2017-2018海淀初二期末数学试题及答案
- 格式:pdf
- 大小:934.72 KB
- 文档页数:10
2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
2016-2017学年北京市海淀区八年级(上)期末一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.(2017海淀区八上期末T1)(3分)第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.2.(2017海淀区八上期末T2)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3 3.(2017海淀区八上期末T3)石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6B.10×10﹣7C.0.1×10﹣5D.1×106 4.(2017海淀区八上期末T4)在分式中x的取值范围是()A.x>﹣2B.x<﹣2C.x≠0D.x≠﹣2 5.(2017海淀区八上期末T5)下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy6.(2017海淀区八上期末T6)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC 7.(2017海淀区八上期末T7)下列各式中,计算正确的是()A.(15x2y﹣5xy2)÷5xy=3x﹣5yB.98×102=(100﹣2)(100+2)=9996C.D.(3x+1)(x﹣2)=3x2+x﹣28.(2017海淀区八上期末T8)如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,则∠ABE的度数是()A.62B.31C.28D.259.(2017海淀区八上期末T9)在等边三角形ABC中,D,E分别是BC,AC的中点,点P 是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A.△ABC的重心处B.AD的中点处C.A点处D.D点处10.(2017海淀区八上期末T10)定义运算=,若a≠﹣1,b≠﹣1,则下列等式中不正确的是()A.×=1B.+=C.()2=D.=1二.填空题(本大题共24分,每小题3分)11.(2017海淀区八上期末T11)如图△ABC,在图中作出边AB上的高CD.12.(2017海淀区八上期末T12)分解因式:x2y﹣4xy+4y=.13.(2017海淀区八上期末T13)写出点M(﹣2,3)关于x轴对称的点N的坐标.14.(2017海淀区八上期末T14)如果等腰三角形的两边长分别是4、8,那么它的周长是.15.(2017海淀区八上期末T15)计算:﹣4(a2b﹣1)2÷8ab2=.16.(2017海淀区八上期末T16)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A=°.17.(2017海淀区八上期末T17)教材中有如下一段文字:思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?如图中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法.(填“正确”或“不正确”)18.(2017海淀区八上期末T18)如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE.由AB=AC+CD,可得AE=AB.又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC 的数量关系.(1)判定△ABD与△AED全等的依据是;(2)∠ACB与∠ABC的数量关系为:.三.解答题(本大题共18分,第19题4分,第20题4分,第21题10分)19.(2017海淀区八上期末T19)分解因式:(a﹣4b)(a+b)+3ab.20.(2017海淀区八上期末T20)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.21.(2017海淀区八上期末T21)解下列方程:(1)=;(2)﹣1=.四.解答题(本大题共14分,第22题4分,第23、24题各5分)22.(2017海淀区八上期末T22)已知a+b=2,求(+)•的值.23.(2017海淀区八上期末T23)如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.24.(2017海淀区八上期末T24)列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约千米.然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值.五.解答题(本大题共14分,第25、26题各7分)25.(2017海淀区八上期末T25)在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有条对称轴,非正方形的长方形有条对称轴,等边三角形有条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,仿照类似的修改方式,请你在图1﹣4和图1﹣5中,分别修改图1﹣2和图1﹣3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.26.(2017海淀区八上期末T26)钝角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC =β,过点A的直线l交BC边于点D.点E在直线l上,且BC=BE.(1)若AB=AC,点E在AD延长线上.①当α=30°,点D恰好为BC中点时,补全图1,直接写出∠BAE=°,∠BEA=°;②如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);(2)如图3,若AB<AC,∠BEA的度数与(1)中②的结论相同,直接写出∠BAE,α,β满足的数量关系.延长CA到F,使得CF=EA,作BG⊥CF于G,BH⊥AE于H.易证△CFB≌△EAB,推出∠F=∠BAE,BG=BH,推出∠BAF=∠BAE,∵∠F AE=∠ACE+∠AEC=∠ACB+∠BCE+∠AEC=∠BEA+∠AEC+∠BCE=∠BEC+∠BCE,∵BC=BE,∴∠BCE=∠BEC,∴2∠BAE=2∠BEC,∴∠BAE=∠BEC=∠BCE,∵∠ADB=∠CDB,∴∠ABD=∠AEC,∴∠BAE=∠BED+∠AEC=∠ACB+∠ABC=α+β.【解析】(1)①只要证明AE⊥BC,△BCE是等边三角形即可解决问题.②如图2中,延长CA到F,使得BF=BC,则BF=BE=BC,连接BF,作BM⊥AF于M,BN⊥AE 于N.只要证明Rt△BMF≌Rt△BNE,推出∠BEA=∠F,由BF=BC,推出∠F=∠C=α,推出∠BEA=α即可.(2)如图3中,连接EC,由△ADC∽△BDE,推出=,推出=,由∠ADB =∠CDE,推出△ADB∽△CDE,推出∠BAD=∠DCE,∠ABD=∠DEC=β,由BC=BE,推出∠BCE=∠BEC,推出∠BAE=∠BEC=∠BEA+∠DEC=α+β.附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)27.(2017海淀区八上期末T27)一个多边形如果是轴对称图形,那么它的边数与对称轴的条数之间存在联系吗?(1)以凸六边形为例,如果这个凸六边形是轴对称图形,那么它可能有条对称轴;(2)凸五边形可以恰好有两条对称轴吗?如果存在请画出图形,并用虚线标出两条对称轴;否则,请说明理由;(3)通过对(1)中凸六边形的研究,请大胆猜想,一个凸多边形如果是轴对称图形,那么它的边数与对称轴的条数之间的联系是:.【答案】解:(1)凸六边形是轴对称图形,那么它可能有1,2,3或6条对称轴,故答案为:1,2,3或6;(2)不可以.理由如下:根据轴对称图形的定义,若一个凸多边形是轴对称图形,则对称轴与多边形的交点是多边形的顶点或一条边的中点.若多边形的边数是奇数,则对称轴必经过一个顶点和一条边的中点.如图1,设凸五边形ABCDE是轴对称图形,恰好有两条对称轴l1,l2,其中l1经过A和CD的中点.若l2⊥l1,则l2与五边形ABCDE的两个交点关于l1对称,与对称轴必经过一个顶点和一条边的中点矛盾;若l2不垂直于l1,则l2关于l1的对称直线也是五边形ABCDE的对称轴,与恰好有两条对称轴矛盾.所以,凸五边形不可以恰好有两条对称轴.(3)对称轴的条数是多边形边数的约数.【解析】(1)根据凸六边形进行画图,然后猜想即可;(2)根据题意画出图形,再结合轴对称图形的定义进行分析即可;(3)根据(1)中所得的数据可得答案.2016-2017学年北京市海淀区八年级(上)期末一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.