:180α︒-(4)180AFB α∠=︒-理由如下:ACD BCE ∠=∠ACD DCE BCE DCE ∴∠+∠=∠+∠ACE DCB ∴∠=∠在ACE ∆和DCB ∆中CE CB ⎪=⎩()ACE DCB SAS ∴∆≅∆AEC DBC ∴∠=∠180180AFB AEC CEB EBD DBC DBE EBC CEB EBC ECB α∴∠=∠+∠+∠=∠+∠+∠=∠+∠=︒-∠=︒-即180α︒-.【点睛】本题考查了全等三角形的性质和判定 三角形的外角性质 三角形的内角和定理 解此题的关键是找出已知量和未知量之间的关系.8.(1)发现:如图1 点A 为线段BC 外一动点 且BC =a AB =b .当点A 位于______时 线段AC 的长取得最大值 最大值为______.(用含a b 的式子表示)(2)应用:点A 为线段BC 外一动点 且BC =3 AB =1.如图2所示 分别以AB AC 为边 作等边△ABD 和等边△ACE 连接CD BE .①请找出图中与BE 相等的线段 并说明理由;②直接写出BE 长的最大值.【答案】(1)CB 的延长线 a +b ;(2)①DC =BE 理由见解析;②4;(1)根据点A 位于CB 的延长线上时 线段AC 的长取得最大值 即可得到结论;(2)①根据等边三角形的性质得到AD =AB AC =AE ∠BAD =∠CAE =60° 推出△CAD ≌△EAB 根据全等三角形的性质得到CD =BE ;②由于线段BE 长的最大值=线段CD 的最大值 根据(1)中的结论即可得到结果;【详解】解:(1)由题意可知 当点A 位于CB 的延长线上时 线段AC 的长取得最大值 且最大值为AB +BC 即a +b故答案为:CB 的延长线 a +b ;(2)①DC =BE 理由如下:∵△ABD 与△ACE 都是等边三角形∴AD =AB AC =AE ∠BAD =∠CAE =60°∴∠BAD +∠BAC =∠CAE +∠BAC即∠CAD =∠EAB在△CAD 与△EAB 中AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△CAD ≌△EAB (SAS )∴DC =BE ;②线段BE 长的最大值是4由(1)得 点D 在CB 的延长线上时 CD 最大 最大值为DB +BC =AB +BC =4∵△CAD ≌△EAB∴DC =BE∴线段BE 长的最大值为4.9.如图所示 已知B (﹣2 0) C (2 0) A 为y 轴正半轴上的一点 点D 为第二象限一动点 点E 在BD 的延长线上 CD 交AB 于点F 且∠BDC =∠BAC .(1)求证:∠ABD =∠ACD ;(2)求证:AD 平分∠CDE ;(3)若在D 点运动的过程中 始终有DC =DA +DB 在此过程中 ∠BAC 的度数是否发生变化?如果变化 请说明理由;如果不变 请求出∠BAC 的度数.【答案】(1)证明过程见解析(2)证明过程见解析(3)∠BAC =60° 理由见解析【解析】【分析】(1)根据∠BDC=∠BAC∠DFB=∠AFC再结合∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AF C=180° 即可得出结论.(2)过点A作AM⊥CD于点M作AN⊥BE于点N.运用“AAS”证明△ACM≌△ABN得AM=AN.根据“到角的两边距离相等的点在角的平分线上”得证;(3)运用截长法在CD上截取CP=BD连接AP.证明△ACP≌ABD得△ADP为等边三角形从而求∠BAC的度数.(1)证明:∵∠BDC=∠BAC∠DFB=∠AFC又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°∴∠ABD=∠ACD;(2)证明:过点A作AM⊥CD于点M作AN⊥BE于点N如下图所示:则∠AMC=∠ANB=90°.∵OB=OC OA⊥BC∴AB=AC由(1)可知:∠ABD=∠ACD∴△ACM≌△ABN (AAS)∴AM=AN.∴DA平分∠CDE.(角的两边距离相等的点在角的平分线上);(3)解:∠BAC的度数为60° 理由如下:在CD上截取CP=BD连接AP如下图所示:∵CD=AD+BD∴AD=PD .∵AB=AC ∠ABD =∠ACD BD=CP∴△ABD ≌△ACP (SAS )∴AD=AP ∠BAD =∠CAP∴AD=AP=PD 即△ADP 是等边三角形∴∠DAP =60°.∴∠BAC =∠BAP +∠CAP =∠BAP +∠BAD =60°.【点睛】此题考查全等三角形的判定与性质 运用了角平分线的判定定理和“截长补短”的数学思想方法 综合性较强.10.如图1 点M 为锐角三角形ABC 内任意一点 连接,,AM BM CM .以AB 为一边向外作等边三角形ABE △ 将BM 绕点B 逆时针旋转60︒得到BN 连接EN .(1)求证:AMB ENB △≌△;(2)若AM BM CM ++的值最小 则称点M 为ABC 的费马点.