原子吸收的干扰及消除方法
- 格式:ppt
- 大小:315.50 KB
- 文档页数:7
原子吸收光谱分析干扰因素及消除方法(二)1.电离干扰电离干扰是指待测元素在火焰中汲取能量后,除举行原子化外,还使部分原子电离,从而降低了火焰中基态原子的浓度,使待测元素的吸光度降低,造成结果偏低。
火焰温度愈高,电离干扰愈显著。
当对电离电位较低的元素(如Be、Sr、Ba、Al)举行分析时,为抑制电离干扰,除可采纳降低火焰温度的办法外,还可向试液中加入消电离剂,如1% Cscl(或KCI、RbCl)溶液,因Cscl在火焰中极易电离产生高的电子密度,此高电子密度可抑制待测元素的电离而除去干扰。
2.放射光谱的干扰原子汲取光谱用法的锐线光源应只放射波长范围很窄的特征谱线,但因为以下缘由也会放射出少量干扰谱线而影响测定。
(1)当空心阴极灯放射的敏捷线和次敏捷线非常临近,且不易分开时就会降低测定敏捷度。
例如,Ni的敏捷线为232.0nm,次敏捷线为231.6nm和231.1nm,若使它们彼此分开,应选用窄的光谱通带,否则会降低测定的敏捷度。
(2)空心阴极灯内充有Ar、Ne等惰性气体,其放射的敏捷线与待测元素的敏捷线相近时,也产生干扰。
例如Ne放射359.34nm 谱线,Cr的敏捷线为359.35nm,为此测铬元素的空心阴极灯,应改充Ar而消退Ne的干扰。
(3)空心阴极灯阴极含有的杂质元素放射出与待测元素相近的谱线。
例如:待测元素Sb 217.02nm, Sb 231.15nm, Hg 253.65nm, Mn 403.31nm;杂质元素Pb 217.00nm, Ni 231.10nm,Co253.60nm, Ca 403.29nm。
此时应转变锐线的波长,以避开干扰。
3.背景干扰 (1)背景干扰的产生背景干扰主要是由分子汲取和光散射而产生的,表现为增强表观吸光度,使测定结果偏高。
分子汲取是指在原子化过程因为燃气、助燃气、生成气体、试液中的盐类与无机酸(主要为H2SO4、H3PO4)等分子或自由基对锐线辐射的汲取而产生的干扰。
原子吸收光谱法的干扰及其消除方法
在原子吸收光谱法的实践中,存在一些干扰因素,影响了分析的精准度。
主要的干扰因素可以分为分光干扰、化学干扰和电离干扰三类。
分光干扰中包括背景干扰和散射光干扰。
背景干扰是由于样品溶液中的无机盐和有机物的存在,会吸收分析线的光,造成干扰。
对此类干扰可以使用背景校正设备,如析取系统和双束分光光度计等进行消除。
散射光干扰主要是由于灯源、烧杯、光学器件等散射光引起,能通过增加透镜数量、提高设备密封性和灯源封闭性等措施减少。
化学干扰主要是由于样品溶液中的离子和有机物质影响原子析出、原子化和吸光过程。
针对此类干扰,可以采取改善雾化效果、改变火焰条件、添加释放剂和掩蔽剂等措施。
电离干扰则主要是由于样品在火焰中被电离,使得原子浓度变低,引起分析误差。
解决电离干扰的主要方法是添加离子化助剂,如碱金属盐等。
以上几类干扰并非孤立存在,往往相互影响,需要根据具体情况采取适当的消除措施。
总的来说,通过实验参数的优化和合理的仪器设备选择,是解决原子吸收光谱法干扰问题的重要途径。
同时,对干扰机理的深入研究,也有助于更有效地消除干扰,进一步提高分析的准确度和精密度。
原子吸收光谱分析中的干扰因素分析及消除方法作者:李晓杰来源:《科学与财富》2016年第31期摘要:本文主要针对原子吸收光谱分析中的干扰因素及消除方法展开了分析,通过结合具体的试验实例,对原子吸收光谱分析中的干扰因素作了详细的阐述,并给出了相应的消除方法,以期能为有关方面的需要提供参考借鉴。