(2017海淀区八上期末T1)(3分)第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.【答案】D.【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.2.(2017海淀区八上期末T2)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【答案】C.【解析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.3.(2017海淀区八上期末T3)石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6B.10×10﹣7C.0.1×10﹣5D.1×106【答案】A.【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.4.(2017海淀区八上期末T4)在分式中x的取值范围是()A.x>﹣2B.x<﹣2C.x≠0D.x≠﹣2{答案D.【解析】根据分式有意义的条件可得x+2≠0,再解即可.5.(2017海淀区八上期末T5)下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy【答案】C.【解析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.6.(2017海淀区八上期末T6)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【答案】B.【解析】根据全等三角形的性质可得到AD=AE、AB=AC,则可得到BD=CE,∠B=∠C,则可证明△BDF≌△CEF,可得DF=EF,可求得答案.7.(2017海淀区八上期末T7)下列各式中,计算正确的是()A.(15x2y﹣5xy2)÷5xy=3x﹣5yB.98×102=(100﹣2)(100+2)=9996C.D.(3x+1)(x﹣2)=3x2+x﹣2【答案】B.【解析】根据分式的加减法,整式的除法,多项式乘多项式的运算方法和平方差公式,逐项判断即可.8.(2017海淀区八上期末T8)如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,则∠ABE的度数是()A.62B.31C.28D.25【答案】C.【解析】过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,根据线段中点的定义可得DE=CE,然后求出CE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE平分∠ABC,最后求得∠ABE的度数.9.(2017海淀区八上期末T9)在等边三角形ABC中,D,E分别是BC,AC的中点,点P 是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A.△ABC的重心处B.AD的中点处C.A点处D.D点处【答案】A.【解析】连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.10.(2017海淀区八上期末T10)定义运算=,若a≠﹣1,b≠﹣1,则下列等式中不正确的是()A.×=1B.+=C.()2=D.=1【答案】B.【解析】根据定义:=,一一计算即可判断.二.填空题(本大题共24分,每小题3分)11.(2017海淀区八上期末T11)如图△ABC,在图中作出边AB上的高CD.【答案】解:如图所示,CD即为所求.【解析】过点C作BA的延长线的垂线于点D即可.12.(2017海淀区八上期末T12)分解因式:x2y﹣4xy+4y=.【答案】解:x2y﹣4xy+4y,=y(x2﹣4x+4),=y(x﹣2)2.【解析】先提取公因式y,再对余下的多项式利用完全平方公式继续分解.13.(2017海淀区八上期末T13)写出点M(﹣2,3)关于x轴对称的点N的坐标.【答案】解:∵M(﹣2,3),∴关于x轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)【解析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可以直接写出答案.14.(2017海淀区八上期末T14)如果等腰三角形的两边长分别是4、8,那么它的周长是.【答案】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:20【解析】解决本题要注意分为两种情况4为底或8为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答.15.(2017海淀区八上期末T15)计算:﹣4(a2b﹣1)2÷8ab2=.【答案】解:原式=﹣4a4b﹣2÷8ab2=﹣a3b﹣4=﹣,故答案为:﹣【解析】原式利用幂的乘方与积的乘方运算法则,以及整式的除法法则计算即可得到结果.16.(2017海淀区八上期末T16)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A=°.【答案】解:∵AB=AC,∴∠C=∠ABC,∵AB的垂直平分线MN交AC于D点.∴∠A=∠ABD,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠C=2∠A=∠ABC,设∠A为x,可得:x+x+x+2x=180°,解得:x=36°,故答案为:36【解析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.17.(2017海淀区八上期末T17)教材中有如下一段文字:思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?如图中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法.(填“正确”或“不正确”)【答案】解:小明的说法正确.理由:如图,△ABC和△DEF中,AB>AC,ED>DF,AB=DE,AC=DF,∠ACB=∠DFE,作AG⊥BC于G,DH⊥EF于H.∵∠ACB=∠DFE,∴∠ACG=∠DFH,在△ACG和△DFH中,,∴△ACG≌△DFH,∴AG=DH,在Rt△ABG和Rt△DEH中,,∴△ABG≌△DEH,∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF.(当△ABC和△DEF是锐角三角形时,证明方法类似).故答案为正确.【解析】小明的说法正确.如图,△ABC和△DEF中,AB>AC,ED>DF,AB=DE,AC=DF,∠ACB=∠DFE,作AG⊥BC于G,DH⊥EF于H.首先证明△ACG≌△DFH,推出AG=DH,再证明△ABG≌△DEH,推出∠B=∠E,由此即可证明△ABC≌△DEF.18.(2017海淀区八上期末T18)如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE.由AB=AC+CD,可得AE=AB.又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC 的数量关系.(1)判定△ABD与△AED全等的依据是;(2)∠ACB与∠ABC的数量关系为:.【答案】解:(1)SAS;(2)∵△ABD≌△AED,∴∠B=∠E,∵CD=CE,∴∠CDE=∠E,∴∠ACB=2∠E,∴∠ACB=2∠ABC.故答案为:SAS,∠ACB=2∠ABC.【解析】(1)根据已知条件即可得到结论;(2)根据全等三角形的性质和等腰三角形的性质即可得到结论.三.解答题(本大题共18分,第19题4分,第20题4分,第21题10分)19.(2017海淀区八上期末T19)分解因式:(a﹣4b)(a+b)+3ab.【答案】解:原式=a2﹣3ab﹣4b2+3ab=a2﹣4b2=(a﹣2b)(a+2b).【解析】原式整理后,利用平方差公式分解即可.20.(2017海淀区八上期末T20)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【答案】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.【解析】欲证明DE=CB,只要证明△ADE≌△ACB即可.21.(2017海淀区八上期末T21)解下列方程:(1)=;(2)﹣1=.【答案】解:(1)去分母得:5x+2=3x,解得:x=﹣1,经检验x=﹣1是增根,原方程无解;(2)去分母得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,解得:x=,经检验x=是分式方程的解.【解析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.