八年级数学上册知识点汇总人教版
- 格式:ppt
- 大小:962.00 KB
- 文档页数:36
人教版小学八年级上册数学知识点总结一、数与代数(一)二次根式1.二次根式的概念二次根式是指形如√a(a≥0)的数学表达式,其中a被称为被开方数。
当a>0时,二次根式有两个值,分别为正根和负根;当a=0时,二次根式的值为0。
2.二次根式的性质•非负性:对于任意实数a,√a的值总是非负的。
•乘方与开方互逆:对于任意非负实数a,有√(a^2) = a。
•运算性质:√(ab) = √a × √b(a≥0, b≥0);√(a/b) = √a / √b(a≥0, b>0)。
3.二次根式的化简与运算通过合并同类二次根式、利用二次根式的乘法法则进行化简和运算。
(二)一元二次方程1.一元二次方程的概念只含有一个未知数,且未知数的最高次数为2的方程称为一元二次方程。
一般形式为ax^2 + bx + c = 0(a≠0)。
2.一元二次方程的解法•直接开平方法:当一元二次方程可以化为x^2 = p或(x-m)^2 = p的形式时,可以直接开平方求解。
•配方法:通过配方将一元二次方程转化为完全平方的形式,然后开平方求解。
•公式法:对于一般形式的一元二次方程ax^2 + bx + c = 0,其解为x = [-b ± √(b^2 - 4ac)] / (2a)。
•因式分解法:将一元二次方程化为两个一次方程的乘积形式,然后分别求解。
3.一元二次方程的应用一元二次方程在实际问题中有广泛应用,如面积、体积、速度、时间等问题。
通过设立未知数,建立一元二次方程,然后求解未知数,可以得到实际问题的解。
(三)分式1.分式的概念一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。
分式是不同于整式的一类代数式。
2.分式的性质•分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
•分式的约分与通分:通过约分可以化简分式,通过通分可以比较分式的大小或进行分式的加减运算。
八年级上册数学知识点总结(精华)第十一章三角形1、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
2、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
3、公式与性质(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
(3)多边形内角和公式:n边形的内角和等于(n-2)·180°(4)多边形的外角和:多边形的外角和为360°。
(5)多边形对角线的条数:①从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
②n边形共有23)-n(n条对角线。
第十二章全等三角形1、全等三角形:两个三角形的形状、大小都一样时称为全等三角形。
一个图形经过平移、旋转、对称等运动(或称变换)后得到另一个图形,变换前后的图形全等。
2.全等三角形的性质:全等三角形的对应角相等、对应边相等。
3、三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”:(2)“角边角”简称“ASA”:(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”:(5)斜边和直角边相等的两直角三角形(HL)。
4、(1)角平分线的性质:在角平分线上的点到角的两边的距离相等(2)角平分线推论(或称判定):角的内部到角的两边的距离相等的点在叫的平分线上。
第十三章轴对称1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
人教版八年级数学上册知识点人教版八年级数学上册知识点概述一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正有理数、0和负有理数。
- 无理数:无限不循环小数称为无理数,如圆周率π。
2. 实数的运算- 加法、减法、乘法和除法的运算规则。
- 正数和负数的运算。
- 绝对值的概念及运算。
3. 估算和有效数字- 近似数的估算方法。
- 有效数字的计算和应用。
4. 实数的性质和比较大小- 实数的性质。
- 实数大小的比较方法。
二、代数表达式1. 代数式的概念- 单项式和多项式的定义。
- 同类项和合并同类项。
2. 代数式的运算- 整式的加减法。
- 乘法公式,包括平方差公式、完全平方公式等。
- 多项式的乘除法。
3. 因式分解- 提公因式法。
- 公式法。
- 十字相乘法。
三、方程与不等式1. 一元一次方程- 方程的建立和解法。
- 方程的解的检验。
2. 一元一次不等式- 不等式的概念和性质。
- 不等式的解集表示。
- 不等式的解法。
3. 二元一次方程组- 方程组的建立。
- 代入法和消元法解方程组。
四、几何1. 平行线与角- 平行线的判定和性质。
- 角的概念,包括同位角、内错角、同旁内角。
2. 三角形- 三角形的基本性质。
- 等腰三角形和等边三角形的性质。
- 三角形的内角和外角性质。
3. 四边形- 四边形的定义和分类。
- 矩形、菱形、正方形的性质。
4. 圆的基本性质- 圆的定义和圆心、半径、直径的概念。
- 弦、弧、切线的概念和性质。
五、统计与概率1. 统计- 数据的收集和整理。
- 频数和频率的概念。
- 统计图表的绘制,包括条形图、折线图和饼图。
2. 概率- 随机事件的概念。
- 概率的计算方法。
- 等可能事件的概率。
以上是人教版八年级数学上册的主要知识点概述。
在学习过程中,学生应该掌握每个知识点的定义、性质、公式和解题方法,以便能够熟练地解决相关问题。
教师和家长应鼓励学生通过练习题和实际应用来巩固和深化这些概念。
人教版八年级上数学知识点总结
一、整数运算
1. 整数的加减法运算
- 同号相加、异号相减
- 借位规则
2. 整数的乘除法运算
- 正数乘除正数为正,负数乘除负数为正
