小学数学公式、定义、概念大全(附图解)
- 格式:doc
- 大小:309.00 KB
- 文档页数:28
小学数学公式大全➢平面图形周长、面积公式图形名称图形计算公式文字公式字母公式长方形ba 周长=(长+宽)×2面积=长×宽)(2baC+=baS⋅=正方形a周长=边长×4面积=边长×边长24aaaSaC=⋅=⋅=三角形a 面积=底×高÷2 ahS21=平行四边形a 面积=底×高ahS=梯形a 面积=(上底+下底)×高÷2 hbaS⋅+=)(21圆形周长=圆周率×直径周长=圆周率×半径×2面积=圆周率×半径×半径22rSrdCπππ===hhhrd➢ 立体图形表面积、体积公式图形名称 图形 计算公式文字公式字母公式长方体表面积=(长×宽+长×高+高×宽)×2体积=长×宽×高)(2ah bh ab S ++=h b a V ⋅⋅=正方体表面积=边长×边长×6 体积=棱长×棱长×棱长3266aa a a V aa a S =⋅⋅==⋅⋅=圆柱表面积=侧面积+底面积×2 侧面积=底面周长×高体积=底面积×高hr h S V h Ch S SS S 2r 22ππ底侧底侧表====+=圆锥高底面积体积⨯⨯=31hS V 底31=➢ 三角形内角和等于180°(任意三角形)∠1+∠2+∠3=180°h hh132baaa a➢ 数图形方法归纳名称图形方法1 2312341+2+3=6(1+2+3)×2=121 2 3 41+2+3+4=10 数线段 数角231 1+2+3=6数长方形数三角形2 1 31+2+3=6数梯形1 2 3 41+2+3+4=10数多层三角形21 12 3数多层长方形➢小学数学运算定律①加法交换律:a+b=b+a②加法结合律:(a+b)+c=a+(b+c)③乘法交换律:a×b=b×a④乘法结合律:(a×b)×c=a×(b×c)⑤乘法分配律:(a×b)×c=a×c+b×c⑥减法的运算定律:a-b-c=a-(b+c)⑦除法的运算定律:a÷b÷c=a÷(b×c)➢常见等量关系计算公式价格关系工效问题路程关系速度×时间=路程路程÷时间=速度路程÷速度=时间运算关系2 (1+2)×(1+2+3+4)=301数量关系每份数×份数=总数总数÷每份数=份数总数÷份数=每份数倍数关系1倍数×倍数=几倍数几倍数÷1倍数=倍数➢单位换算距离单位换算1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米面积单位换算1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1公顷=10000平方米1平方千米=100公顷1亩=666.666平方米重量、货币、时间单位换算1吨=1000千克1千克=1000克=1公斤=2市斤1元=10角=100分1年=12月一天=24小时体积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1升=1立方分米=1000毫升➢ 典型应用题问题和倍问题和÷(倍数-1)=小数和差问题(和+差)÷2=大数(和-差)÷2=小数追及问题追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间浓度问题溶液重量=溶质重量+溶剂重量 流水问题 顺流速度=静水速度+水流速度 差倍问题差÷(倍数-1)=小数相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%利润率=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%列车过桥问题植树问题➢非封闭线路上的植树问题主要可分为以下三种情形:①如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)②如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数③如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)➢封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数。
一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
三角形得面积=底×高÷2。
公式 S= a×h÷2正方形得面积=边长×边长公式 S= a²或S=a×a长方形得面积=长×宽公式 S= ab平行四边形得面积=底×高公式 S= ah梯形得面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2内角与:三角形得内角与=180度。
长方体得体积=长×宽×高公式:V=abh长方体(或正方体)得体积=底面积×高公式:V=abh正方体得体积=棱长×棱长×棱长公式:V=aaa圆得周长=直径×π公式:L=πd=2πr圆得面积=半径×半径×π公式:S=πr2圆柱得表(侧)面积:圆柱得表(侧)面积等于底面得周长乘高。
公式:S=ch=πdh=2πrh圆柱得表面积:圆柱得表面积等于底面得周长乘高再加上两头得圆得面积。
公式:S=ch+2s=ch+2πr2圆柱得体积:圆柱得体积等于底面积乘高。
公式:V=Sh圆锥得体积=1/3底面×积高。
公式:V=1/3Sh分数得加、减法则:同分母得分数相加减,只把分子相加减,分母不变。
异分母得分数相加减,先通分,然后再加减。
分数得乘法则:用分子得积做分子,用分母得积做分母。
分数得除法则:除以一个数等于乘以这个数得倒数。
读懂理解会应用以下定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数得位置,与不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,与不变。
3、乘法交换律:两数相乘,交换因数得位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再与第三个数相乘,它们得积不变。
5、乘法分配律:两个数得与同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