四.解答题(本大题共14分,第22题4分,第23、24题各5分)22.(2017海淀区八上期末T22)已知a+b=2,求(+)•的值.【答案】解:===,当a+b=2时,原式=.【解析】先化简题目中的式子,然后将a+b的值代入化简后的式子即可解答本题.23.(2017海淀区八上期末T23)如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.【答案】解:在等边三角形ABC中,∠A=∠B=60°.∴∠AFD+∠ADF=120°.∵△DEF为等边三角形,∴∠FDE=60°,DF=ED.∵∠BDE+∠EDF+∠ADF=180°,∴∠BDE+∠ADF=120°.∴∠BDE=∠AFD.在△ADF和△BED中,,∴△ADF≌△BED.∴AD=BE,同理可证:BE=CF.∴AD=BE=CF.【解析】只要证明△ADF≌△BED,得AD=BE,同理可证:BE=CF,由此即可证明.24.(2017海淀区八上期末T24)列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约千米.然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值.【答案】解:这段路长约60×=3千米;由题意可得:.解方程得:a=15.经检验:a=15满足题意.答:a的值是15.故答案为:3.【解析】根据题意列出分式方程进行解答即可.五.解答题(本大题共14分,第25、26题各7分)25.(2017海淀区八上期末T25)在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有条对称轴,非正方形的长方形有条对称轴,等边三角形有条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,仿照类似的修改方式,请你在图1﹣4和图1﹣5中,分别修改图1﹣2和图1﹣3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.【答案】解:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴,故答案为:1,2,3;(2)恰好有1条对称轴的凸五边形如图中所示.(3)恰好有2条对称轴的凸六边形如图所示.(4)恰好有3条对称轴的凸六边形如图所示.【解析】(1)根据等腰三角形的性质、矩形的性质以及等边三角形的性质进行判断即可;(2)中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,在图1﹣4和图1﹣5中,分别仿照类似的修改方式进行画图即可;(3)长方形具有两条对称轴,在长方形的右侧补出与左侧一样的图形,即可构造出一个恰好有2条对称轴的凸六边形;(4)在等边三角形的基础上加以修改,即可得到恰好有3条对称轴的凸六边形.26.(2017海淀区八上期末T26)钝角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC =β,过点A的直线l交BC边于点D.点E在直线l上,且BC=BE.(1)若AB=AC,点E在AD延长线上.①当α=30°,点D恰好为BC中点时,补全图1,直接写出∠BAE=°,∠BEA=°;②如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);(2)如图3,若AB<AC,∠BEA的度数与(1)中②的结论相同,直接写出∠BAE,α,β满足的数量关系.【答案】解:(1)①补全图1,如图所示.∵AB=AC,BD=DC,∴AE⊥BC,∴EB=EC,∠ADB=90°,∵∠ABC=30°,∴∠BAE=60°∵BC=BE,∴△BCE是等边三角形,∠DEB=∠DEC,∴∠BEC=60°,∠BEA=30°故答案为60,30.②如图2中,延长CA到F,使得BF=BC,则BF=BE=BC,连接BF,作BM⊥AF于M,BN⊥AE于N.∵AB=AC,∴∠ABC=∠C=α,∴∠MAB=2α,∵∠BAN=2α,∴∠BAM=∠BAN,∴BM=BN,在Rt△BMF和Rt△BNE中,,∴Rt△BMF≌Rt△BNE.∴∠BEA=∠F,∵BF=BC,∴∠F=∠C=α,∴∠BEA=α.(2)结论:∠BAE=α+β或∠BAE+α+β=180°.理由如下,如图3中,连接EC,∵∠ACD=∠BED=α,∠ADC=∠BDE,∴△ADC∽△BDE,∴=,∴=,∵∠ADB=∠CDE,∴△ADB∽△CDE,∴∠BAD=∠DCE,∠ABD=∠DEC=β,∵BC=BE,∴∠BCE=∠BEC,∴∠BAE=∠BEC=∠BEA+∠DEC=α+β.当点E、C重合时,∠BAE+α+β=180°.∴∠BAE=α+β或∠BAE+α+β=180°.(不用相似,可以构造全等三角形解决问题:方法如下:)延长CA到F,使得CF=EA,作BG⊥CF于G,BH⊥AE于H.易证△CFB≌△EAB,推出∠F=∠BAE,BG=BH,推出∠BAF=∠BAE,∵∠F AE=∠ACE+∠AEC=∠ACB+∠BCE+∠AEC=∠BEA+∠AEC+∠BCE=∠BEC+∠BCE,∵BC=BE,∴∠BCE=∠BEC,∴2∠BAE=2∠BEC,∴∠BAE=∠BEC=∠BCE,∵∠ADB=∠CDB,∴∠ABD=∠AEC,∴∠BAE=∠BED+∠AEC=∠ACB+∠ABC=α+β.【解析】(1)①只要证明AE⊥BC,△BCE是等边三角形即可解决问题.②如图2中,延长CA到F,使得BF=BC,则BF=BE=BC,连接BF,作BM⊥AF于M,BN⊥AE 于N.只要证明Rt△BMF≌Rt△BNE,推出∠BEA=∠F,由BF=BC,推出∠F=∠C=α,推出∠BEA=α即可.(2)如图3中,连接EC,由△ADC∽△BDE,推出=,推出=,由∠ADB =∠CDE,推出△ADB∽△CDE,推出∠BAD=∠DCE,∠ABD=∠DEC=β,由BC=BE,推出∠BCE=∠BEC,推出∠BAE=∠BEC=∠BEA+∠DEC=α+β.附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)27.(2017海淀区八上期末T27)一个多边形如果是轴对称图形,那么它的边数与对称轴的条数之间存在联系吗?(1)以凸六边形为例,如果这个凸六边形是轴对称图形,那么它可能有条对称轴;(2)凸五边形可以恰好有两条对称轴吗?如果存在请画出图形,并用虚线标出两条对称轴;否则,请说明理由;(3)通过对(1)中凸六边形的研究,请大胆猜想,一个凸多边形如果是轴对称图形,那么它的边数与对称轴的条数之间的联系是:.【答案】解:(1)凸六边形是轴对称图形,那么它可能有1,2,3或6条对称轴,故答案为:1,2,3或6;(2)不可以.理由如下:根据轴对称图形的定义,若一个凸多边形是轴对称图形,则对称轴与多边形的交点是多边形的顶点或一条边的中点.若多边形的边数是奇数,则对称轴必经过一个顶点和一条边的中点.如图1,设凸五边形ABCDE是轴对称图形,恰好有两条对称轴l1,l2,其中l1经过A和CD的中点.若l2⊥l1,则l2与五边形ABCDE的两个交点关于l1对称,与对称轴必经过一个顶点和一条边的中点矛盾;若l2不垂直于l1,则l2关于l1的对称直线也是五边形ABCDE的对称轴,与恰好有两条对称轴矛盾.所以,凸五边形不可以恰好有两条对称轴.(3)对称轴的条数是多边形边数的约数.【解析】(1)根据凸六边形进行画图,然后猜想即可;(2)根据题意画出图形,再结合轴对称图形的定义进行分析即可;(3)根据(1)中所得的数据可得答案.。
2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