关键词:原子吸收光谱法;干扰;消除方法;分析所谓的原子吸收光谱法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法。
在实际的应用过程中,会存在着一定的干扰因素,因此,为了原子吸收光谱法试验的科学和准确,就需要采取有效的消除方法对感染因素做好应对。
基于此,本文就原子吸收光谱分析中的干扰因素及消除方法进行了分析,相信对有关方面的需要能有一定的帮助。
1 原子吸收光谱分析中的干扰因素及其消除方法1.1 物理干扰及其消除方法物理干扰是指试样在转移、蒸发和原子化过程中,由于试样的任何物理变化而引起的原子吸收强度变化的效应。
物理干扰是一种非选择性干扰,对试剂中各元素的影响基本上是相似的。
吸样毛细管的长度和直径、溶剂的蒸气压、溶液的黏度、雾化器的压力以及侵入试剂溶液中的深度这些因素都会影响进样速度,从而影响到分析元素的原子化效率。
消除物理干扰的主要方法有:(1)配制与分析试样组成相似的标准系列溶液制作校正曲线,这是最常用的方法。
(2)配置与分析试样组成相似的标准溶液有困难时,可用标准加入法,可以提高测定的准确度。
(3)试样中分析元素浓度较高时,在灵敏度能满足要求的情况下,可以采用稀释溶液的方法减小或消除物理干扰。
(4)用双道原子吸收分光光度计时,以待测元素与内标元素的原子吸收强度比制作校正曲线进行定量,可以有效地消除物理干扰。
(5)在电热原子吸收光谱法中,加入某种化学改进剂与待测元素生成难挥发化合物,可以消除在干燥与灰化过程中的物理干扰。
1.2 化学干扰及其消除方法化学干扰是指在试样溶液中或气相中分析元素与共存物质之间的化学作用而引起的干扰效应,它主要影响分析元素化合物的解离与原子化的速度和程度,降低原子吸收信号。
原子吸收光谱法--电离干扰和消除方法原子吸收光谱法是一种常用的分析技术,用于测量样品中金属离子的浓度。
然而,在实际应用过程中,常常会遇到电离干扰的问题,这会影响准确测量和分析结果的可靠性。
因此,消除电离干扰是提高原子吸收光谱法分析精确性和准确性的关键。
电离干扰是指在样品原子化和电离的过程中,产生的能量交换和碰撞现象,导致原子吸收光谱信号的偏移和扩展。
主要包括光电离、自吸收、电场电离、化学干扰等。
具体来说,光电离是指分析过程中样品分子或金属原子受到光照射后,电子从价层跃迁至导带,形成电离现象。
这会引起原子吸收光谱信号的衰减和偏移,使分析结果失真。
解决光电离干扰的方法有:使用易电离气体来抑制光电离现象的发生,如加入氮气或乙炔;采用原子化温度和电离温度的优化组合,使光电离现象最小化。
自吸收是指样品中金属原子吸收光谱信号受到自身存在的浓度梯度差异的影响。
当样品中金属离子浓度较高时,会导致原子吸收光谱信号的衰减,使分析结果出现偏差。
消除自吸收的方法包括:选择合适的波长,使样品中金属离子的吸收峰位于吸收峰的低浓度区域;稀释样品,降低金属离子的浓度,减小自吸收现象的影响。
电场电离是指在原子化过程中,通过电场作用使金属离子进一步电离的现象。
这会导致原子吸收光谱信号的增加和偏移,从而影响分析结果的准确性。
消除电场电离的方法包括:优化电场条件,使电场对金属离子的电离作用最小化;选择合适的离化电位,使金属离子的电离程度减小。
化学干扰是指样品中其他元素或化合物对测定元素的原子吸收光谱信号产生影响的现象。
这会导致原子吸收光谱信号的偏移和混杂,使分析结果失真。
消除化学干扰的方法有:使用空白对照法,即在没有干扰物的情况下测量和分析样品的原子吸收光谱信号;采用化学修饰剂,如掩蔽剂、络合剂等,来选择性地吸附和分离目标元素。
