2023年高考数学周考试卷
- 格式:docx
- 大小:564.76 KB
- 文档页数:8
2023年揭阳高考模考试数学试卷(一)本试卷共6页,22小题,满分150分。
考试用时120分钟。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U=R,集合A={1,2,3,4,5},B={x∈R|x>2},则图中阴影部分所表示的集合为()A.{0,1}B.{1}C.{1,2}D.{0,1,2} 2.已知某圆锥的底面半径为1,高为,则该圆锥的表面积为()A.2πB.3πC.4πD.5π3.已知函数,若m<n,f(m)=f(n),则n﹣m的取值范围是()A.(1,2]B.[1,2)C.(0,1]D.[0,1)4.某单位职工参加某APP推出的“二十大知识问答竞赛”活动,参与者每人每天可以作答三次,每次作答20题,每题答对得5分,答错得0分,该单位从职工中随机抽取了10位,他们一天中三次作答的得分情况如图:根据图,估计该单位职工答题情况,则下列说法正确的是()A.该单位职工一天中各次作答的平均分保持一致B.该单位职工一天中各次作答的正确率保持一致C.该单位职工一天中第三次作答得分的极差小于第二次的极差D.该单位职工一天中第三次作答得分的标准差小于第一次的标准差5.已知复数z满足|z+2﹣2i|=1,则|z﹣2﹣2i|的最大值为()A.3B.4C.5D.66.小明在设置银行卡的数字密码时,计划将自己出生日期的后6个数字0,5,0,9,1,9进行某种排列得到密码.如果排列时要求两个9相邻,两个0也相邻,则小明可以设置多少个不同的密码()A.16B.24C.166D.1807.已知双曲线,则该双曲线的离心率为()A.B.C.D.8.三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC,AA1=6,AB=4,AC=3,∠BAC=90°,P为侧棱CC1的中点,则四棱锥P﹣AA1B1B外接球的表面积为()A.13πB.52πC.104πD.208π二、选择题:本题共4小题,每小题5分,共20分。
正弦定理、余弦定理及其应用考点梳理1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即,.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:①a=2R sin A,b=____________,c=____________;②sin A=错误!,sin B=错误!,sin C=错误!;③a∶b∶c=______________________.2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=错误!,b2=错误!,c2=。
若令C=90°,则c2=,即为勾股定理.(2)余弦定理的推论:cos A=错误!,cos B=错误!,cos C=错误!.若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C -2sin B sin C cos A,类似地,sin2B=____________________;sin2C=__________________。
注意式中隐含条件A+B+C=π。
3.解三角形的类型(1)已知三角形的任意两个角与一边,用____________定理,只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有__________________.如在△ABC中,已知a,b和A为锐角A为钝角或直角图形关系式a=b sin Ab sin A<a〈ba≥b a〉b解的个数①②③④(3)已知三边,用____________定理.有解时,只有一解.(4)已知两边及夹角,用____________定理,必有一解.4.三角形中的常用公式及变式(1)三角形面积公式S△=错误!=错误!=错误!=错误!=错误!.其中R,r分别为三角形外接圆、内切圆半径.(2)A +B +C =π,则A =__________,错误!=__________,从而sin A =____________,cos A =____________,tan A =____________;sin 错误!=__________,cos 错误!=__________,tan 错误!=__________。