海淀区八年级第一学期期末练习数学一、选择题(本大题共30分,每小题3分)1. 低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A. B. C. D.【答案】A【解析】A是轴对称图形,故符合题意;B不是轴对称图形,故不符合题意;C不是轴对称图形,故不符合题意;D不是轴对称图形,故不符合题意,故选A.2. 下列计算正确的是()A. B. C. D.【答案】B【解析】A. 不是同类项,不能合并,故错误;B. ,正确;C. ,故错误;D.,故错误,故选B.3. 叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A. B. C. D.【答案】C..... ......................0.00005=,故选C.4. 若分式的值等于0,则的值为()A. B. 1 C. D. 2【答案】A【解析】由题意得:a+1=0且a≠0,解得:a=-1,故选A.5. 如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C为对应顶点,D,E为对应顶点,下列结论不.一定成立的是()A. AC=CDB. BE=CDC. ∠ADE=∠AEDD. ∠BAE=∠CAD【答案】A【解析】∵△ABD≌△ACE,∴∠ADB=∠AEC,∠BAD=∠CAE,BD=CD,∴180°-∠ADB=180°-∠AEC,∠BAD+∠DAE=∠CAE+∠DAE,BD+DE=CE+DE,即∠ADE=∠AED,∠BAE=∠CAD,BE=CD,故B、C、D选项成立,故不符合题意;无法证明AC=CD,故A符合题意,故选A.6. 等腰三角形的一个角是70°,它的底角的大小为()A. 70°B. 40°C. 70°或40°D. 70°或55°【答案】D【解析】若70°为顶角,则此等腰三角形的底角是(180°-70°)÷2=55°;若70°为底角,则此等腰三角形的底角为70°,综上,此等腰三角形的底角为70°或55°,故选D.7. 已知可以写成一个完全平方式,则可为()A. 4B. 8C. 16D.【答案】C【解析】∵可以写成一个完全平方式,∴x2-8x+a=(x-4)2,又(x-4)2=x2-8x+16,∴a=16,故选C.8. 在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点.分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点.若点P的坐标为(a,b),则()A. B. C. D.【答案】D【解析】根据题意可知OP是第二象限坐标轴夹角的平分线,所以a=-b,故选D.9. 若,则的值为()A. 3B. 6C. 9D. 12【答案】C【解析】∵a+b=3,∴a2-b2+6b=(a+b)(a-b)+6b=3(a-b)+6b=3a-3b+6b=3a+3b=3(a+b)=9,故选C.10. 某小区有一块边长为a的正方形场地,规划修建两条宽为b的绿化带.方案一如图甲所示,绿化带面积为;方案二如图乙所示,绿化带面积为.设,下列选项中正确的是()甲乙A. B. C. D.【答案】B【解析】∵S甲=ab+ab-b2=2ab-b2,S乙=ab+ab=2ab,∴=,∵a>b>0,∴,即,故选B.【点睛】本题考查了列代数式表示面积,能正确地识图,准确地表示出所求面积是解题的关键.二、填空题(本大题共24分,每小题3分)11. 如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C为__________.【答案】230°【解析】∵∠A+∠B+∠C+∠D=(4-2)×180°=360°,∠A=90°,∠D=40°,∴∠B+∠C=360°-90°-40°=230°,故答案为:230°.【点睛】本题考查了四边形的内角和,熟记四边形的内角和是360度是解题的关键.12. 点M 关于y轴的对称点的坐标为__________.【答案】(-3,-1)【解析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,点M (3,-1)关于y轴的对称点的坐标为(-3,-1),故答案为:(-3,-1).13. 已知分式满足条件“只含有字母x,且当x=1时无意义”,请写出一个这样的分式:_____.【答案】【解析】由分式满足条件“只含有字母x,且当x=1时无意义”,可知分式的分母中含有因式x-1,所以这样的分式可以是(答案不唯一),故答案为:.14. 已知△ABC中,AB=2,∠C=40°,请你添加一个适当的条件,使△ABC的形状和大小都是确定的.你添加的条件是________________.【答案】∠A=60°(答案不唯一)【解析】已知一边和这条边的对角,要想确定唯一的三角形,可以再添加一个角,根据AAS或ASA即可唯一确定三角形,如添加:∠A=60°,故答案为:答案不唯一,如:∠A=60°.15. 某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点O 处拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,由此得出房梁是水平的(即挂铅锤的线绳与房梁垂直).用到的数学原理是_______________.【答案】“等腰三角形三线合一”或“到线段两端距离相等的点在这条线段的垂直平分线上和两点确定一条直线”【解析】∵△ABC是个等腰三角形,∴AC=BC,∵点O是AB的中点,∴AO=BO,∴OC⊥AB,故答案为:“等腰三角形三线合一”或“到线段两端距离相等的点在这条线段的垂直平分线上和两点确定一条直线”.16. 如图,在平面直角坐标系xOy中,△DEF可以看作是△ABC经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC得到△DEF的过程:____________.【答案】答案不唯一,如:将△ABC关于y轴对称,再将三角形向上平移3个单位长度【解析】将△ABC关于y轴对称,再将三角形向上平移3个单位长度得到△DEF;或:将△ABC向上平移3个单位长度,再关于y轴对称得到△DEF,故答案为:答案不唯一,如:将△ABC关于y轴对称,再将三角形向上平移3个单位长度得到△DEF.17. 如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于O点,过点O作BC的平行线交AB 于M点,交AC于N点,则△AMN的周长为__________.【答案】10【解析】∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵MN//BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠ABO=∠MOB,∠ACO=∠NOC,∴MO=MB,ON=NC,∴AM+MN+AN=AM+MO+NO+AN=AB+AC=4+6=10,故答案为:10.18. 已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为______°.【答案】72【解析】由题意得:∠ABC=2∠CBD,2∠BDC+∠ADE=180°,∵AB=AC,∴∠ABC=∠C,∵∠ADE=∠A,∠A+∠ABC+∠C=180°,∴∠BDC=∠C=∠ABC,∵∠CBD+∠C+∠BDC=180°,∴∠CBD=∠A,∴∠ABC=∠C=2∠A,又∠A+∠ABC+∠C=180°,∴∠A=36°,∴∠ABC=72°,故答案为:72.【点睛】本题考查了等腰三角形的性质,三角形内角和定理、折叠的性质等,正确的读图是解题的关键.三、解答题(本大题共17分,第19题8分,第20题4分,第21题5分)19. 计算:(1);(2).【答案】(1)(2)3x-2y【解析】试题分析:(1)先分别计算绝对值、算术平方根、负指数幂、0次幂,然后再按运算顺序进行计算即可;(2)先将被除式因式分解,再将除式利用除法法则进行颠倒,然后再相乘即可.试题解析:(1)原式==;(2)原式===.20. 如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE = CF.【答案】证明见解析【解析】试题分析:由AC=BD,AE∥DF可得AB=DC,∠A=∠D,再根据∠1=∠2利用ASA证明△ABE≌△DCF 即可得.试题解析:∵AC=AB+BC,BD=BC+CD,AC=BD,∴AB=DC,∵AE∥DF,∴∠A=∠D,在△ABE和△DCF中,,∴△ABE≌△DCF,∴BE=CF.21. 解方程:.【答案】x=【解析】试题分析:方程两边乘x(x-2)化为整式方程,解整式方程后进行检验即可得.试题解析:方程两边乘,得,解得,检验:当时,,∴原分式方程的解为.四、解答题(本大题共15分,每小题5分)22. 先化简,再求值:,其中.【答案】15【解析】试题分析:括号内先通分进行加减运算,然后再进行除法运算,最后代入数值进行计算即可.试题解析:原式====,当时,原式=15.23. 如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.【答案】30°【解析】试题分析:连接DE,由A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B可证明得到△CDE 为等边三角形,再利用直角三角形两锐角互余即可得.试题解析:连接DE,∵A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B,∴CD=CE=DE,∴△CDE为等边三角形,∴∠C=60°,∴∠AEC=90°∠C=30°.24. 列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.【答案】每套《水浒传》连环画的价格为120元【解析】试题分析:设每套《水浒传》连环画的价格为x元,则每套《三国演义》连环画的价格为(x+60)元,根据等量关系“用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍”列方程进行求解即可得.试题解析:设每套《水浒传》连环画的价格为元,则每套《三国演义》连环画的价格为元,由题意,得,解得,经检验,是原方程的解,且符合题意,答:每套《水浒传》连环画的价格为120元.