综上所述,消除电离干扰是保证原子吸收光谱法测量精确性和准确性的关键。
通过优化实验条件和采取适当的消除方法,可以有效地减小电离干扰的影响,提高分析结果的可靠性。
吴 鸣 吉林省梅河口市产品质量检验所摘要:原子吸收光谱法可以对60多种金属元素和部分非金属元素来进行测量。
这种测定方法不但速度快,方法简便,而且检测结果比较精准。
和其他检测仪器比起来,其设施费用要低一些。
文章主要介绍了原子吸收法中存在的干扰现象及其消除方法。
关键词:原子吸收光谱;干扰;消除中图分类号:O652 文献识别码:A 文章编号:1001-828X(2016)001-000388-01一、前言我国从80年代开始在检测重金属方面使用原子吸收光谱法,且使用范围越来越广。
不过该方法存在干扰因素,包括光谱干扰以及非光谱干扰两种类型。
光谱干扰是因为测定仪器内部出现了问题而造成的,非光谱干扰则包括化学和物理等干扰。
二、干扰类型和消除方法(一)光谱干扰及消除1.多重谱线干扰多重谱线干扰指的是光谱通带里同时存在几条发射线,并且这些发射线都参与到吸收当中。
像Co等过渡族元素就很容易出现这种情况。
要是这几条发射线的波长都差不多,那它们就很容易在同一个时候参与吸收,因为这些谱线的吸收系数比主线的吸收系数要低,因而导致光度计的灵敏度降低,造成其工作曲线出现弯曲的情况。
理论研究和实验结果表明,干扰的大小取决于吸收线重叠程度,干扰元素的浓度及其灵敏度。
当两种元素的吸收线的波长差小于0.03nm时,则认为吸收线重叠干扰是严重的。
消除方法:可以根据实际情况降低检测的狭缝宽度,不过需要注意的是,如果狭缝宽度太低的话会因为信噪比下降,造成光度计的灵敏度下降,影响测定。
2.非吸收线干扰在分析线的周围可能会存有一些不是等待检测元素的谱线,这部分谱线也许是检测元素的吸收线,也许是等待检测元素的非吸收线。
这些谱线会对光度计产生干扰,造成工作曲线出现弯曲。
消除方法:将光谱通带减小到能够把非吸收线分离出来,所以需要将狭缝宽度降低到一定位置。
3.背景吸收背景吸收分为分子吸收与光散射两种。
这两种干扰的程度不一,但其消除方法是一样的。
消除方法:如果是火焰原子吸收可以采取归零的方式来解决,如果是石墨原子吸收的背景则需要选择合适的干燥灰化,并确定好合适的原子化的温度或者石墨管的改造来进行消除。
原子吸收分光光度法的干扰及其消除方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!原子吸收分光光度法的干扰及其消除方法原子吸收分光光度法(AAS)是一种常用的分析化学技术,用于测定样品中金属元素的含量。
原子吸收分析中常见的四大干扰的原因和消除办法定义:试样在转移、蒸发过程中物理因素变化引起的干扰效应,主要影响试样喷入火焰的速度、进样量、雾化效率、原子化效率、雾滴大小等。
因素:溶液的粘度、表面张力、密度、溶剂的蒸汽压和雾化气体的压力等。
特点:物理干扰是非选择性干扰,对各种元素影响基本相同。
消除方法:1) 配置相似组成的标准样品,采用标准加入法;2) 尽可能避免使用粘度大的硫酸、磷酸来处理试样;3) 当试样浓度较高时,适当稀释试液也可以抑制物理干扰。
定义:待测元素与其它组分之间的化学作用,生成了难挥发或难解离的化合物,使基态原数目减少所引起的干扰效应。
主要影响到待测元素的原子化效率,是主要干扰源。
特点:化学干扰是选择性干扰。
