红外温度计的设计

  • 格式:doc
  • 大小:119.50 KB
  • 文档页数:8

下载文档原格式

  / 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外温度计的设计

1.红外的发现

红外光也叫红外线,它是一位英国科学家发现的。1800年,赫胥尔在研究太阳光时,让光通过棱镜分解为彩色光带,他用温度计去测量光带中不同颜色所含的热量。试验中。他偶然发现一个奇怪的现象:放在光带洪广外的一支温度计,比室内其他温度的指示数值高。经过反复试验。这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是他宣布太阳发出的辐射中除可见光线外,还有一种人眼看不见的“热线”,这种人的肉眼看不见的“热线”位于红色光外侧,叫做红外线。(不过,要说明的是,事实上太阳发出的能量以波长580nm 的绿光最强。)

红外线是一种电磁波,具有与无线电波及可见光一样的本质。红外线的波长在0.76~100μm 之间,位于无线电波与可见光之间。任何物体,只要它的温度比零下273度高,就无一例外地发射出红外线。

2.红外测温的原理

红外测温系统是利用物体的辐射能量与温度有关的原理而组成测温的系统。将普朗克公式在探测器工作波长范围内积分可以得出目标辐射率的大小与目标温度间存在着固定的对应关系,用红外探测器测出目标的热辐射功率,就能计算出目标的表面温度,这就为红外测温奠定了理论基础。

2.1普朗克定律

黑体的光谱辐射出射度是波长和黑体温度的函数,即:

()()5

1,2e x p /1

T c M c T λλλ-=- (1—1) 式中:

1c —第一辐射常数,

()2162

12 3.74183310c h c W m π-==⨯ ; 2c —第二辐射常数,

()22 1.43883210h c c m K K -==⨯ ;

其中:

K —玻耳兹曼常数;

h —普朗克常数;

c —电磁波在真空中的传播速度。 图1-1表示了不同温度下黑体辐射的频谱分布,从图中可以看出:黑体总的辐射能量随温度的增高而增加,这是单波段测温仪的依据。随着温度升高辐射峰所在的波长向短波方向移动,其规律符合维恩位移定律。显然高温测温仪适用于较短的工作波长,低温测温仪宜选用较长的工作波段;短波长处辐射能量随温度增加比长波长处快,这意味着短波长处比长波长处测温灵敏度高。

2.2斯蒂芬一玻耳兹曼定律

将普朗克公式1-1对所有波长积分,便可得到描述单位面积黑体辐射到半球空间的总辐射功率,即

()4,0T T M M d T λ

λσ∞

==⎰ (1—2)

式中,()8245.67010W m K σ--=⨯ ,称为斯蒂芬一玻耳兹曼常数。

2.3实际物体温度的计算

式(1—1),(1—2)中的T 均为绝对温度。计算实际物体的辐射出射度只需在式(1—1),(1—2)中乘以发射率ε即可。物体的辐射出射度与辐射的温度T 和发射率ε有关。只要测出物体的辐射出射度又以知物体的发射率ε即可求出温度T 。实际上物体的测量是通过辐射量的测量得到的。

3.红外测温技术的发展状况

1800年,英国物理学家F.W 赫胥尔发现了红外辐射,其占据的波段为0.76~1000m μ,反映了一定温度物体的热特性,从此开辟了人类应用红外技术的广阔道路。

红外辐射测温技术的发展主要从两方面来看:一是红外辐射测温仪器的发展;二是红外辐射测温技术的发展。

3.1红外辐射测温仪器的分类及发展

利用红外辐射的原理进行温度测量的仪器是从简单到复杂逐渐发展而成的。早期的红外测温仪仅限于检测物体的某一点的温度,而后可以测量一条线的温图1—1

度,而不能显示物体的形状和表面上的温度分布。直到了20世纪五六十年代,由于红外探测器的改进和快速灵敏的光子探测器的问世,才导致了实验性、原理性热成像系统的诞生。发展到目前的热成像系统,它己经是窄禁带半导体技术、精密光学、精密机械、微电子学、特殊红外工艺、新型红外光学材料与系统工程学的产物。