2023年高中数学高考模拟试题(附答案)姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间90分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)评卷人得分一、单选题(每题5分,共50分)1.(本题5分)()A.B.C.D.2.(本题5分)已知集合,,则()A.B.C.D.3.(本题5分)函数的零点个数是()A.0B.1C.2D.34.(本题5分)已知数列为递减的等比数列,,且,,则公比为()A.B. C.D.25.(本题5分)在中,已知,D为BC中点,则()A.2B.C.D.6.(本题5分)函数的单调递增区间为()A.B.C.D.7.(本题5分)已知函数,则在上()A.单调递增B.单调递减C.先增后减D.先减后增8.(本题5分)如图,在长方体中,已知,,E为的中点,则异面直线BD与CE所成角的余弦值为()A.B.C.D.9.(本题5分)在中,,且,则()A.2B.3C.D.10.(本题5分)已知函数的最小正周期为,将函数的图象向左平移个单位长度,得到图象,则()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二、填空题(共25分)11.(本题5分)定义在R上的奇函数,当x≥0时,(k为常数),则______.12.(本题5分)等差数列的前n项和为,若,则当取到最大值时n__________.13.(本题5分)已知不等式组表示的平面区域不包含点,则实数的取值范围是__________.14.(本题5分)已知双曲线的左右焦点分别是,直线与双曲线交于p,且,则双曲线C的离心率为______.15.(本题5分)设A是椭圆(φ为参数)的左焦点.p是椭圆上对应于的点,那么线段AP的长是________.如图,在斜三棱柱中,底面的正三角形,,侧棱过点的直线交曲线的垂线,垂足分别为、,判,使得四边形的对角线交于一定点18.(本题15分)已知等差数列的n前项和为,,,数列满足.(1)求数列和的通项公式;(2)若数列满足,求数列的n前项和.19.(本题15分)已知在中,,,为内角A,B,C所对的边,,且.(1)求A与C;(2)若,过A作BC边的垂线,并延长至点D,若A,B,C,D四点共圆,求的CD长.20.(本题15分)已知函数.(1)当m>0时,求函数f(x)的极值点的个数;(2)当a,b,c∈(0,+∞)时,恒成立,求m的取值范围.参考答案一、单选题第1题第2题第3题第4题第4题A A C A D第6题第7题第8题第9题第10题C D C B B二、填空题第11题:-4;第12题:6;第13题:(-∞,3]第14题:√2;第15题:5。
2023年普通高等学校招生全国统一考试�新高考仿真模拟卷数学(四)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知复数1z =,则2z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限2.已知全集{62}U xx =-<<∣,集合{}2230A x x x =+-<∣,则U ðA=()A .()6,2-B .()3,2-C .()()6,31,2--⋃D .][()6,31,2--⋃3.陀螺是中国民间最早的娱乐工具之一,也称陀罗.图1是一种木陀螺,可近似地看作是一个圆锥和一个圆柱的组合体,其直观图如图2所示,其中,B C 分别是上、下底面圆的圆心,且36AC AB ==,底面圆的半径为2,则该陀螺的体积是()A .803πB .703p C .20πD .563π4.已知一组数据:123,,x x x 的平均数是4,方差是2,则由12331,31,31x x x ---和11这四个数据组成的新数据组的方差是()A .27B .272C .12D .115.若非零向量,a b 满足()22,2a b a b a ==-⊥ ,则向量a 与b 夹角的余弦值为()A .34B .12C .13D .146.已知圆221:(2)(3)4O x y -+-=,圆222:2270O x y x y +++-=,则同时与圆1O 和圆2O 相切的直线有()7.已知函数()()sin (0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图所示,则函数()f x 在区间[]0,10π上的零点个数为()A .6B .5C .4D .38.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,点P 在椭圆C 上,若离心率12PF e PF =,则椭圆C 的离心率的取值范围为()A.()1-B.⎛ ⎝⎭C.2⎫⎪⎪⎣⎭D.)1,1-二、多选题9.若π1tan tan 231tan ααα-⎛⎫-= ⎪+⎝⎭,则α的值可能为()A .π36B .7π36C .19π36D .5π36-10.某校10月份举行校运动会,甲、乙、丙三位同学计划从长跑,跳绳,跳远中任选一项参加,每人选择各项目的概率均为13,且每人选择相互独立,则()A .三人都选择长跑的概率为127B .三人都不选择长跑的概率为23C .至少有两人选择跳绳的概率为427D .在至少有两人选择跳远的前提下,丙同学选择跳远的概率为5711.