若点M 为ABC 的费马点 求此时,,AMB BMC CMA ∠∠∠的度数;(3)受以上启发 你能想出作锐角三角形的费马点的一个方法吗?请利用图2画出草图 并说明作法以及理由.【答案】(1)见解析;(2)120BMC ∠=︒:120AMB ∠=︒;120AMC ∠=︒;(3)见解析【解析】【分析】(1)结合等边三角形的性质 根据SAS 可证△AMB ≌△ENB(2)连接MN 由(1)的结论证明ΔBMN 为等边三角形 所以BM =MN 即AM+BM+CM =EN+MN+CM 所以当E 、N 、M 、C 四点共线时 AM+BM+CM 的值最小 从而可求此时∠AMB 、∠BMC 、ΔCMA 的度数;(3)根据(2)中费马点的定义 又△ABC 的费马点在线段EC 上 同理也在线段BF 上 因此线段EC 和BF 的交点即为△ABC 的费马点.【详解】解:(1)证明:∵ABE △为等边三角形∴,60AB BE ABE =∠=︒.而60MBN ∠=︒∴ABM EBN ∠=∠.在AMB 与ENB △中AB BEABM EBNBM BN=⎧⎪∠=∠⎨⎪=⎩∴(SAS)AMB ENB ≌.(2)连接MN .由(1)知 AM EN =.∵60,MBN BM BN ∠=︒=∴BMN △为等边三角形.∴BM MN =.∴AM BM CM EN MN CM ++=++.∴当E 、N 、M 、C 四点共线时 AM BM CM ++的值最小.此时 180120BMC NMB ∠=︒-∠=︒:180120AMB ENB BNM ∠=∠=︒-∠=︒;360120AMC BMC AMB ∠=-∠-∠=︒︒.(3)如图2 分别以ABC 的AB AC 为一边向外作等边ABE △和等边ACF 连接,CE BF 相交于M 则点M 即为ABC 的费马点 由(2)知 ABC 的费马点在线段EC 上 同理也在线段BF 上.因此线段EC 与BF 的交点即为ABC 的费马点.(方法不唯一 正确即可)【点睛】本题考查了等边三角形的性质 三角形全等的判定与性质,掌握三角形全等的判定和性质是解题的关键.11.已知:△ABC 与△BDE 都是等腰三角形.BA =BC BD =BE (AB >BD )且有∠ABC =∠DBE .(1)如图1 如果A 、B 、D 在一直线上 且∠ABC =60° 求证:△BMN 是等边三角形; (2)在第(1)问的情况下 直线AE 和CD 的夹角是 °;(3)如图2 若A 、B 、D 不在一直线上 但∠ABC =60°的条件不变则直线AE 和CD 的夹角是 °; (4)如图3 若∠ACB =60° 直线AE 和CD 的夹角是 °.【答案】(1)证明见解析;(2)60;(3)60;(4)60;【解析】【分析】(1)根据题意 得∠ABC =∠DBE =60° 从而得ABE DBC ∠=∠;通过证明ABE CBD ≌ 得BAE BCD ∠=∠;通过证明BAM BCN ≌ 得BM BN = 根据等边三角形的性质分析 即可完成证明;(2)结合题意 通过证明ABC 为等边三角形 得60BAC BCA ∠=∠=︒;结合(1)的结论 根据三角形外角性质 推导得120AOD ∠=︒ 从而完成求解;(3)同理 通过证明ABC 为等边三角形 得60BAC BCA ∠=∠=︒;通过证明ABE CBD ≌ 得BAE BCD ∠=∠;根据三角形外角性质 推导得120AOD ∠=︒ 从而完成求解;(4)根据题意 通过证明ABC 为等边三角形 推导得ABE CBD ∠=∠ 通过证明ABE CBD ≌ 得BAE BCD ∠=∠ 结合三角形外角的性质计算 即可得到答案.【详解】(1)∵∠ABC =∠DBE =60°∴18060MBN ABC DBE ∠=︒-∠-∠=︒ ABE ABC MBN ∠=∠+∠ DBC DBE MBN ∠=∠+∠ ∴ABE DBC ∠=∠∵BA =BC BD =BEABE △和CBD 中BA BC ABE DBC BE BD =⎧⎪∠=∠⎨⎪=⎩∴ABE CBD ≌∴BAE BCD ∠=∠ BAM 和BCN △中60BAE BCD AB BC ABC MBN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴BAM BCN ≌∴BM BN =∴BMN △为等边三角形;(2)∵∠ABC =∠DBE =60°, BA =BC∴ABC 为等边三角形;∴60BAC BCA ∠=∠=︒根据题意 AE 和CD 相交于点O∵BAE BCD ∠=∠∴AOD OAC ACO OAC BCA BCD OAC BCA BAE ∠=∠+∠=∠+∠+∠=∠+∠+∠∵OAC BAE BAC ∠+∠=∠∴120AOD BAC BCA ∠=∠+∠=︒∴18060AOC AOD ∠=︒-∠=︒ 即直线AE 和CD 的夹角是60︒故答案为:60;(3)∵∠ABC =∠DBE =60°, BA =BC∴ABC 为等边三角形;∴60BAC BCA ∠=∠=︒∵ABE ABC MBN ∠=∠+∠ DBC DBE