根据红外测温的方式,红外测温仪器可以分为全场分析探测系统和逐点分析探测系统两种。全场分析是用红外成像镜头把物体的温度分布图像成像在传感器阵列上,从而获得物体空间温度场的全场分布,全场分布探测系统称为红外热像仪。逐点分析是把物体一个局部区域的热辐射聚焦到单个探测器上,并通过己知物体的发射率,将辐射功率转化为温度,逐点分析系统常称为红外测温仪。红外测温仪包括红外点温仪、红外热电视、红外行扫仪。

六十年代我国研制成功第一台红外测温仪。我国最早开发应用的是红外光电测温仪,它相当于一个自动光学高温计,响应时间不快,测温精度不高,己经被淘汰。

进入九十年代,我国的红外测温仪采用当今国际上通用的工作原理,由反射式、折射式或干涉式光学系统收集被测物发出的红外辐射,经滤光片选取一定波长范围的辐射,射入红外探测器,探测器输出的电信号经过放大,线性化处理后送入数字电压表显示被测物体的温度。并且陆续生产了小目标、远距离、适合工业生产特点的测温仪器,如西光IRT-1200D型、HCW-III型、HCW- V型;YHCW-9400型;WHD4015型(双瞄准,目标直径为40mm时,测距可达15m)、WFHX330型(光学瞄准,目标直径为50mm,测距可达30m )。

九十年代末期,我国也产生了用光纤束作为光学系统的测温仪,用单板机或单片机作信号处理和线性化及数字显示的测温仪。

3.2红外辐射测温技术的分类及发展

到二十世纪初,辐射法测温的理论准备已基本完善。又经过了几十年的努力,应用于工业现场的红外测温仪,已有了三种类型的传统形式。即全辐射测温仪、单色测温仪和比色测温仪。全辐射测温仪是通过测量波长从零到无穷大的整个光谱范围内的辐射功率来确定物体的辐射温度。单色测温仪是通过测量目标发射的某一波长范围内的辐射功率来确定目标亮温的仪器。比色测温仪是根据两个波段

辐射能量的比值与物体温度的函数关系来测定物体色温的。

1954年Pyatt建议使用3个波长的比色温度计,以得到发射率与波长的关系。

到70年代末80年代初兴起了多光谱辐射测温技术的热潮。

1979年Cashdolla研制成功了3波长高温计,在1.8,1.9及1.0m

μ三种波长下测量火焰及爆炸粉尘的温度,测量上限可至2000K,同时可换用滤光片方法形成4波长及6波长高温计。同年Svet等研制成4波长高温计用以测量物体表面真实温度,测温范围为:300~3000K。Lyzenga和Ahrens于同年推出了6波长的温度测量装置,采用硅光电二极管作和0.48~0.8m

μ波长范围内的检测元件,用以测量冲击波后的物体的真实温度,测温范围为:4000~8000K,精度可至20%。

1981年,Gardner及Jones等研制成了6波长高温计,工作波长为0.75~1.65m

μ,测温范围为1000~1600K,精度为1%。

1982年欧共体Babelot及美国Hoch等人继续研究多波长高温计,并研制成6波长高温计,采用光导纤维束分光,硅光电二极管,用于材料热物性的快速动态测量,在 5000K时分辨率为5K,并拟向10000K方向继续发展。同年Cashdollar 在3色高温计基础上推出了6波长高温计,用于测量粉尘爆炸过程中粉尘粒子及气体的温度,使用PbSe探测器,6个工作波长分别为:1.57,2.30,3.84,4.42,4.57,5m

μ。

1986年欧共体及美国联合课题组的Hiernaut等人研制成功了亚毫秒级6波长高温计,用于2000~5000K温区内真温和光谱发射率的同时测量,温度测量精度为0.5%,发射率测量精度为1~5%。

1992年Levendis等人研制成了3色辐射温度计,工作波长分别为0.65,0.8和0.95m

μ,并用于燃烧粒子瞬态响应测量,在数据处理上,采用比色思想,3个比色结果在2500K时相差小于100K。1992年Cezairliyan等人亦报导了亚毫秒级6波长高温计的研制情况,采用光导纤维束分光方法,6个工作波长分别为0.5,0.6,0.65,0.7,0.8和0.9m

μ,在脉冲加热下测量了铌金属试样的亮度温度。