设函数()()()1ln 1(0)f x x x x =++>,若()()11f x k x >--恒成立,则满足条件的正整数k 可以是()A .1B .2C .3D .412.已知三棱锥-P ABC 中,PA ⊥平面2,4,,3ABC PA BAC AB AC M π∠====是边BC 上一动点,则()A .点C 到平面PAB 的距离为2B .直线AB 与PCC .若M 是BC 中点,则平面PAM ⊥平面PBCD .直线PM 与平面ABC三、填空题13.函数()()313xxk f x x k -=∈+⋅R 为奇函数,则实数k 的取值为__________.14.已知抛物线28y x =的焦点为F ,抛物线上一点P ,若5PF =,则POF ∆的面积为______________.15.由数字0,1,2,3,4,5,6,7组成没有重复数字的三位数,则能被5整除的三位数共有__________个.16.已知0a >,函数()22ag x x x+=+-在[)3,+∞上的最小值为2,则实数=a __________.四、解答题17.第24届冬奥会于2022年2月4日在北京市和张家口市联合举行,此项赛事大大激发了国人冰雪运动的热情.某滑雪场在冬奥会期间开业,下表统计了该滑雪场开业第x 天的滑雪人数y (单位:百人)的数据.天数代码x12345滑雪人数y (百人)911142620经过测算,若一天中滑雪人数超过3500人时,当天滑雪场可实现盈利,请建立y 关于x 的回归方程,并预测该滑雪场开业的第几天开始盈利.参考公式:线性回归方程ˆˆˆybx a =+的斜率和截距的最小二乘法估计分别为()()()121ˆˆ,niii ni i x x y y bay bx x x ==--==--∑∑ .18.如图,四边形ABCD 中,150,60,B D AB AD ABC ∠∠====的面积为(1)求AC ;(2)求ACD ∠.19.设数列{}n a 的前n 项和为()*,226n n n S S a n n =+-∈N .(1)求数列{}n a 的通项公式;(2)若数列112n n n a a ++⎧⎫⎨⎩⎭的前m 项和127258m T =,求m 的值.20.如图,正方体1111ABCD A B C D -的棱长为4,点E 、P 分别是1DD 、11A C 的中点.(1)求证:BP ⊥平面11A EC ;(2)求直线1B C 与平面11A EC 所成角的正弦值.21.已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线方程为20x y -=,一个焦点到该渐近线的距离为1.(1)求双曲线C 的方程;(2)若双曲线C 的右顶点为A ,直线:l y kx m =+与双曲线C 相交于,M N 两点(,M N 不是左右顶点),且0AM AN ⋅=.求证:直线l 过定点,并求出该定点的坐标.22.已知函数()()e 4ln 2xf x x x =++-.(1)求函数()f x 的图象在()()0,0f 处的切线方程;(2)判断函数()f x 的零点个数,并说明理由.参考答案:1.C【分析】根据复数代数形式的乘法运算化简复数2z ,再根据复数的几何意义判断即可.【详解】解:因为1z =-,所以())2221122z ==-+=--,所以2z 在复平面内对应的点的坐标为(2,--位于第三象限.故选:C 2.D【分析】计算出集合B ,由补集的定义即可得出答案.【详解】因为{}}{223031A xx x x x =+-<=-<<∣,U ðA=][()6,31,2--⋃.故选:D.3.D【分析】根据圆锥与圆柱的体积公式,可得答案.【详解】已知底面圆的半径2r =,由36AC AB ==,则2,4AB BC ==,故该陀螺的体积2215633V BC r AB r πππ=⋅+⋅⋅=.故选:D.4.B【分析】根据方差和平均数的计算及可求解.【详解】因为一组数据1x ,2x ,3x 的平均数是4,方差是2,所以22212312311()4,[(4)(4)(4)]233x x x x x x ++=-+-+-=,所以22212312312,(4)(4)(4)6x x x x x x ++=-+-+-=,所以12331,31,31x x x ---,11的平均数为12312311(31)(31)(31)][113()3]1144x x x x x x +-+-+-=+++-=,所以12331,31,31x x x ---,11的方差为2222123111)(312)(312)(312)]4x x x -+-+-+-22212311279[(4)(4)(4)]96424x x x =⨯-+-+-=⨯⨯=故选:B 5.D【分析】求出1,2a b ==,根据()2a b a -⊥ 可得()20a b a -⋅=,代入化简求解夹角余弦值即可.【详解】设a 与b的夹角为θ,因为()22,2a b a b a ==-⊥ ,所以1,2a b==,()2a b a ∴-⋅22cos 0a a b θ=-= .21cos 42a a b θ∴== .