- 正数乘除负数为负,负数乘除正数为负
二、分数与小数
1. 分数的概念与表示方法
- 分子、分母的含义
- 分数的大小比较
2. 分数的加减法运算
- 分数相加减时,先找到相同的分母
3. 分数的乘除法运算
- 乘法:分子相乘,分母相乘- 除法:乘以倒数
4. 小数的概念与表示方法
- 小数位数与数值大小的关系
三、代数式与方程式
1. 代数式的概念与运算
- 字母的含义
- 代数式的加减运算
2. 一元一次方程
- 方程的定义与解法
- 列方程的步骤与技巧
四、正比例与反比例
1. 正比例
- 定义与性质
- 比例关系的表示方法
2. 反比例
- 定义与性质
- 比例关系的表示方法
五、平面图形与坐标系
1. 平面图形的概念与性质
- 直线、曲线、多边形等
2. 坐标系与坐标表示
- 直角坐标系
- 坐标点的表示方式
以上是人教版八年级上数学的主要知识点总结,希望能对同学们复习和学习有所帮助。
人教版数学八年级上册全册知识点汇总一、概念1.沿着直线折叠图表。
如果直线两边的部分可以完全重叠,那么这个图形叫做轴对称图形。
这条直线是它的对称轴。
这时我们也说这个图形是关于这条直线(轴)对称的。
★2.沿着直线折叠图表。
如果它能与另一个图形完全重合,则称这两个图形关于这条直线对称。
这条直线叫做对称轴。
折叠后重叠的点就是对应点,叫做对称点。
★3、轴对称图形与两个图形成轴对称的区别和联系:(1)轴对称图形与两个图形成轴对称的区别:轴对称图形是指一个图形沿对称轴折叠后这个图形的两部分能完全重合;两个图形形成的对称性是指两个图形之间的位置关系,沿对称轴折叠后可以重叠。
★(2)轴对称图形与两个图形成轴对称的联系:把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称;当两个对称的图形被看作一个整体时,它就是一个轴对称图形。
★4、轴对称的性质①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
★5、等式的性质等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等★二、线段的垂直平分线1.过一条线段的中点并垂直于这条线段的直线称为这条线段的中垂线,也叫中垂线。
★2、线段垂直平分线上的点与这条线段的两个端点的距离相等。
★3.线段两端点距离相等的点在该线段的中垂线上。
★三、作轴对称图形1.制作轴对称图形:围绕对称轴制作原图形中某些点的对应点,然后将这些对应点连接起来,得到原图形的轴对称图形。
(注意特殊点)★2、点(x , y)关于x轴对称的点的坐标为:(x,-y)点(x , y)关于y轴对称的点的坐标为:(-x,y)★3、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等★四、等腰三角形1、等腰三角形的性质:①等腰三角形的两个底角相等(“等边对等角”)②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合★2、等腰三角形是轴对称图形,三线合一所在直线是其对称轴(只有1条对称轴)★3、等腰三角形的判定:①如果一个三角形有两条边相等②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)★五、等边三角形1、等边三角形:三条边都相等的三角形;(等边三角形是特殊的等腰三角形)★2、等边三角形的性质:①等边三角形的三个内角都是60°②等边三角形的每条边都存在三线合一★3、等边三角形是轴对称图形,对称轴是三线合一所在直线(有3条对称轴)★4、等边三角形的判定:①三条边都相等的三角形是等边三角形②三个角都相等的三角形是等边三角形③有一个角是60°的等腰三角形是等边三角形★5、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
第一章勾股定理1.勾股定理o直角三角形两直角边的平方和等于斜边的平方,即a2+b2=c2(其中a、b为直角边,c为斜边)。
o应用:用于直角三角形中的边长计算、证明等。
2.一定是直角三角形吗o如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形一定是直角三角形。
3.勾股定理的应用o应用于解决实际问题中的直角三角形边长计算。
第二章实数1.认识无理数o有理数:可以表示为有限小数或无限循环小数的数。
o无理数:无限不循环小数,如2、π等。
2.平方根o算数平方根:一个正数x的平方等于a,则x是a的算数平方根。
o平方根:一个数x的平方等于a,则x是a的平方根,正数有两个平方根,互为相反数;0的平方根是0本身;负数没有平方根。
3.立方根o立方根:一个数x的立方等于a,则x是a的立方根。
o每个数都有一个立方根,正数的立方根是正数,0的立方根是0,负数的立方根是负数。
4.估算与开方o估算:对复杂小数进行近似计算。
o用计算机开平方或立方。
5.实数o实数是有理数和无理数的统称,可以在数轴上表示。
第三章位置与坐标1.确定位置o在平面内,确定一个物体的位置一般需要两个数据(横坐标和纵坐标)。
2.平面直角坐标系o由两条互相垂直且有公共原点的数轴组成。
o通常地,两条数轴分别置于水平位置(x轴)与竖直位置(y轴),取向右与向上的方向分别为正方向。
3.轴对称与坐标变化o关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
第四章一次函数1.函数o如果在一个变化过程中有两个变量x和y,且对于x的每一个值,y都有唯一确定的值,则称y是x的函数。
2.一次函数o形式为y=kx+b(k、b为常数,k ≠ 0)的函数称为一次函数。
o当b = 0时,称为正比例函数y=kx。
3.一次函数的图像及性质o图像是一条直线,经过点(0, b)和(−kb,0)。
o当k > 0时,y随x的增大而增大;当k < 0时,y随x的增大而减小。
人教版八年级上册数学知识点总结归纳一、三角形1. 三角形的概念及分类-由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