因素:1) 分子蒸发:待测元素形成易挥发卤化物和某些氧化物,在灰化温度下蒸发损失;2) 形成难离解的化合物(氧化物、炭化物、磷化物等);3) 氧化物:较难原子化的元素B、Ti、Zr、V、Mo、Ru、Ir、Sc、Y、La、Ce、Pr、Nd、U;4) 很难原子化的元素:Os、Re、Nd、Ta、Hf、W;5) 炭化物:Be、B、Al、Ti、Zr、V、W、Si、U稀土等形成难挥发炭化物;6) 磷化物:Ca3PO4等。
消除方法:1) 提高火焰温度使得难解离的化合物较完全基态原子化。
2) 加入释放剂,与干扰元素生成更稳定或更难挥发的化合物,使待测元素释放出来。
常用的释放剂:LaCl3、Sr(NO3)2等。
(如:火焰原子吸收法测定钙,磷酸盐的存在会生成难挥发的Ca2P2O7,此时可以加入LaCl3,则La3+与PO43-生成热更稳定的LaPO4,抑制了磷酸根对钙测定的干扰。
)3) 加入保护剂,待测元素形成稳定的络合物,防止待测元素与干扰物质生成难挥发化合物。
常用的保护剂:EDTA、8-羟基喹林、乙二醇等。
(如:火焰原子吸收法测定钙,磷酸盐的存在会生成难挥发的Ca2P2O7,加入EDTA,生成EDTA-Ca 络合物,该络合物在火焰中易于原子化,避免磷酸根与钙作用。
原子吸收法中的物理干扰概述原子吸收法是一种常用的分析技术,用于测定溶液中金属元素的含量。
然而,在实际应用中,常常会遇到一些物理干扰,这些干扰会影响测量结果的准确性和可靠性。
本文将重点讨论原子吸收法中的物理干扰及其解决方法。
一、背景干扰背景干扰是指在测量过程中,来自仪器和试剂等非样品本身的信号干扰。
主要包括吸收背景、散射背景和热背景。
1. 吸收背景吸收背景是由于溶剂、试剂或仪器本身在测量波长范围内吸收光线而产生的信号干扰。
为了解决吸收背景干扰,可以采取以下措施:- 选择合适的溶剂和试剂,尽量避免吸收波长范围内的干扰。
- 对样品进行适当的稀释,以降低吸收背景的影响。
- 使用双波长法,通过测量两个波长处的吸光度差来消除吸收背景的影响。
2. 散射背景散射背景是由于试剂、溶剂或样品中的微粒或杂质散射光线而产生的信号干扰。
为了解决散射背景干扰,可以采取以下措施:- 控制样品的浓度,避免过高的浓度导致散射光强度增加。
- 使用散射光补偿器,通过测量散射光和吸收光的差异来消除散射背景的影响。
- 选择合适的溶剂和试剂,尽量减少微粒和杂质的存在。
3. 热背景热背景是由于仪器本身或样品在测量过程中产生的热信号干扰。
为了解决热背景干扰,可以采取以下措施:- 使用冷却系统或温控装置,降低仪器本身的热背景。
- 采用空白基准法,通过测量样品和纯溶剂的差异来消除热背景的影响。
二、基体干扰基体干扰是指样品基体中存在的其他成分对目标元素测定的干扰。
主要包括基体吸收、基体增强和基体光谱干扰。
1. 基体吸收基体吸收是指样品基体本身在测量波长范围内对光线的吸收。
为了解决基体吸收干扰,可以采取以下措施:- 对样品进行预处理,如稀释、萃取、氧化还原等,以降低基体吸收的影响。
- 使用基体校正法,通过测量样品和纯基体的差异来消除基体吸收的影响。
2. 基体增强基体增强是指样品基体中的其他成分对目标元素的吸收光线产生增强效应。
为了解决基体增强干扰,可以采取以下措施:- 对样品进行预处理,如稀释、萃取、掩蔽等,以降低基体增强的影响。
原子吸收分光光度法干扰及消除一. 光谱干扰1. 在测定波长附近有单色器不能分离的待测元素的邻近线——减小狭缝宽度2. 灯内有单色器不能分离的非待测元素的辐射——高纯元素灯3. 待测元素分析线可能与共存元素吸收线十分接近——另选分析线或化学分离二. 电离干扰待测元素在高温原子化过程中因电离作用而引起基态原子数减少的干扰(主要存在于火焰原子化中)电离作用大小与:①待测元素电离电位大小有关——一般:电离电位< 6 eV ,易发生电离②火焰温度有关——火焰温度越高↑,越易发生电离↑消除方法:⑴ 加入大量消电离剂,如 NaCl、KCl、CsCl 等;⑵控制原子化温度。