故选:D.6.B【分析】根据圆的方程,明确圆心与半径,进而确定两圆的位置关系,可得答案.【详解】由圆()()221:234O x y -+-=,则圆心()12,3O ,半径12r =;由圆222:2270O x y x y +++-=,整理可得()()22119x y +++=,则圆心()21,1O --,半径23r =;由12125O O r r ===+,则两圆外切,同时与两圆相切的直线有3条.故选:B.7.B【分析】求出周期,方法1:画图分析零点个数;方法2:求()0f x =的根解不等式即可.【详解】由题意知,37π2π(3π433T =--=,解得:4πT =,22Tπ=,方法1:∴作出函数图象如图所示,∴()f x 在区间[0,10π]上的零点个数为5.方法2:∴()0f x =,解得:2π2π,Z 3x k k =-+∈,∴2π02π10π3k ≤-+≤,Z k ∈,解得:11633k ≤≤,Z k ∈,∴1,2,3,4,5k =,∴()f x 在区间[0,10π]上的零点个数共有5个.故选:B.8.D【分析】由题意可知12PF e PF =,结合椭圆的定义解得221aPF e =+,再由2a c PF a c -≤≤+求解.【详解】因为12PF e PF =,所以12PF e PF =,由椭圆的定义得:122PF PF a +=,解得221aPF e =+,因为2a c PF a c -≤≤+,所以21aa c a c e -≤≤++,两边同除以a 得2111e e e -≤≤++,解得1e ≥,因为01e <<11e ≤<,所以该离心率e的取值范围是1,1)故选:D.9.BCD【分析】根据题意可得:π1tan πtan(2tan()31tan 4αααα--==-+,然后利用正切函数的性质即可求解.【详解】因为πtantan 1tan π4tan()π1tan 41tan tan 4ααααα--==-++⋅,则ππtan(2)tan()34αα-=-,所以ππ2π,34k k αα-=+-∈Z ,解得:π7π,336k k α=+∈Z ,当0k =时,7π36α=;当1k =时,19π36α=;当1k =-时,5π36α-=;故选:BCD .10.AD【分析】根据相互独立事件概率计算公式计算即可.【详解】由已知三人选择长跑的概率为111133327⨯⨯=,故A 正确.三人都不选择长跑的概率为222833327⨯⨯=,故B 错误.至少有两人选择跳绳的概率为231111127C 33333327⨯⨯+⨯⨯=,故C 错误.记至少有两人选择跳远为事件A ,所以()231111127C 33333327P A =⨯⨯+⨯⨯=.记丙同学选择跳远为事件B ,所以()12111215C 3333327P AB ⎛⎫=⨯+⨯⨯= ⎪⎝⎭.所以在至少有两人选择跳远的前提下,丙同学选择跳远的概率为()()()57P AB P B A P B ==,故D 正确.故选:AD 11.ABC【分析】根据题意可得()()()()1ln 1110g x x x k x =++--+>,利用导数结合分类讨论解决恒成立问题.【详解】若()()11f x k x >--恒成立,则()()()()()111ln 1110f x k x x x k x --+=++--+>恒成立,构建()()()()1ln 111g x x x k x =++--+,则()()ln 12g x x k '=++-,∵0x >,故()ln 10x +>,则有:当20k -≥,即2k ≤时,则()0g x '>当0x >时恒成立,故()g x 在()0,∞+上单调递增,则()()010g x g >=>,即2k ≤符合题意,故满足条件的正整数k 为1或2;当20k -<,即2k >时,令()0g x '>,则2e 1k x ->-,故()g x 在()20,e1k --上单调递减,在()2e 1,k --+∞上单调递增,则()()22e 1e 0k k g x g k --≥-=->,构建()2ek G k k -=-,则()21e0k G k --'=<当2k >时恒成立,故()G x 在()2,+∞上单调递减,则()()210G k G <=>,∵()()233e 0,44e 0G G =->=-<,故满足()()02G k k >>的整数3k =;综上所述:符合条件的整数k 为1或2或3,A 、B 、C 正确,D 错误.故选:ABC.12.BCD【分析】对于A ,利用线面垂直判定定理,明确点到平面的距离,利用三角形的性质,可得答案;对于B ,建立空间直角坐标系,求得直线的方向向量,利用向量夹角公式,可得答案;对于C ,利用等腰三角形的性质,结合面面垂直判定定理,可得答案;对于D ,利用线面垂直性质定理,结合直角三角形的性质以及锐角正切的定义,可得答案.