MBN ∠=∠+∠ ∠ABC =∠DBE =60°∴ABE DBC ∠=∠∵BA =BC BD =BEABE △和CBD 中BA BC ABE DBC BE BD =⎧⎪∠=∠⎨⎪=⎩∴ABE CBD ≌∴BAE BCD ∠=∠如图 延长AE 交CD 于点O∴AOD OAC ACO OAC BCA BCD OAC BCA BAE ∠=∠+∠=∠+∠+∠=∠+∠+∠∵OAC BAE BAC ∠+∠=∠∴120AOD BAC BCA ∠=∠+∠=︒∴18060AOC AOD ∠=︒-∠=︒ 即直线AE 和CD 的夹角是60︒故答案为:60;(4)∵BA =BC∴ACB CAB ∠=∠∵∠ACB =60°∴60ACB CAB ∠=∠=︒∴ABC 为等边三角形∵BD =BE ∠ABC =∠DBE∴60DBE ∠=︒∵ABE ABC CBE ∠=∠-∠ CBD DBE CBE ∠=∠-∠∴ABE CBD ∠=∠ABE △和CBD 中BA BC ABE DBC BE BD =⎧⎪∠=∠⎨⎪=⎩∴ABE CBD ≌∴BAE BCD ∠=∠分别延长CD 、AE 相较于点O 如下图:∴AOF OAC ACO OAC BCA BCD OAC BCA BAE ∠=∠+∠=∠+∠+∠=∠+∠+∠∵OAC BAE BAC ∠+∠=∠∴120AOF BAC BCA ∠=∠+∠=︒∴18060AOC AOF ∠=︒-∠=︒ 即直线AE 和CD 的夹角是60︒故答案为:60.【点睛】本题考查了等腰三角形、等边三角形、全等三角形、补角、三角形外角的知识;解题的关键是熟练掌握等边三角形、全等三角形、三角形外角的性质 从而完成求解.12.如图 已知点B (-2 0) C (2 0) A 为y 轴正半轴上一点 点D 为第二象限内的一个动点 M 在BD 的延长线上 CD 交AB 于点F 且∠ABD =∠ACD .(1)求证:∠BDC =∠BAC ;(2)求证:DA平分∠CDM;(3)若在D点运动的过程中始终有DC=DA+DB在此过程中∠BAC的度数是否变化?如果变化请说明理由;如果不变请求出∠BAC的度数?【答案】(1)见详解;(2)见详解;(3)∠BAC的度数不变化;理由见详解.【解析】【分析】(1)由三角形的内角和定理以及对顶角相等即可得到结论成立;(2)过点A作AH⊥CD于点H作AG⊥BM于点G.运用“AAS”证明△ACH≌△ABG得AH=AG.根据“到角的两边距离相等的点在角的平分线上”得证;(3)运用截长法在CD上截取CP=BD连接AP.证明△ACP≌ABD得△ADP为等边三角形从而求∠BAC的度数.【详解】解:(1)由题意在△ACF和△BDF中ACD AFC CAB ABD BFD BDC∠+∠+∠=∠+∠+∠=︒180∵∠ABD=∠ACD∠AFC=∠BFD∴∠BDC=∠BAC;(2)过点A作AH⊥CD于点H作AG⊥BM于点G如图:则∠AHC=∠AGB=90°∵OB=OC OA⊥BC∴AB=AC∵∠ABD=∠ACD∴△ACH≌△ABG(AAS)∴AH=AG.∴AD平分∠CDM.(3)∠BAC的度数不变化.在CD上截取CP=BD连接AP.∵CD=AD+BD∴AD=PD.∵AB=AC∠ABD=∠ACD BD=CP∴△ABD≌△ACP.∴AD=AP;∠BAD=∠CAP.∴AD=AP=PD即△ADP是等边三角形∴∠DAP=60°.∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.【点睛】此题考查全等三角形的判定与性质运用了角平分线的判定定理和“截长补短”的数学思想方法综合性较强.。
八年级上册数学等边三角形一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系4.轴对称的性质①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点(x, y)关于x轴对称的点的坐标为______.点(x, y)关于y轴对称的点的坐标为______.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质①.等腰三角形的两个底角相等。
(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边)五、(等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。
2、等边三角形的判定:①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
人教版八年级上册数学知识点总结归纳一、三角形1. 三角形的概念及分类-由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
-按角分类:锐角三角形、直角三角形、钝角三角形。
-按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。