-按角分类:锐角三角形、直角三角形、钝角三角形。
-按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。
2. 三角形的三边关系-三角形任意两边之和大于第三边,任意两边之差小于第三边。
3. 三角形的内角和与外角和-三角形内角和为180°。
-三角形的外角等于与它不相邻的两个内角之和。
三角形外角和为360°。
4. 三角形的高、中线、角平分线-从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
-三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
-三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
二、全等三角形1. 全等三角形的概念及性质-能够完全重合的两个三角形叫做全等三角形。
-全等三角形的对应边相等、对应角相等。
2. 全等三角形的判定- “边边边”(SSS):三边对应相等的两个三角形全等。
- “边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
- “角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
- “角角边”(AAS):两角和其中一个角的对边对应相等的两个三角形全等。
- “斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
三、轴对称1. 轴对称图形和轴对称-如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
-把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
2. 线段的垂直平分线-经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
-线段垂直平分线上的点与这条线段两个端点的距离相等。
= a= a a 八年级数学上册重要知识点归纳1、三角形具有稳定性2、三角形的三边关系定理及推论 (1) 三角形三边关系定理:三角形的两边之和大于第三边(符号表示:a+b>c ) (2) 推论:三角形的两边之差小于第三边(符号表示:a-b<c ) (3) 三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围; ③证明线段不等关系。
3、(1)三角形的内角和等于 180°,三角形的外角和等于 360°;(2)n 边形的内角和等于(2)- 18⋅0,n 边形的外角和等于 360°;(2)- 18⋅0 360(3) 正 n 边形每个内角等于 n 4、三角形全等的条件:A,正 n 边形每个外角等于 n .一般三角形 SSS ,SAS ,ASA ,AAS ,直角三角形 HL5、角的平分线的性质:角平分线上的点到角两边的距离相等 符号表示:BD 为角平分线,DA ⊥AB ,DC ⊥BC ,AD =DC.6、垂直平分线性质:垂直平分线上的点到线段两端的距离相等符号表示:CD 为 AB 的垂直平分线AC=BC ,AE=BE.7、等腰三角形 () “等边对等角”和“三线合一”的性质已知∆ABC 是等腰三角形, AB=AC,∴∠B = ∠C (等角对等边),BD = CD , ∠BAD = ∠CAD , AD ⊥ BC (三线合一)D () “等角对等边”的判定方法已知(B 等=角∠对C ∴等A 边B )= AC ∆ABC 是等腰三角形8、等边三角形的性质和判定(性质)等边三角形的三个内角都相等,并且每一个角都等于 60° (判定 1)三个角都相等的三角形是等边三角形。
(判定 2)有一个角是 60°的等腰三角形是等边三角形。
9、整式的乘法和因式分解a m ⋅a n m +n(a m )n mn 同底数幂乘法 幂的乘方 = a m ÷ a nm -n(ab )n = a n b n同底数幂除法积的乘方a -1 = 1(a ≠ 0)规定: a 0= 1 (a≠0);a 乘法公式:平方差公式: (a +b )(a - b ) = a2 - b 2完全平方公式:(a + b )2 = a 2 + 2ab + b 2 因式分解有:(1)提公因式法(2) 公式法:平方差公式、完全平方公式 (3) 十字相乘法(a - b )2 = a 2 - 2ab + b 2A = A ⨯ M , A =A ÷ M 10、分式的基本性质:分式的分子与分母同时乘以或除以非 0 整式,分式的值不变。
人教版初二上册数学知识点汇总人教版初二上册数学知识点一、变量与函数[变量和常量]在一个变化过程中,数值发生变化的量,我们称之为变量,而数值始终保持不变的量,我们称之为常量。
[函数]一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数。
如果当时,那么叫做当自变量的值为时的函数值。
[自变量取值范围的确定方法]1、自变量的取值范围必须使解析式有意义。
当解析式为整式时,自变量的取值范围是全体实数;当解析式为分数形式时,自变量的取值范围是使分母不为0的所有实数;当解析式中含有二次根式时,自变量的取值范围是使被开方数大于等于0的所有实数。
2、自变量的取值范围必须使实际问题有意义。
[函数的图像]一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.[描点法画函数图形的一般步骤]第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
[函数的表示方法]列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