【详解】对于A ,在平面ABC 内,过C 作CD AB ⊥,如下图所示:PA ⊥ 平面ABC ,且CD ⊂平面ABC ,PA CD ∴⊥,CD AB ⊥ ,PA AB A = ,,AB PA ⊂平面PAB ,CD \^平面PAB ,则C 到平面PAB 的距离为CD ,23BAC π∠= ,AB AC ==6ABC π∴∠=,在Rt BCD 中,sin sin 3CD CB CBA CBA =⋅∠=∠=,故A 错误;对于B ,在平面ABC 内,过A 作AE AB ⊥,且E BC ⊂,易知,,AB AE AP 两两垂直,如图建立空间直角坐标系:则()0,0,0A,()B,()C ,()0,0,4P ,得()AB =,()4PC =-,(6AB PC ⋅==-,AB =PC ==则cos ,14AB PC AB PC AB PC⋅==⋅ ,故B 正确;对于C,作图如下:在ABC 中,AB AC =,M 为BC 的中点,则AM BC ⊥,PA ⊥ 平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥,AM PA A = ,,AM PA ⊂平面AMP ,BC ∴⊥平面AMP ,BC ⊂ 平面PBC ,∴平面PBC ⊥平面AMP ,故C 正确,对于D,作图如下:PA ⊥ 平面ABC ,AM ⊂平面ABC ,PA AM ∴⊥,则在Rt PAM 中,tan PAAMP AM∠=,当AM 取得最小值时,tan AMP ∠取得最大值,当M 为BC 的中点时,由C 可知,AM BC ⊥,AM 取得最小值为sin 6AB π⋅=则tan AMP ∠D 正确.故选:BCD.13.1【分析】由奇函数的定义求解即可.【详解】函数()()313xx k f x x k -=∈+⋅R 为奇函数,必有0k >,则()()3·31331331313x x x x x x x xk k k kf x f x k k k k -------===-=-=+⋅++⋅+⋅,于是得22223·31x x k k -=-恒成立,即21k =,解得:1k =.故答案为:1.14.【分析】先根据抛物线定义得P 点坐标,再根据三角形面积公式求解.【详解】因为5PF =,所以2253,24,||P P P P x x y y +=∴===因此POF ∆的面积为11||||=22P y OF ⨯【点睛】本题考查抛物线定义应用,考查基本分析转化与求解能力,属基础题.15.78【分析】能被5整除的三位数末位数字是5或0,分成末位数字是5和末位数字是0两种情况讨论.【详解】能被5整除的三位数说明末尾数字是5或0当末尾数字是5时,百位数字除了0有6种不同的选法,十位有6种不同的选法,根据分步乘法原理一共有6636⨯=种方法;当末尾数字是0时,百位数字有7种不同的选法,十位有6种不同的选法,根据分步乘法原理一共有7642⨯=种方法;则一共有364278+=种故答案为:7816.13≤3>讨论,得出()g x 在[)3,+∞上的最小值,由最小值为2求解a 的值即可得出答案.【详解】()22ag x x x+=+- ,()()(2222221x x x a a g x x x x-+-+=∴+'=-=,3≤时,即07a <≤时,则()0g x '>在()3,+∞上恒成立,则()g x 在[)3,+∞上单调递增,()g x ∴在[)3,+∞上的最小值为()5323ag +==,解得1a =,3>时,即7a >时,当x ∈⎡⎣时,()0g x '<,()g x 单调递减,当)x ∈+∞时,()0g x '>,()g x 单调递增,()g x ∴在[)3,+∞上的最小值为22,2ga ===,舍去,综上所述:1a =,故答案为:1.17.ˆ 3.7 4.9yx =+;9.【分析】根据表中数据及平均数公式求出ˆˆ,ab ,从而求出回归方程,然后再根据一天中滑雪人数超过3500人时,当天滑雪场可实现盈利即可求解.【详解】由题意可知,1234535x ++++==,911142620165y ++++==,所以()()()()()()()()5113916231116331416iii x x yy =--=-⨯-+-⨯-+-⨯-∑()()()()432616532016+-⨯-+-⨯-()()()()()27150211024=-⨯-+-⨯-+⨯-+⨯+⨯145010837=++++=()()()()()()5222222113233343534101410ii x x =-=-+-+-+-+-=++++=∑,所以()()()51521373.710iii ii x x y y bx x ==--===-∑∑ ,ˆˆ16 3.73 4.9ay bx =-=-⨯=,所以y 关于x 的回归方程为ˆ 3.7 4.9yx =+.因为天中滑雪人数超过3500人时,当天滑雪场可实现盈利,即3.7 4.935x +>,解得30.18.143.7x >≈,所以根据回归方程预测,该该滑雪场开业的第9天开始盈利.18.