2. 三角形的三边关系-三角形任意两边之和大于第三边,任意两边之差小于第三边。
3. 三角形的内角和与外角和-三角形内角和为180°。
-三角形的外角等于与它不相邻的两个内角之和。
三角形外角和为360°。
4. 三角形的高、中线、角平分线-从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
-三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
-三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
二、全等三角形1. 全等三角形的概念及性质-能够完全重合的两个三角形叫做全等三角形。
-全等三角形的对应边相等、对应角相等。
2. 全等三角形的判定- “边边边”(SSS):三边对应相等的两个三角形全等。
- “边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
- “角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
- “角角边”(AAS):两角和其中一个角的对边对应相等的两个三角形全等。
- “斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
三、轴对称1. 轴对称图形和轴对称-如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
-把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
2. 线段的垂直平分线-经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
-线段垂直平分线上的点与这条线段两个端点的距离相等。
八年级数学上册知识点总结第1篇第十一章三角形一、知识框架:知识概念:1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的.外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。
②边形共有条对角线。
第十二章全等三角形一、知识框架:二、知识概念:1、基本定义:⑴全等形:能够完全重合的两个图形叫做全等形。
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。
⑷对应边:全等三角形中互相重合的边叫做对应边。
等边三角形的性质与判定知识点一、等边三角形定义:三边都相等的三角形叫等边三角形.性质:(1)边的性质:三边相等(2)角的性质:三个内角相等,并且每一个内角都等于60°.(3)三线合一:任意一边上的中线、高线和顶角平分线都互相重合(4)对称性:是轴对称图形,且有三条对称轴知识点二、等边三角形的判定判定:(1)边:三条边都相等的三角形是等边三角形;(2)角:三个角都相等的三角形是等边三角形;(3)边角综合:有一个角是60°的等腰三角形是等边三角形.知识点三、含30°的直角三角形含30°的直角三角形的性质定理:在直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半.类型一、等边三角形的性质与判定1. 如图,在四边形OAPB中,120OP=,若点M、N∠,且2∠=︒,OP平分AOBAOB分别在直线OA、OB上,且PMN∆有()∆为等边三角形,则满足上述条件的PMNA.1个B.2个C.3个D.3个以上2. 如图,ABC=,∆中,120∠+∠=︒,点D,E分别在边AC,BC上,且AD BECAB CBA以DE为边作等边DEF∆,连接AF,BF.求证:FAB∆是等边三角形.类型二、含30°角的直角三角形的性质3.如图,在ABC∠=︒,点D是AC的中点,DE AC⊥交BC于E;点O在DEC∆中,30上,OA OBOE=,则BE的长为.=,1OD=,2类型三、通过构造等边三角形来解题4. 如图,已知ABC=,连∆为等边三角形,延长BC到点D,延长BA到点E,使AE BD接CE和DE.求证:CDE∆为等腰三角形.5. 如图,∠BAD=120°,BD=DC,AB+AD=AC,求证:AC平分∠BAD.类型四、等边三角形的探究问题6.【问题提出】如图①,已知ABC∆是等边三角形,点E在线段AB上,点D在直线BC上,且ED EC=+.∆连接EF,试证明:AB DB AF ∆绕点C顺时针旋转60︒至ACF=,将BCE【类比探究】如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由.【复习巩固】1.如图,在ABC ∆中,90ACB ∠=︒,D 是AB 上的点,过点D 作DE AB ⊥交BC 于点F ,交AC 的延长线于点E ,连接CD ,DCA DAC ∠=∠,则下列结论正确的有( ) ①DCB B ∠=∠;②12CD AB =;③ADC ∆是等边三角形;④若30E ∠=︒,则DE EF CF =+. A .