【点睛】本题考查了分式方程的应用,找到题中的等量关系是解题的关键,注意解完方程后要进行检验.五、解答题(本大题共14分,第25、26题各7分)25. 阅读材料小明遇到这样一个问题:求计算所得多项式的一次项系数.小明想通过计算所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找所得多项式中的一次项系数.通过观察发现:也就是说,只需用中的一次项系数1乘以中的常数项3,再用中的常数项2乘以中的一次项系数2,两个积相加,即可得到一次项系数.延续上面的方法,求计算所得多项式的一次项系数.可以先用的一次项系数1,的常数项3,的常数项4,相乘得到12;再用的一次项系数2,的常数项2,的常数项4,相乘得到16;然后用的一次项系数3,的常数项2,的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算所得多项式的一次项系数为.(2)计算所得多项式的一次项系数为.(3)若计算所得多项式的一次项系数为0,则=_________.(4)若是的一个因式,则的值为.【答案】(1)7(2)-7(3)-3(4)-15【解析】试题分析:(1)用2x+1中的一次项系数2乘以3x+2中的常数项2得4,用2x+1中的常数项1乘以3x+2中的一次项系数3得3,4+3=7即为积中一次项的系数;(2)用x+1中的一次项系数1,3x+2中的常数项2,4x-3中的常数项-3相乘得-6,用x+1中的常数项1,3x+2中的一次项系数3,4x-3中的常数项-3相乘得-9,用x+1中的常数项1,3x+2中的常数项2,4x-3中的一次项系数4相乘得8,-6-9+8=-7即为积中一次项系数;(3)用每一个因式中的一次项系数与另两个因式中的常数项相乘,再把所得的积相加,列方程、解方程即可得;(4)设可以分成()(x2+kx+2),根据小明的算法则有k-3=0,a=-3k+2+1,b=-3×2+k,解方程即可得.试题解析:(1)2×2+1×3=7,故答案为:7;(2)1×2×(-3)+3×1×(-3)+4×1×2=-7,故答案为:-7;(3)由题意得:1×a×(-1)+(-3)×1×(-1)+2×1×a=0,解得:a=-3,故答案为:-3;(4)设可以分成()(x2+kx+2),则有k-3=0,a=-3k+2+1,b=-3×2+k,解得:k=3,a=-6,b=-3,所以2a+b=-15,故答案为:-15.b=3-6=-326. 如图,CN是等边△的外角内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(1)依题意补全图形;(2)若,求的大小(用含的式子表示);(3)用等式表示线段,与之间的数量关系,并证明.【答案】(1)图形见解析(2)∠BDC=60°-α(3)PB=PC+2PE【解析】试题分析:(1)按题意补全图形即可;(2)由点A与点D关于CN对称可得CA=CD,再由∠ACN=α得到∠ACD=2α,由等边△ABC可推得∠BCD=∠ACB+∠ACD=60°+2α,从而可得;(3)PB=PC+2PE.在PB上截取PF使PF=PC,连接CF,通过推导可证明△BFC≌△DPC,再利用全等三角形的对应边相等即可得.试题解析:(1)如图所示;(2)∵点A与点D关于CN对称,∴CN是AD的垂直平分线,∴CA=CD,∵,∴∠ACD=2,∵等边△ABC,∴CA=CB=CD,∠ACB=60°,∴∠BCD=∠ACB+∠ACD=60°+,∴∠BDC=∠DBC=(180°∠BCD)=60°;(3)结论:PB=PC+2PE.本题证法不唯一,如:在PB上截取PF使PF=PC,连接CF.∵CA=CD,∠ACD=∴∠CDA=∠CAD=90°.∵∠BDC=60°,∴∠PDE=∠CDA∠BDC=30°∴PD=2PE.∵∠CPF=∠DPE=90°∠PDE=60°.∴△CPF是等边三角形.∴∠CPF=∠CFP=60°.∴∠BFC=∠DPC=120°.∴在△BFC和△DPC中,,∴△BFC≌△DPC.∴BF=PD=2PE.∴PB= PF+BF=PC+2PE.附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)27. 对于0,1以及真分数p,q,r,若p<q<r,我们称q为p和r的中间分数.为了帮助我们找中间分数,制作了下表:两个不等的正分数有无数多个中间分数.例如:上表中第③行中的3个分数、、,有,所以为和的一个中间分数,在表中还可以找到和的中间分数,,,.把这个表一直写下去,可以找到和更多的中间分数.(1)按上表的排列规律,完成下面的填空:①上表中括号内应填的数为;②如果把上面的表一直写下去,那么表中第一个出现的和的中间分数是;(2)写出分数和(a、b、c、d均为正整数,,)的一个..中间分数(用含a、b、c、d的式子表示),并证明;(3)若与(m、n、s、t均为正整数)都是和的中间分数,则的最小值为.【答案】(1)①;②(2)证明见解析(3)1504【解析】试题分析:(1)①观察每一行的规律可得括号位于第⑦行,按表格中的规律可知是;②观察表格可知第一个出现的和的中间分数在第⑧行,是;(2)答案不唯一,根据表格中观察到的,可以为,通过推导证明即可得;(3)根据排列可知和的中间分数有,,,等,由此可得.试题解析:(1)①观察每一行的规律可得括号位于第⑦行,按分子的排序可知是,②观察表格可知第一个出现的和的中间分数在第⑧行,是,故答案为:①;②.(2)本题结论不唯一,证法不唯一,如:结论:.∵a、b、c、d均为正整数,,,∴,.∴.(3)根据排列可知和的中间分数有,,,等,由此可得mn的最小值为1504,故答案为:1504.【点睛】本题考查了规律性问题,第(1)问题相对来说比较容易,后面两问需要通过分析发现其中存在的关系,然后用来解题,比较抽象,需要有一定的想象力.。
每日一学:北京市北京市海淀区北京2017-2018学年八年级上学期数学期末考试试卷_压轴题解答答案北京市北京市海淀区北京2017-2018学年八年级上学期数学期末考试试卷_压轴题~~ 第1题 ~~(2018海淀.八上期末) 对于0,1以及真分数p ,q ,r ,若p<q<r ,我们称q为p 和r 的中间分数.为了帮助我们找中间分数,制作了下表:两个不等的正分数有无数多个中间分数.例如:上表中第③行中的3个分数 、、 ,有,所以为和的一个中间分数,在表中还可以找到和 的中间分数,,, .把这个表一直写下去,可以找到和 更多的中间分数.(1) 按上表的排列规律,完成下面的填空:①上表中括号内应填的数为;②如果把上面的表一直写下去,那么表中第一个出现的和的中间分数是;(2) 写出分数 和(a 、b、c 、d 均为正整数,, )的一个中间分数(用含a 、b 、c 、d 的式子表示),并证明;(3) 若 与(m 、n 、s 、 t 均为正整数)都是和 的中间分数,则 的最小值为.考点: 探索数与式的规律;~~ 第2题 ~~(2018海淀.八上期末) 已知一张三角形纸片ABC (如图甲),其中AB=AC .将纸片沿过点B 的直线折叠,使点C 落到A B 边上的E 点处,折痕为BD (如图乙).再将纸片沿过点E 的直线折叠,点A 恰好与点D 重合,折痕为EF (如图丙).原三角形纸片ABC 中,∠ABC 的大小为________°.~~ 第3题 ~~(2018海淀.八上期末)某小区有一块边长为a的正方形场地,规划修建两条宽为b 的绿化带.方案一如图甲所示,绿化带面积为 ;方案二如图乙所示,绿化带面积为 .设 ,下列选项中正确的是( )甲乙A .B .C .D .北京市北京市海淀区北京2017-2018学年八年级上学期数学期末考试试卷_压轴题解答~~ 第1题 ~~答案:解析:~~ 第2题 ~~答案:解析:~~ 第3题 ~~答案:B解析:。