(1)(2)π4【分析】(1)在ABC 中,利用面积公式、余弦定理运算求解;(2)在ACD 中,利用正弦定理运算求解,注意大边对大角的运用.【详解】(1)在ABC 中,由ABC的面积111sin 222S AB BC B BC =⨯⨯∠=⨯⨯=可得4BC =,由余弦定理2222cos 121624522AC AB BC AB BC B ⎛⎫=+-⨯⨯∠=+-⨯⨯-= ⎪ ⎪⎝⎭,即AC =(2)在ACD 中,由正弦定理sin sin AC ADD ACD=∠∠,可得sin sin AD D ACD AC ∠∠==∵AD AC <,则60ACD D ∠<∠=︒,故π4ACD ∠=.19.(1)2n n a =(2)7【分析】(1)当2n ≥时,构造11228n n S a n --=+-,与条件中的式子,两式相减,得122n n a a -=-,转化为构造等比数列求通项公式;(2)由(1)可知()()1111222222n n n n n n n b a a ++++==++,利用分组求和法求解.【详解】(1)因为226n n S a n =+-,所以当1n =时,1124S a =-,解得14a =.当2n ≥时,11228n n S a n --=+-,则11222n n n n S S a a ---=-+,整理得122n n a a -=-,即()1222n n a a --=-.所以数列{}2n a -是首项为2,公比为2的等比数列,所以12222n n n a --=⨯=.所以22n n a =+.(2)令()()111112211222222222n n n n n n n n n b a a +++++⎛⎫===- ⎪++++⎝⎭,数列{}n b 的前m 项和1111111112+4661010142222m m m T +⎛⎫=-+-+-+- ⎪++⎝⎭ ,111112=2422222m m ++⎛⎫-=- ++⎝⎭,则112127222258m +-=+,则12222258m +=+,则122567m m +=⇒=.m 的值为7.20.(1)证明见解析【分析】(1)建立空间直角坐标系,利用空间向量法证明10EC BP ⋅= ,10EA BP ⋅=,即可得证;(2)利用空间向量法计算可得.【详解】(1)证明:如图建立空间直角坐标系,则()0,0,2E ,()4,4,0B ,()14,4,4B ,()2,2,4P ,()10,4,4C ,()14,0,4A ,()0,4,0C ,所以()10,4,2EC = ,()14,0,2EA =,()2,2,4BP =-- ,所以10EC BP ⋅= ,10EA BP ⋅=,所以1EC BP ⊥,1EA BP ⊥,又11EC EA E = ,11,EC EA ⊂平面11A EC ,所以BP ⊥平面11A EC.(2)解:由(1)可知()2,2,4BP =-- 可以为平面11A EC 的法向量,又()14,0,4B C =--,设直线1B C 与平面11A EC 所成角为θ,则11sin 6B C BP B C BPθ⋅==⋅=,故直线1B C 与平面11A EC 21.(1)2214x y -=(2)证明过程见解析,定点坐标为10,03⎛⎫⎪⎝⎭【分析】(1)由渐近线方程求出12b a =,根据焦点到渐近线距离列出方程,求出c =,从而求出2,1a b ==,得到双曲线方程;(2):l y kx m =+与2214x y -=联立,求出两根之和,两根之积,由0AM AN ⋅= 列出方程,求出103m k =-或2m k =-,舍去不合要求的情况,求出直线过定点,定点坐标为10,03⎛⎫⎪⎝⎭.【详解】(1)因为渐近线方程为20x y -=,所以12b a =,焦点坐标(),0c 到渐近线20x y -=1=,解得:c ,因为2225a b c +==,解得:2,1a b ==,所以双曲线C 的方程为2214x y -=;(2)由题意得:()2,0A ,:l y kx m =+与2214x y -=联立得:()222148440k x kmx m ----=,设()()1122,,,M x y N x y ,则2121222844,1414km m x x x x k k --+==--,()()()2212121212y y kx m kx m k x x km x x m =++=+++,()()()11221212122,2,24AM AN x y x y x x x x y y ⋅=-⋅-=-+++()()()()()122222222124048142421441kx x km x km m k x mkm m k k++-++--++=+⋅+-⋅+-=-,化简得:22201630k km m ++=,解得:103m k =-或2m k =-,当103m k =-时,10:3l y k x ⎛⎫=- ⎪⎝⎭恒过点10,03⎛⎫ ⎪⎝⎭,当2m k =-时,():2l y k