小学数学常见公式、概念大全(红色为六年级内容)一、小学数学图形计算公式:1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a·a或S= a²5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径或圆的周长=圆周率×半径×2C=πd 或 C =2πr10、圆的面积=圆周率×半径×半径S=πr²11、长方体的表面积=(长×宽+长×高+宽×高)×2S=(ab+ah+bh)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a²14、正方体的体积=棱长×棱长×棱长V=a·a·a 或V= a³15、圆柱的侧面积=底面圆的周长×高S=Ch16、圆柱的表面积=上下底面面积+侧面积S=2πr²+ 2πrh或S= 2π(d÷2)²+ 2π(d÷2)h或S=2π(C÷2÷π) + Ch17、圆柱的体积=底面积×高V=ShV=πr²h 或V=π(d÷2)²h 或V=π(C÷2÷π) ²h 18、圆锥的体积=底面积×高÷3V=Sh÷3 或V=πr²h÷3或V=π(d÷2)²h÷3 或V=π(C÷2÷π) ²h÷3*******************************************************************二、数量关系:1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数;平均数=总数÷总份数2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率6、加数+加数=和;加数=和-另一个加数7、被减数-减数=差;减数=被减数-差;被减数=差+减数8、乘数×乘数=积;乘数=积÷另一个乘数9、被除数÷除数=商;除数=被除数÷商;被除数=商×除数10、和差问题:(和+差)÷2=大数;(和-差)÷2=小数11、和倍问题:和÷(倍数-1)=小数小数×倍数=大数(或和-小数=大数)12、差倍问题:差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)13、植树问题:1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)14、相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间15、追及问题:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间16、利润与折扣问题:利润=售出价-成本利润率=利润÷成本×100%或利润率=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)*****************************************************************三、单位换算:1、时间单位:1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒2、长度单位:1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1米=100厘米3、面积单位:1平方千米=100公顷1公顷=10000平方米1亩=666.666平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米4、体积和容积单位:1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1升=1000毫升1升=1立方分米1毫升=1立方厘米5、重量单位:1吨=1000 千克1千克=1000克1千克=1公斤=2斤6、人民币单位换算:1元=10角1角=10分1元=100分*****************************************************************四、概念:1、加法交换律:两数相加交换加数的位置,和不变。
小学数学概念及公式大全(完整版)一部分:概念1、加法交换律:两数相加交换加数的位置和不变。
2、加法结合律:三个数相加先把前两个数相加或先把后两个数相加再同第三个数相加和不变。
3、乘法交换律:两数相乘交换因数的位置积不变。
4、乘法结合律:三个数相乘先把前两个数相乘或先把后两个数相乘再和第三个数相乘它们的积不变。
5、乘法分配律:两个数的和同一个数相乘可以把两个加数分别同这个数相乘再把两个积相加结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里被除数和除数同时扩大(或缩小)相同的倍数商不变。
O 除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法可以先把O前面的相乘零不参加运算有几个零都落下添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减只把分子相加减分母不变。
异分母的分数相加减先通分然后再加减。
12、分数大小的比较:同分母的分数相比较分子大的大分子小的小。
异分母的分数相比较先通分然后再比较;若分子相同分母大的反而小。
13、分数乘整数用分数的分子和整数相乘的积作分子分母不变。
14、分数乘分数用分子相乘的积作分子分母相乘的积作为分母。
15、分数除以整数(0除外)等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式叫做带分数。
部编人教版小学阶段各年级数学公式定理定义大全部编人教版小学数学公式定理定义大全第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
7、简便乘法:被乘数、乘数末尾有O的乘法,可以先把O 前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
9、什么叫方程?含有未知数的等式叫方程。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