三. 化学干扰待测元素不能从它的化合物中全部离解出来或与共存组分生成难离解的化合物氧化物、氮化物、氢氧化物、碳化物等。
抑制方法:加释放剂与干扰组分形成更稳定的或更难挥发的化合物,使待测元素释放出来(如:La、Sr、Mg、Ca、Ba 等的盐类及 EDTA 等)例如:PO43- 干扰 Ca 的测定2CaCl2 + 2H3PO4 = Ca2P2O7 + 4HCl + H2O若在Ca2+溶液中加入释放剂 LaCl3 , 则 LaCl3 + H3PO4 = LaPO4 + 3HCl因为LaPO4的热稳定性高于Ca2P2O7,所以相当于从Ca2P2O7中释放出Ca。
加保护剂:与干扰元素或分析元素生成稳定的配合物避免分析元素与共存元素生成难熔化合物如:8-羟基喹啉可用于抑制 Al 对 Ca、Mg 测定的干扰Co、Ni、Cu 对Fe测定的干扰;EDTA 可消除 Se、Te、B、Al、Si、磷酸盐、碳酸盐对Ca、Mg 测定的干扰。
四. 物理干扰:由于溶质或溶剂的性质(粘度、表面张力、蒸汽压等)发生变化使喷雾效率及原子化程度变化的效应(使结果偏低)抑制方法:①标准加入法(基体组成一致);②加入表面活性剂(0.5% HNO3 + 0.5% triton 100);五. 背景吸收原子化器中非原子吸收的光谱干扰。
消除原子吸收法中的物理干扰的方法1. 了解原子吸收法的基本概念首先,我们得先搞清楚原子吸收法是个什么玩意儿。
简单来说,它是一种分析化学中常用的技术,用来测定液体样品中元素的浓度。
想象一下,这就像是我们用显微镜观察小虫子,但这里我们是在研究原子。
我们把样品中的元素“点燃”到高温状态,然后看它们发出的光。
这些光告诉我们元素的种类和数量,听起来是不是很高大上?但呢,原子吸收法也有个小毛病,那就是它容易受一些物理干扰影响。
怎么说呢?就好像你在用高倍显微镜看细胞时,旁边有个小风扇一直吹来吹去,那你的观察就会受到影响。
物理干扰在原子吸收法中就像这种小风扇一样,可能让你得出的结果“打折”,或者说,完全失真。
2. 常见的物理干扰及其解决方法2.1 火焰温度的影响火焰温度就像是做饭时火的大小一样,火焰太热或太冷都不行。
我们要把样品放在火焰里加热,温度不对就会影响原子吸收光的强度。
假如火焰太热,样品可能会烧得过头,元素释放的光可能会不稳定;如果火焰不够热,元素可能根本没能“燃烧”出来。
所以,要控制火焰温度,就像控制火锅的火力,火锅太猛菜煮得不行,火锅太小火菜煮不熟,都不好!2.2 空气和燃料流量的影响空气和燃料的流量就像是我们开车时油门和刹车的感觉一样,要合适才行。
流量不对会导致火焰的稳定性差,就像你车开得不平稳一样。
通常我们会通过调节流量来确保火焰稳定,避免出现过多的空气或燃料,这样可以减少干扰,确保分析结果准确。
3. 其他物理干扰及其对策3.1 光源的干扰光源在这里起到关键作用,就像是舞台上的聚光灯一样。
如果光源不稳定或者发出的光谱不准确,就会影响我们的测量。
我们可以通过定期校准光源来减少这种干扰,确保它像一个稳定的聚光灯,照亮我们要观察的每一个细节。
3.2 仪器的维护最后,仪器的维护就像我们对待汽车保养一样重要。
要定期清洁和校准仪器,检查是否有灰尘、污垢或者其他物质影响测量。
保持仪器的清洁和功能良好,就像定期给车换油、检查刹车一样重要,能有效避免一些常见的物理干扰。