①②③B .①②④C .②③④D .①②③④第1题 第2题 第3题2.如图,在Rt ABC ∆中,CM 平分ACB ∠交AB 于点M ,过点M 作//MN BC 交AC 于点N ,且MN 平分AMC ∠,若1AN =,则BC 的长为( )A .4B .6C .D .83.一个六边形的六个内角都是120︒(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是( ) A .13B .14C .15D .164.已知30AOB ∠=︒,点P 在AOB ∠内部,1P 与P 关于OB 对称,2P 与P 关于OA 对称,则1P ,O ,2P 三点所构成的三角形是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形5.如图所示,ABC ∆是等边三角形,D 点是AC 的中点,延长BC 到E .使CE CD =. (1)求E ∠的度数.(2)过D 点作D M BE ⊥,垂足为M .求证:BM EM =.7.如图所示,在等边三角形ABC中,D、E分别是BC、AC上的点,且CAD ABE∠=∠,AD、⊥于Q,猜想PB与PQ的数量关系,并简要说明理由.BE交于点P,作BQ AD8.如图,AB AC∠的度数.=+,求ADB∠=︒,若AB BD CD=,60ABD∠=︒,30BDC。
八年级数学上册知识点归纳:等边三角
形
等边三角形
英文:equilateraltriangle,“等边三角形”也被称为“正三角形”。
如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形为等边三角形:
.三边长度相等。
2.三个内角度数均为60度。
3.一个内角为60度的等腰三角形
等边三角形尺规作法
其作法相当简单:先用尺画出一条任意长度的线段,
等边三角形的尺规作图
再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
等边三角形的性质
⑴等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
⑵等边三角形每条边上的中线、高线和所对角的平分线互相重合
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴
是每条边上的中线、高线或对角的平分线所在的直线。
⑷等边三角形的重要数据
空间对称群
二面体群
角和边的数量3
施莱夫利符号{3}
内角的大小60°
⑸等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。
⑹等边三角形内任意一点到三边的距离之和为定值
等边三角形的判定
⑴三边相等的三角形是等边三角形
⑵三个内角都相等的三角形是等边三角形
⑶有一个角是60度的等腰三角形是等边三角形
两个内角为60度的三角形是等边三角形
说明:可首先考虑判断三角形是等腰三角形。
等边三角形的性质与判定理解:
首先,明确等边三角形定义。
三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。
等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
等边三角形定义:
三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。
是特殊的等腰三角形。
如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
.三边长度相等;
2.三个内角度数均为60度;
3.一个内角为60度的等腰三角形。
性质:
①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或对角的平分线所在的直线。
④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。
(四心合一)
⑤等边三角形内任意一点到三边的距离之和为定值
判定方法:
①三边相等的三角形是等边三角形(定义)
②三个内角都相等(为60度)的三角形是等边三角形
③有一个角是60度的等腰三角形是等边三角形
④两个内角为60度的三角形是等边三角形
说明:可首先考虑判断三角形是等腰三角形。
等边三角形的性质与判定理解:
首先,明确等边三角形定义。
三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。
等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
等比三角形的尺规做法:
可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。