小学数学公式大全(完全版)1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积 a底 h高面积=底×高s=ah7 梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒积=底面积×高 V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变.4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2 +4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算.10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
小学数学公式定理定义大全1.数与数的运算:定义:数是用来计数、比较大小和进行运算的抽象概念。
数的种类包括自然数、整数、分数、小数等。
定理1:加法交换律:a+b=b+a定理2:加法结合律:(a+b)+c=a+(b+c)定理3:乘法交换律:a×b=b×a定理4:乘法结合律:(a×b)×c=a×(b×c)定理5:乘法分配律:a×(b+c)=(a×b)+(a×c)2.数的整除与倍数:定义:如果一个数b除以另一个数a可以整除,即没有余数,那么a就称为b的约数,b称为a的倍数。
定理6:若a能整除b,b能整除c,则a能整除c。
定理7:任何一个数a都能整除它本身。
3.算式的计算规则:定义:算式是由数字、符号和运算符号组成的表达式,用来表示数与数之间的关系。
定理8:在一个算式中,先进行乘除运算,再进行加减运算。
定理9:在一个算式中,先进行括号内的运算,再进行括号外的运算。
4.分数与小数:定义:分数是表示部分数量的数,小数是表示除法运算结果的数。
定理10:分数可以化简为最简形式,即分子与分母没有公因数。
定理11:小数可以化为分数,分子是小数点后的数字,分母是1后面跟着相应数量的0。
定理12:分数和小数可以相互转换,如1/2和0.5表示同一个数。
5.图形的性质:定义:图形是由点、线、面组成的平面图形。
定理13:平行线在同一平面上,它们不会相交。
定理14:垂直线之间的夹角是90度。
6.长方形和正方形:定义:长方形是一个长和宽不同的四边形,正方形是一个边长相等的长方形。
定理15:长方形的面积等于长乘以宽,即A=l×w。
定理16:正方形的面积等于边长的平方,即A=s^27.三角形的性质:定义:三角形是由三条边和三个内角组成的多边形。
定理17:直角三角形的两条直角边的平方和等于斜边的平方,即a^2+b^2=c^2(勾股定理)。
小学数学所有公式和概念1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数总数÷总份数=平均数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积 a底 h高面积=底×高s=ah7 梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1千米=1000米 1米=10分米1分米=10厘米 1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒。
专业、专注成就您的未来!小清华辅导小学数学公式、定义、概念大全目录一、周长公式:……………………………………3-3二、面积公式:……………………………………4-5三、体积公式:……………………………………6-6四、运算公式大全:…………………………………7-111、份数2、倍数3、路程4、单价5、工作效率6、工作总量加数7、减数8、因数9、被除数10、总数11、和差问题12、和倍问题13、差倍问题14、植树问题:15、盈亏问题16、相遇问题17、追及问题18、流水问题19、浓度问题20、利润与折扣问题21、涨跌金额22、折扣23、利息五、单位转换:……………………………………12-131、时间单位换算:2、面积单位换算3、体积单位换算4、重量换算:5、人民币单位换算六、概念大全:……………………………………14-281、三角形内角和2、平行线3、图形的周长4、面积5、角6、互相垂直、垂线、垂足、点到直线的距离7、三角形8、自然数9、加法10、减法11、乘法12、除法13、小数14、方程15、其他数的定义16、比17、圆18、对称图形19、百分数20、比例21、圆柱公式:S=ch =πd h五、公式大全:1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、路程=速度×时间路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数10、总数÷总份数=平均数11、和差问题(和+差)÷2=大数(和-差)÷2=小数12、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)13、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)14、植树问题:1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)段数=株数-1⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数15、盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数16、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间17、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间18、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷219、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量20、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%21、涨跌金额=本金×涨跌百分比22、折扣=实际售价÷原售价×100%(折扣<1)23、利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)1、时间单位换算:1日=24小时1时=60分1分=60秒1时=3600秒〖60进〗大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1世纪=100年1年=12月2、面积单位换算(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米〖10进〗(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米〖100进〗1公顷=10000平方米1平方千米=100公顷=1000000平方米1亩=666.666平方米3、体积单位换算(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米〖1000进〗(4) 1升=1立方分米=1000毫升1毫升=1立方厘米〖1000进〗4、重量换算:1吨=1000 千克1千克=1000克1千克=1公斤5、人民币单位换算1元=10角1角=10分1元=100分1、三角形内角和=180度。