[正比例函数]一般地,•形如y=•kx•(k•是常数, k ≠0 )的函数,•叫做正比例函数(proportional function),其中k叫做比例系数.[正比例函数图象和性质]一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点和(1,k)的直线.我们称它为直线y=kx.•当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1) 解析式:y=kx(k是常数,k≠0)(2) 必过点:(0,0)、(1,k)(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4) 增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴[正比例函数解析式的确定]——待定系数法1. 设出含有待定系数的函数解析式y=kx(k ≠0)2. 把已知条件(一个点的坐标)代入解析式,得到关于k的一元一次方程3. 解方程,求出系数k4. 将k的值代回解析式二、一次函数[一次函数]一般地,形如y=kx+b(k、b是常数,k 0)函数,叫做一次函数. 当b=0时,y=kx+b即y=kx,所以正比例函数是一种特殊的一次函数.[一次函数的图象及性质]一次函数y=kx+b的图象是经过(0,b)和(- ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b是常数,k 0)(2)必过点:(0,b)和(- ,0)(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限直线经过第一、二、三象限直线经过第一、三、四象限直线经过第一、二、四象限直线经过第二、三、四象限(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b 个单位;当b<0时,将直线y=kx的图象向下平移b个单位.[直线y=k1x+b1与y=k2x+b2的位置关系](1)两直线平行:k1=k2且b1 b2(2)两直线相交:k1 k2(3)两直线重合:k1=k2且b1=b2[确定一次函数解析式的方法](1)根据已知条件写出含有待定系数的函数解析式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数解析式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数解析式中得出结果.[一次函数建模]函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题. 建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题.正比例函数的图象和一次函数的图象在赋予实际意义时,其图象大多为线段或射线. 这是因为在实际问题中,自变量的取值范围是有一定的限制条件的,即自变量必须使实际问题有意义.从图象中获取的信息一般是:(1)从函数图象的形状判定函数的类型;(2)从横、纵轴的实际意义理解图象上点的坐标的实际意义.解决含有多个变量的问题时,可以分析这些变量的关系,选取其中某个变量作为自变量,再根据问题的条件寻求可以反映实际问题的函数.三、用函数观点看方程(组)与不等式[一元一次方程与一次函数的关系]任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.[一次函数与一元一次不等式的关系]任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.[一次函数与二元一次方程组](1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y= 的图象相同.(2)二元一次方程组的解可以看作是两个一次函数y= 和y= 的图象交点.三个重要的`数学思想1.方程的思想。
人教版初二上册数学知识点总结(汇集6篇)人教版初二上册数学知识点总结(1)1全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21推论1等腰三角形顶角的平分线平分底边并且垂直于底边22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23推论3等边三角形的各角都相等,并且每一个角都等于60°24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25推论1三个角都相等的三角形是等边三角形26推论2有一个角等于60°的等腰三角形是等边三角形27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28直角三角形斜边上的中线等于斜边上的一半29定理线段垂直平分线上的点和这条线段两个端点的距离相等30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上人教版初二上册数学知识点总结(2)一次函数(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;(2)正比例函数图像特征:一些过原点的直线;(3)图像性质:①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k(4)求正比例函数的解析式:已知一个非原点即可;(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)(8)一次函数图像特征:一些直线;(9)性质:①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;③当k④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);⑤当b(10)求一次函数的解析式:即要求k与b的值;(11)画一次函数的图像:已知两点;用函数观点看方程(组)与不等式(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。