高等数学同济大学数学系第七版上册第七章课后答案
- 格式:docx
- 大小:4.36 MB
- 文档页数:91
同济版高数第七版上册课后答案合集高等数学是大学阶段的一门重要课程,对于理工科的学生来说尤为重要。
而同济版高数第七版上册是高等数学课程中的经典教材之一,其课后习题是检验学生对知识掌握程度的重要方式。
为了帮助学生更好地掌握课程内容,我们整理了《同济版高数第七版上册课后答案合集》,希望能对广大学生有所帮助。
第一章函数与极限。
1.1 函数的概念与性质。
1.2 三角函数。
1.3 常用初等函数的性质。
1.4 极限的概念。
1.5 极限的性质。
1.6 无穷小与无穷大。
1.7 极限运算法则。
第二章导数与微分。
2.1 导数的概念。
2.2 导数的运算法则。
2.3 高阶导数。
2.4 隐函数与参数方程的导数。
2.5 微分的概念。
2.6 微分中值定理。
2.7 几何应用。
第三章微分中值定理与导数的应用。
3.1 函数的单调性与曲线的凹凸性。
3.2 渐近线与曲线的渐近性。
3.3 函数的极值与最值。
3.4 弧微分。
3.5 函数的单调性与曲线的凹凸性。
3.6 渐近线与曲线的渐近性。
3.7 函数的极值与最值。
3.8 弧微分。
第四章不定积分。
4.1 不定积分的概念与性质。
4.2 不定积分的基本公式。
4.3 牲积分的运算法则。
4.4 有理函数的积分。
4.5 三角函数的积分。
4.6 有理函数的积分。
4.7 三角函数的积分。
第五章定积分。
5.1 定积分的概念与性质。
5.2 定积分的基本公式。
5.3 定积分的换元积分法。
5.4 定积分的分部积分法。
5.5 定积分的换限积分法。
5.6 定积分的应用。
第六章定积分的应用。
6.1 曲线长度。
6.2 曲边梯形的面积。
6.3 旋转体的体积。
6.4 平面图形的面积。
6.5 牲积分的应用。
第七章微分方程。
7.1 微分方程的基本概念。
7.2 可分离变量的微分方程。
7.3 齐次微分方程。
7.4 一阶线性微分方程。
7.5 可降阶的高阶微分方程。
7.6 可降阶的高阶微分方程。
以上是《同济版高数第七版上册》的主要内容,每一章节都包含了丰富的知识点和大量的习题。
同济大学数学系《高等数学》第7版上册课后习题第七章微分方程习题7-1微分方程的基本概念1.试说出下列各微分方程的阶数:解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶.2.指出下列各题中的函数是否为所给微分方程的解:解:(1)根据y=5x2,得y′=10x,xy′=10x2=2y,所以y=5x2是所给微分方程的解.(2)根据y=3sinx-4cosx,得y′=3cosx+4sinx,进而得y″=-3sinx+4cosx则所以y=3sinx-4cosx是所给微分方程的解.(3)根据y=x2e x,得进而得则所以y=x2e x不是所给微分方程的解.(4)根据,得,进而得则所以是所给微分方程的解.3.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解:解:(1)在方程x2-xy+y2=C两端对x求导,得即所以所给二元方程所确定的函数是微分方程的解.(2)在方程y=ln(xy)两端对x求导,得即(xy-x)y′-y=0,再在上式两端对x求导,得即.所以所给二元方程所确定的函数是所给微分方程的解.4.在下列各题中,确定函数关系式中所含的参数,使函数满足所给的初值条件:解:(1)根据y|x=0=5,将x=0,y=5代入函数关系中,得C=-25,即x2-y2=-25(2)根据,得将x=0,y=0及y′=1代入以上两式,得所以C1=0,C2=1,y=xe2x.(3)根据y=C1sin(x-C2),得将x=π,y=1及y′=0代入以上两式,得根据①2+②2得,不妨取C1=1,根据①式得,所以5.写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x,y)处的切线的斜率等于该点横坐标的平方;(2)曲线上点P(x,y)处的法线与x轴的交点为Q,且线段PQ被y轴平分.解:(1)假设曲线方程为y=y(x),它在点(x,y)处的切线斜率为y′,依条件有y′=x2此为曲线方程所满足的微分方程.(2)假设曲线方程为y=y(x),因它在点P(x,y)处的切线斜率为y′,所以该点处法线斜率为.由条件知PQ之中点位于y轴上,所以点Q的坐标是(-x,0),则有即微分方程为yy′+2x=0.6.用微分方程表示一物理命题:某种气体的气压P对于温度T的变化率与气压成正比,与温度的平方成反比.解:因为与P成正比,与T2成反比,如果比例系数为k,则有7.一个半球体形状的雪堆,其体积融化率与半球面面积A成正比,比例系数k>0.假设在融化过程中雪堆始终保持半球体形状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的;问雪堆全部融化需要多少时间?解:假设雪堆在时刻t的体积为,侧面积S=2πr2.根据题设知则积分得r=-kt+C根据r|t=0=r0,得C=r0,r=r0-kt.又,即得,从而因雪堆全部融化时,r=0,所以得t=6,即雪堆全部融化需6小时.习题7-2可分离变量的微分方程1.求下列微分方程的通解:解:(1)原方程为,分离变量得两端积分得即lny=±C1x,所以通解为lny=Cx,即y=e Cx.(2)原方程可写成5y′=3x2+5x,积分得,即通解为(3)原方程为,分离变量得两端积分得arcsiny=arcsinx+C,即为原方程的通解.(4)原方程可写成,分离变量得两端积分得即是原方程的通解.(5)原方程分离变量,得两端积分得可写成,即tany·tanx=±C1,所以原方程的通解为tany·tanx=C(6)原方程分离变量,得10-y dy=10x dx,两端积分得可写成.(7)原方程为分离变量得。