2017北京海淀区初二(下)期末数 学 2017.7(分数:100分 时间:90分钟)学校 班级 姓名 成绩一、选择题:(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个....是正确的. 1.下列各式中,运算正确的是A .2(2)2-=-B .2810+=C .284⨯=D .222-=2.如图,在△ABC 中,3AB =,6BC =,4AC =,点D ,E 分别是边AB ,CB 的中点,那么DE 的长为 A .1.5 B .2 C .3 D .43.要得到函数23y x =+的图象,只需将函数2y x =的图象 A .向左平移3个单位 B .向右平移3个单位 C .向上平移3个单位 D .向下平移3个单位4.在Rt △ABC 中, D 为斜边AB 的中点,且3BC =,4AC =,则线段CD 的长是 A .2 B .3 C .52D . 5 5.已知一次函数(1)y k x =-. 若y 随x 的增大而增大,则k 的取值范围是 A .1k < B .1k > C .0k < D .0k > 6.如图,在△ABC 中, 5AB =,6BC =,BC 边上的中线4AD =,那么AC 的长是A .5B .6C .34D .2137.如图,在点,,,M N P Q 中,一次函数2(0)y kx k =+<的图象不可能经过的点是 A .M B .N C .P D .Q8.如图是某一天北京与上海的气温T (单位:C ︒)随时间t (单位:时)变化的图象.根据图中信息,下列说法错.误.的是 A .12时北京与上海的气温相同B .从8时到11时,北京比上海的气温高C .从4时到14时,北京、上海两地的气温逐渐升高D .这一天中上海气温达到4C ︒的时间大约在上午10时ABCDE-2-222Q PNMO y xD CBA9.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A -,(2,)B b ,则正方形ABCD 的面积是A .13B .20C .25D .3410.已知两个一次函数1y ,2y 的图象相互平行,它们的部分自变量与相应的函数值如下表:xm0 21y 4 3t2y6n-1则m 的值是A .13- B .3- C .12D .5 二、填空题:(本题共18分,每小题3分)11.2x + 在实数范围内有意义,那么x 的取值范围是 .12.已知22(1)0x y -++=,那么xy 的值是 .13.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,3AB =,2AC =,则BD 的长为 .14. 如图,,,,E F M N 分别是边长为4的正方形ABCD 四条边上的点,且AE BF CM DN ===. 那么四边形EFMN 的面积的最小值是 .15.第24届冬季奥林匹克运动会,将于2022年2月在北京市和张家口市联合举行.某校寒假期间组织部分滑雪爱好者参加冬令营集训.训练期间,冬令营的同学们都参加了“单板滑雪”这个项目40次的训练测试,每次测试成绩分别为5分,4分,3分,2分,1分五档. 甲乙两位同学在这个项目的测试成绩统计结果如图所示.DCBADCBA Oy xNMFEDCBA根据上图判断,甲同学测试成绩的众数是 ;乙同学测试成绩的中位数是 ;甲乙两位同学中单板滑雪成绩更稳定的是 .16.已知一次函数y kx b =+的图象过点(1,0)-和点(0,2). 若()0x kx b +<,则x 的取值范围是 . 三、解答题:(本题共22分,第17—19题每小题4分,第20—21题每小题5分) 17.计算:31262+⨯.18.如图,在ABCD Y 中,点E ,F 分别在边AD ,BC 上,AE CF =,求证:BE DF =.19.已知51x =+,求22x x -的值.20.在平面直角坐标系xOy 中,已知点(0,3)A 、点(3,0)B ,一次函数2y x =的图象与直线AB 交于点M . (1)求直线AB 的函数解析式及M 点的坐标;(2)若点N 是x 轴上一点,且△MNB 的面积为6,求点N 的坐标.-5-4-3-2-1-1-2-3-4-51234554321O y xABCDEF21.如图,在△ABC 中,点D ,E ,F 分别是边AB ,AC , BC 的中点,且2BC AF =. (1)求证:四边形ADFE 为矩形;(2)若30C ∠=︒,2AF =,写出矩形ADFE 的周长.四、解答题:(本题共14分,第22题8分,第23题6分) 22.阅读下列材料:2016年人均阅读16本书!2017年4月23日“世界读书日”之前,国际网络电商亚马逊发布了“亚马逊中国2017全民阅读报告”.报告显示,大部分读者已养成一定的阅读习惯,阅读总量在10本以上的占56%,而去年阅读总量在10本以上的占48%.京东图书也发布了2016年度图书阅读报告.根据京东图书文娱业务部数据统计,2016年销售纸书人均16册,总量叠在一起相当于15000个帝国大厦的高.(1)在亚马逊这项调查中,以每年有效问卷1.4万份来计,2017年阅读量十本以上的人数比去年增加了 人; (2)小雨作为学校的图书管理员,根据初二年级每位同学本学期的借书记录,对各个班借阅的情况作出了统计,并绘制统计图表如下:初二年级各班图书借阅情况统计表 班级 1 2 3 4 人数 35 35 3436借阅总数(本) 182165 143中位数5655① 全年级140名同学中有科技社团成员40名,他们人均阅读科普类书籍1.5本,年级其他同学人均阅读科普类书籍1.08本,请你计算全年级人均阅读科普类书籍的数量,再通过计算补全统计表;② 在①的条件下,若要推荐初二某个班级为本学期阅读先进集体,你会推荐哪个班,请写出你的理由. 23.在四边形中,一条边上的两个角称为邻角. 一条边上的邻角相等,且这条边的对边上的邻角也相等,这样的四边形叫做IT 形. 请你根据研究平行四边形及特殊四边形的方法,写出IT 形的性质,把你的发现都写出来.初二年级图书借阅分类统计扇形图FED CBA五、解答题:(本题共16分,第24题8分,第25题8分)24.如图,四边形ABCD 是正方形,E 是CD 垂直平分线上的点,点E 关于BD 的对称点是'E ,直线DE 与直线'BE 交于点F .(1)若点E 是CD 边的中点,连接AF ,则FAD ∠= ︒; (2)小明从老师那里了解到,只要点E 不在正方形的中心,则直线AF 与AD 所夹锐角不变.他尝试改变点E的位置,计算相应角度,验证老师的说法.①如图,将点E 选在正方形内,且△EAB 为等边三角形,求出直线AF 与AD 所夹锐角的度数;②请你继续研究这个问题,可以延续小明的想法,也可用其它方法.我选择 小明的想法;(填“用”或“不用”)并简述求直线AF 与AD 所夹锐角度数的思路.我想沿用小明的想法,把点E 选在CD 垂直平分线上的另一个特殊位置,我选择的位置是……我没有沿用小明的想法,我的想法是…… FA BCD EE'FA BC D EE'A B CD25.对于正数x ,用符号[]x 表示x 的整数部分,例如:[0.1]0=,[2.5]2=,[3]3=.点(,)A a b 在第一象限内,以A为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直. 其中垂直于y 轴的边长为a ,垂直于x 轴的边长为[]1b +,那么,把这个矩形覆盖的区域叫做点A 的矩形域.例如:点3(3,)2的矩形域是一个以3(3,)2为对角线交点,长为3,宽为2的矩形所覆盖的区域,如图1所示,它的面积是6.-1-132154321O y x7654-1-132154321O yx图1 图2根据上面的定义,回答下列问题:(1)在图2所示的坐标系中画出点7(2,)2的矩形域,该矩形域的面积是 ;(2)点77(2,),(,)(0)22P Q a a >的矩形域重叠部分面积为1,求a 的值;(3)已知点(,)(0)B m n m >在直线1y x =+上, 且点B 的矩形域的面积S 满足45S <<,那么m 的取值范围是 .(直接写出结果)数学试题答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案CBCCBADDDA二、填空题(本题共18分,每小题3分)11.2x ≥- 12.1 13.42 14.8 15.3;3;乙同学 16.10x -<< 说明:第15题每空1分,共3分.三、解答题(本题共22分,第17—19题每小题4分,第20—21题每小题5分)17.解:原式=2333+ ------------------------------3分=53 ------------------------------4分18.证明:∵四边形ABCD 是平行四边形, ∴AD BC∥,AD BC=.------------------------------1分 ∵AE CF =, ∴DE BF =.------------------------------2分∴四边形EBFD 是平行四边形. ------------------------------3分 ∴BE DF =. ------------------------------4分 证法二:∵四边形ABCD 是平行四边形, ∴AB DC=,A C∠=∠.------------------------------1分 ∵AE CF=.------------------------------2分 ∴BAE DCF≅V V .------------------------------3分∴BE DF =. ------------------------------4分 19.解法一:∵51x =+, ∴15x -=.∴2222211(1)1x x x x x -=-+-=-- ------------------------------2分ABCDEFA BCDEF2(5)1=-4=. ------------------------------4分解法二:∵51x =+,∴22(2)(51)(512)x x x x -=-=++- ------------------------------2分2(5)1=-4=. ------------------------------4分注:结论错,有对根式计算正确的部分给1分。