2、平行线:同一平面内不相交的两条直线叫做平行线3、什么是图形的周长?围成一个图形所有边长的总和就是这个图形的周长。
4、什么是面积?物体的表面或围成的平面图形的大小叫做他们的面积。
5、角(1)什么是角?从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?围成角的端点叫顶点。
(3)什么是角的边? 围成角的射线叫角的边。
(4)什么是直角?度数为90°的角是直角。
(5)什么是平角?角的两条边成一条直线,这样的角叫平角。
(6)什么是锐角?小于90°的角是锐角。
(7)什么是钝角?大于90°而小于180°的角是钝角。
(8)什么是周角?一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.6、(1)什么是互相垂直?什么是垂线?什么是垂足?两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(2)什么是点到直线的距离?从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
(1)什么是三角形?有三条线段围成的图形叫三角形。
(2)什么是三角形的边?围成三角形的每条线段叫三角形的边。
(3)什么是三角形的顶点?每两条线段的交点叫三角形的顶点。
(4)什么是锐角三角形?三个角都是锐角的三角形叫锐角三角形。
(5)什么是直角三角形?有一个角是直角的三角形叫直角三角形。
(6)什么是钝角三角形?有一个角是钝角的三角形叫钝角三角形。
(7)什么是等腰三角形?两条边相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?有等腰三角形里,相等的两个边叫做等腰三角形的腰。
(9)什么是等腰三角形的顶点?两腰的交点叫做等腰三角形的顶点。
(10)什么是等腰三角形的底?在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。
(11)什么是等腰三角形的底角?底边上两个相等的角叫等腰三角形的底角。
(12)什么是等边三角形?三条边都相等的三角形叫等边三角形,也叫正三角形。
(13)什么是三角形的高?什么叫三角形的底?从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。
(1)什么是四边形?有四条线段围成的图形叫四边形。
(2)什么是平等四边形?两组对边分别平行的四边形叫做平行四边形。
(3)什么是平行四边形的高?从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。
(4)什么是梯形?只有一组对边平行的四边形叫做梯形。
(5)什么是梯形的底?在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。
(6)什么是梯形的腰?在梯形里,不平行的一组对边叫梯形的腰。
(7)什么是梯形的高?从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
(8)什么是等腰梯形?两腰相等的梯形叫做等腰梯形。
11、用来表示物体个数的整数,叫做自然数。
0也是自然数。
如:0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。
自然数:12、什么是四舍五入法?13、求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。
这种求近似数的方法,叫做四舍五入法。
把两个数合并成一个数的运算叫加法。
什么是加数?相加的两个数叫加数。
什么是和?加数相加的结果叫和。
15、什么是加法交换律?16、加法交换律:两数相加交换加数的位置,和不变。
17、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
21、减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=减数+差22、什么是乘法?求几个相同加数的和的简便运算叫乘法。
23、什么是因数?相乘的两个数叫因数。
24、什么是积?25、因数相乘所得的数叫积。
26、乘法各部分的关系:积=因数×因数一个因数=积÷另一个因数27、什么是乘法交换律?两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。
28、什么是乘法结合律?29、三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
30、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×531、简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
32、什么是除法?已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
33、什么是被除数?在除法中,已知的积叫被除数。
34、什么是除数?在除法中,已知的一个因数叫除数。
35、什么是商?36、在除法中,求出的未知因数叫商。
37、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。