北京海淀区2018八年级第二学期期末检测数学试卷一、选择题(本大题共8小题,共24.0分)1.下列电视台的台标,是中心对称图形的是A. B.C. D.2.下列调查适合用普查的是A. 了解某市学生的视力情况B. 了解某市中学生课外阅读的情况C. 了解某市百岁以上老人的健康情况D. 了解50发炮弹的杀伤半径3.矩形具有而平行四边形不一定具有的性质是A. 对角线互相平分B. 两组对角相等C. 对角线相等D. 两组对边相等4.在数轴上离最近的整数为A. B. C. 0 D. 15.对于函数,下列说法错误的是A. 它的图像分布在第一、三象限B. 它的图像与直线y x无交点C. 当x时,y的值随x的增大而增大D. 当x时,y的值随x的增大而减小6.若,则A. bB. bC. bD. b7.关于x的分式方程的解是负数,则m的取值范围是A. B. 且C. D. 且8.如图,在矩形ABCD中,BC, BAC若点M、N分别是线段AC、AB上的两个动点,则BM MN的最小值为A. 10B. 5C.D.二、填空题(本大题共10小题,共30.0分)9.如果根式有意义,则x的取值范围是.由此可以估计油菜籽发芽的概率约为精确到11.若分式的值为零,则x.12.若a、b为实数满足,则a b的值为.13.已知,则的值是______ .14.如图,在平面直角坐标系中,点A在函数,的图象上,过点A作轴交x轴于点B,点C在y轴上,连结AC、若的面积是3,则______ .15.如图,在矩形ABCD中,E为BC中点,作AEC的角平分线交AD于F点若AB,AD,则FD的长为.16.如图,在ABC中,AC,BC,F是中位线DE所在直线上一动点,当AFC时,DF的长度为.17.18.如图,点C为x的图像上一点,过点C分别作x轴、y轴的平行线交反比例函数的图像于点B、A,若S,则k的值为.19.20.如图,正方形ABCD的边长为5,AE CF,BE DF,连接EF,则线段EF的长为.三、计算题(本大题共2小题,共12.0分)21.计算:;.22.先化简,再求值:,其中.四、解答题(本大题共8小题,共64.0分)23.某学校开展课外球类特色的体育活动,决定开设A:羽毛球、B:篮球、C:乒乓球、D:足球四种球类项目为了解学生最喜欢哪一种活动项目每人只选取一种,随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.本次调查的样本容量是;项目A在扇形统计图中对应的圆心角度数是;请把条形统计图补充完整;若该校有学生1500人,请根据样本估计全校最喜欢足球的学生人数约是多少?24.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元,求这两次各购进这种衬衫多少件?25.如图,将▱ABCD的边DC延长到点E,使,连接AE,交BC于点F.求证: ≌ ;若,连接AC、求证:四边形ABEC是矩形.26.如图所示,在平面直角坐标系中,一次函数的图像与反比例函数的图像交于A,,B,m两点.试确定上述反比例函数和一次函数的表达式;求AOB的面积;观察图像,写出不等式的解集.27.如图所示,已知ABC的三个顶点的坐标分别为A,,B,,C,.请直接写出点A关于点O对称的点的坐标;画出ABC绕点O逆时针旋转后的图形A'B'C',并写出点A的对应点A'的坐标;请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.28.如图,在菱形ABCD中,BAD, MAN,将MAN绕点A任意旋转,交边BC、CD分别于点E、F不与菱形的顶点重合,设菱形ABCD的边长为a a 为常数.判断AEF的形状,并说明理由;在运动过程中,四边形AECF的面积是否变化?如果不变,求出其面积的值;如果变化,求出最大或最小值结果用含a的代数式表示.29.对于平面直角坐标系中的任意两点P x,y、P x,y,我们把称为P、P两点间的对角积,记作S P,P,即S P,P已知O为坐标原点,若点P坐标为,,则S O,P;已知点A,,动点P x,y满足S A,P,请写出y与x之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;已知点M为,,Q为反比例函数x图像上的一点,试求S M,Q的取值范围.30.问题背景如图1,在Rt ABC中,BAC,分别以ABC的两边AB、AC向外侧作正方形ABEF和正方形ACGH,过点A作AM BC于点M,并反向延长AM交FH于点N.则FN HN;S S填“”“”“”问题拓展小明在解题时发现当BAC时,中两个结论也是成立的,小明与同学共同讨论后,形成了证明这个问题的几种思路:思路一:在BC上取一点I,使得,然后只需证HAN≌ ACI,再证FAN≌ ABI;思路二:分别过点F、H作MN所在直线的垂线段FO、HJ,然后只需证HJA≌ AMC,再证FAO≌ ABM,请你参考他们的想法,证明当BAC时,中两个结论也是成立.简单应用如图3,已知ABC,AB cm,AC cm,分别以AB、BC、CA为边向外作正方形ABEF、BCPQ和ACGH,则图中阴影部分的面积和的最大值是cm.答案和解析【答案】1. A2. C3. C4. B5. C6. C7. B8. D9.10.11. 312. 113. 514.15. 316. 1或917. 518.19. 解:原式;去分母,得去括号,得移项,得合并同类项,得系数化成1,得,经检验,是原方程的解,则原方程的解是.20. 解:原式,当时,原式.21. 解:;;喜欢A:篮球的人数是:人,补全统计图如下:人.答:根据样本估计全校最喜欢足球的学生人数约是300人.22. 解:设第一批衬衫每件进价为x元,则第二批每件进价为元.由题意:,解得:,经检验是原方程的解,且符合题意,件,件,答:两次分别购进这种衬衫30件和15件.23. 证明:四边形ABCD是平行四边形,,,,,,在和中,, ,,≌ .,,四边形ABEC是平行四边形,,,又, ,,,,四边形ABEC是矩形.24. 解:把,代入数得:,解得:k,即反比例函数的解析式是:,把,代入上式得:,即,,把A、B的坐标代入y得:,解得:,一次函数的解析式是:;过A作于E,过B作于F,,,,,,,设直线AB交y轴于N,交x轴于M,当时,,当时,,即,,;25. 解:,;如图示,的坐标,;,、,、,.26. 解:是等边三角形.理由如下:连接AC,四边形ABCD是菱形,, ,是等边三角形,,,即在与中,,≌ ,,,是等边三角形;不变.理由:是等边三角形,,边上的高,,≌ ,四边形即:在运动过程中,四边形AECF的面积不变化27. 解:,;,,,即,所有符合条件的点P所组成的图形如图所示,设Q点的坐标为,,则,,随着m的增大而减小,随着m的增大而减小,当时,,有最大值当时,,有最小值,,.28. 解:;;思路一:在BC上取一点I,使得,正方形ACGH,, ,.,,,在和,≌ ,, ,,.正方形ABEF,同理得, ,≌ ,,,,;思路二:分别过点F、H作MN所在直线的垂线段FO、HJ 正方形ACGH,, ,.,, ,.,,,在和,≌ ,,,同理 ≌ ,,,, , ,≌ ,,;.【解析】1. 【分析】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转后与原图重合是解题的关键根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:是中心对称图形,故A正确;B.不是中心对称图形,故B选项错误;C.不是中心对称图形,故C选项错误;D.不是中心对称图形,故D选项错误.故选A.2. 【分析】本题主要考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,对各选项分析判断后利用排除法求解.【解答】解:了解某市学生的视力情况,适合采用抽样调查,故本选项错误;B.了解某市中学生课外阅读的情况,适合采用抽样调查,故本选项错误;C.了解某市百岁以上老人的健康情况,人数比较少,适合采用普查,故本选项正确;D.了解50发炮弹的杀伤半径具有破坏性,适合采用抽样调查,故本选项错误.故选C.3. 解:A、错误对角线互相平分,矩形、平行四边形都具有的性质.B、错误两组对角相等,矩形、平行四边形都具有的性质.C、正确对角线相等,矩形具有而平行四边形不一定具有.D、错误两组对边相等,矩形、平行四边形都具有的性质.故选C.根据矩形、平行四边形的性质一一判断即可解决问题.本题考查矩形的性质、平行四边形的性质,解题的关键是熟练掌握平行四边形、矩形的性质,属于中考常考题型.4. 【分析】本题主要考查了无理数的估算问题,通常利用夹逼法求解先求出的大体范围,然后求出的大致取值范围,即可进行判断.【解答】解:,,,在数轴上与表示的点的距离最近的整数点所表示的数是.故选B.5. 【分析】本题考查的是反比例函数的性质,即反比例函数的图象是双曲线,当,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小根据反比例函数的性质对四个选项进行逐一分析即可.【解答】解:函数中,此函数图象的两个分支分别在一、三象限,故本选项正确;B.函数的图象位于一、三象限,经过二、四象限,两函数图象无交点,故本选项正确;C.当时,函数的图象在第一象限,的值随x的增大而减小,故本选项错误;D.当时,函数的图象在第三象限,的值随x的增大而减小,故本选项正确.故选C.6. 【分析】本题考查了对二次根式的性质的应用,注意:当时,,当时,根据二次根式的性质得出,求出即可.【解答】解:,,解得:,故选C.7. 解:方程两边同乘,得解得,,,解得,又,,,即且.故选:B.由题意分式方程的解为负数,解方程求出方程的解x,然后令其小于0,解出m的范围注意最简公分母不为0.此题主要考查分式的解,关键是会解出方程的解,此题难度中等,容易漏掉隐含条件最简公分母不为0.8. 【分析】本题主要考查最短路径问题,关键确定何时路径最短,然后运用勾股定理和相似三角形的性质求得解过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,EF就是所求的线段,根据直角三角形的性质与勾股定理即可求得结果.【解答】解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB 于F点,四边形ABCD是矩形,,, BAC,,,设AC边上的高为h,,., ,,,,,,,.故选D.9. 【分析】此题主要考查了二次根式的意义关键是二次根式中的被开方数必须是非负数,否则二次根式无意义根据二次根式有意义的条件可得,再解不等式即可.【解答】解:由题意得:,解得:,故答案为.10. 【分析】本题主要考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率所求情况数与总情况数之比仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在左右,从而得到结论.【解答】解:观察表格,发现大量重复试验发芽的频率逐渐稳定在左右,该玉米种子发芽的概率为.故答案为.11. 【分析】此题主要考查了值为零的条件,分式值为零的条件是分子等于零且分母不等于零注意:“分母不为零”这个条件不能少.直接利用分式的值为0,则分子为零,且分母不为零,进而求出答案.【解答】解:根据题意,得,且,解得.故答案为3.12. 【分析】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.根据非负数的性质列式求出a、b的值然后代入代数式进行计算即可得解.【解答】解:根据题意,得,,解得,,.故答案为1.13. 解:,,.故答案为:5.先用b表示a,然后代入比例式进行计算即可得解.本题考查了比例的性质,用b表示出a是解题的关键.14. 解:设点A的坐标为,,.故答案为:.设点A的坐标为,,由点A的坐标结合的面积即可得出k的值.本题考查了反比例函数图象上点的坐标特征,解题的关键是求出点A的横纵坐标之积本题属于基础题,难度不大,解决该题型题目时,用点A的坐标来表示三角形的面积是关键.15. 【分析】本题主要考查了矩形性质,平行线性质,等腰三角形的性质和判定的应用,注意:矩形的对边相等且平行求出,推出,求出BE,根据勾股定理求出AE,即可求出AF,即可求出答案.【解答】解:四边形ABCD是矩形,,,,平分,,,,为BC中点,,,在中,,,由勾股定理得:,,.故答案为3.16. 【分析】本题主要考查了三角形的中位线定理、直角三角形的性质等几何知识点及其应用问题;牢固掌握三角形的中位线定理、直角三角形的性质等几何知识点是解题的基础和关键分两种情况:当点F在线段DE上时,当点F在DE的延长线上时,首先证明,根据DE为的中位线,得到,即可解决问题.【解答】解:当点F在线段DE上时,如图1,,,,为的中位线,,,当点F在DE的延长线上时,如图2,,,,为的中位线,,.故答案为1或9.17. 【分析】本题主要考查反比例函数的图象与性质掌握反比例函数的图象与性质是解题的关键设点C的坐标为,,根据图象可得点B,点A的坐标,根据三角形的面积公式即可求出k的值.【解答】解:点C在反比例函数上,设点C的坐标为,,点B在反比例函数上,轴,点B的坐标为,,点C在反比例函数上,轴,点C的坐标为,,S,,解得或,反例函数的图象在第一象限,,.故答案为5.18. 【分析】本题主要考查了正方形的性质、全等三角形的判定和性质以及勾股定理的运用,题目的综合性较强是一道非常不错的中考题目,证明出三角形是等腰直角三角形是解题的关键延长EA交FD的延长线于点M,可证明是等腰直角三角形,而,所以利用勾股定理即可求出EF的长.【解答】解:延长EA交FD的延长线于点M,四边形ABCD是正方形,,,,,是直角三角形,同理可证是直角三角形,, , ,,又, ,,是直角三角形,,,在和中,,≌ ,,,,.故答案为.19. 本题主要考查二次根式的混合运算,绝对值掌握法则是解题的关键第一项根据二次根式的性质计算,第二项根据绝对值的性质计算,第三项根据二次根式的性质计算,然后再算加减即可;本题主要考查解分式方程利用了转化的思想,解分式方程注意要检验分式方程变形后,两边乘以最简公分母得到结果,即可作出判断.20. 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,最后把a的值代入化简后的代数式计算即可.21. 【分析】本题主要考查了条形统计图和扇形统计图,用样本估算总体读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.用B项目的人数除以B项目所占的百分比即可得样本容量;用A的百分比乘以360度可得答案;先求出总人数,再根据A项目所占百分比求得其人数,即可补全条形图;用总人数乘以D项目所占百分比可得答案.【解答】解:人.故答案为50;,.故答案为;见答案;见答案.22. 设第一批衬衫每件进价为x元,则第二批每件进价为元根据第二批该款式的衬衫,进货量是第一次的一半,列出方程即可解决问题.本题考查分式方程的应用,解题的关键是学会设未知数、找等量关系、列出方程解决问题,注意分式方程必须检验,属于中考常考题型.23. 此题考查的知识点是平行四边形的判定与性质,全等三角形的判定和性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.先由已知平行四边形ABCD得出,,,从而证得 ≌ ;由得的结论先证得四边形ABEC是平行四边形,通过角的关系得出,,得证.24. 本题主要考查了三角形的面积,一次函数与反比例函数的交点问题,用待定系数法求出一次函数与反比例函数的解析式等知识点,把,代入数即可求出反比例函数的解析式,把B的坐标代入即可求出B的坐标,把A、B的坐标代入一次函数的解析式,得出方程组,求出方程组的解,即可得出一次函数的解析式;过A作于E,过B作于F,求出M、N的坐标,根据S代入即可求出的面积;根据图象和A、B的坐标即可得出答案.25. 【分析】本题考查了根据旋转变换作图,关于原点对称的性质,以及平行四边形的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.点A关于原占对称的问题,对称点的坐标特点是:横坐标互为相反数,纵坐标互为相反数;分别作出点A、B、C绕坐标原点O逆时针旋转后的点,然后顺次连接,并写出点A的对应点的坐标;分别以AB、BC、AC为对角线,写出第四个顶点D的坐标.【解答】解:见答案;见答案;当以AB为对角线时,点D坐标为,;当以AC为对角线时,点D坐标为,;当以BC为对角线时,点D坐标为,.以A、B、C为顶点的平行四边形的第四个顶点D的坐标为,或,或,.26. 本题主要考查了菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,正确的识别图形是解题的关键.连接AC,由菱形的性质,得是等边三角形,可得,根据,可得,根据全等三角形的性质得到,即可的结论;由是等边三角形,,得到AB边上的高,根据三角形的面积公式得到,等量代换即可得到结论;27. 本题主要考查一次函数的性质,反比例函数的图象与性质.弄清题中的新定义是解本题的关键.由P与原点O的坐标,利用题中的新定义计算即可得到结果;利用题中的新定义列出x与y的关系式,画出相应的图象即可;利用新定义与反比例函数的性质,一次函数的性质,可得,的取值范围.28. 【分析】本题主要考查正方形的性质,全等三角形的判定与性质,旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等三角形的面积公式.根据正方形的性质,全等三角形的判定与性质可得结果;根据全等三角形的性质可得结果;根据正方形的性质,与全等三角形的判定与性质可得结果;把绕点C顺时针旋转,使CP与BC重合,G旋转到的位置,根据旋转的性质和正方形的性质有A、C、在一直线上,且BC为的中线,得到,同理:,所以阴影部分面积,即当时,最大值为:,即可得到三个阴影部分的面积之和的最大值.【解答】解:把绕点C顺时针旋转,使CP与BC重合,G旋转到的位置,四边形ACGH为正方形,,,、C、在一直线上,且BC为的中线,,同理:,所以阴影部分面积之和为的3倍,又,,阴影部分面积,,当最大时阴影部分面积之和最大,即当时,最大值为:,阴影部分面积的最大值为故答案为.。