x =-恒过点()2,0A ,此时,M N 中有一点与()2,0A 重合,不合题意,舍去,综上:直线l 过定点,定点为10,03⎛⎫⎪⎝⎭,【点睛】处理定点问题的思路:(1)确定题目中的核心变量(此处设为k ),(2)利用条件找到k 与过定点的曲线(),0F x y =的联系,得到有关k 与,x y 的等式,(3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立,此时要将关于k 与,x y 的等式进行变形,直至找到()00,x y ,①若等式的形式为整式,则考虑将含k 的式子归为一组,变形为“()k ⋅”的形式,让括号中式子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去k 变为常数.22.(1)14ln 2=+y (2)有两个零点,理由见解析【分析】(1)根据导数的几何意义,结合导数的运算进行求解即可;(2)令()0f x =转化为()()2=e <xt x x 与()()()4ln 22=---<g x x x x 图象交点的个数,利用导数得到()g x 单调性,结合两个函数的图象判断可得答案.【详解】(1)()()4e 122xf x x x =+-<-',所以切线斜率为()00e 10204'=+-=-f ,()()00e 04ln 2014ln 2=++-=+f ,所以切点坐标为()0,14ln 2+,函数()f x 的图象在()()0,0f 处的切线方程为14ln 2=+y ;(2)有两个零点,理由如下,令()()e 4ln 20=++-=xf x x x ,可得()e 4ln 2=---x x x ,判断函数()f x 的零点个数即判断()()2=e <xt x x 与()()()4ln 22=---<g x x x x 图象交点的个数,因为()=e xt x 为单调递增函数,()0t x >,当x 无限接近于-∞时()t x 无限接近于0,且()22=e t ,由()421=022+'=-+=--x g x x x,得2x =-,当22x -<<时,()0g x '>,()g x 单调递增,当<2x -时,()0g x '<,()g x 单调递减,所以()224ln40-=-<g ,()3333e 2e 24lne e 100--=+-=->g ,()110g =-<,43314ln ln 0222⎛⎫=--= ⎪⎝⎭g ,且当x 无限接近于2时()g x 无限接近于+∞,所以()=e xt x 与()()4ln 2=---g x x x 的图象在0x <时有一个交点,在02x <<时有一个交点,综上函数()f x 有2个零点.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解。
2023年广西河池、来宾、白色、南宁市高考数学调研试卷(文科)1. 已知集合,,则( )A. B. C. D.2. 设,则( )A. B. C. D.3. 在区间内随机取一个数x,使得不等式成立的概率为( )A. B. C. D.4. 已知双曲线的右焦点为,一条渐近线方程为,则C的方程为( )A. B. C. D.5. 某几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D.6. 已知正项等比数列满足为与的等比中项,则( )A. B. C. D. 27. 圆C:上一点P到直线l:的最大距离为( )A. 2B. 4C.D.8. 已知函数,则下列说法正确的是( )A. 的一条对称轴为B. 的一个对称中心为C. 在上的值域为D. 的图象可由的图象向右平移个单位得到9. 是定义在R上的函数,为奇函数,则( )A. B. C. D. 110. 牛顿冷却定律描述物体在常温环境下的温度变化:如果物体的初始温度为,则经过一定时间t分钟后的温度T满足,h称为半衰期,其中是环境温度.若,现有一杯的热水降至大约用时1分钟,那么水温从降至,大约还需要参考数据:,( )A. 8分钟B. 9分钟C. 10分钟D. 11分钟11. 已知抛物线的焦点为F,准线为l,过F的直线与抛物线交于点A、B,与直线l交于点D,若,,则( )A. 1B. 3C. 2D. 412. 已知,则( )A. B. C. D.13. 已知向量,,,则实数m的值为______ .14. 近年来,“考研热”持续升温,2022年考研报考人数官方公布数据为457万,相比于2021年增长了80万之多,增长率达到以上.考研人数急剧攀升原因较多,其中,本科毕业生人数增多、在职人士考研比例增大,是两大主要因素.据统计,某市各大高校近几年的考研报考总人数如下表:年份20182019202020212022年份序号x12345报考人数万人2m根据表中数据,可求得y关于x的线性回归方程为,则m的值为______ .15. 记为等差数列的前n项和.若,,则______ .16.已知棱长为8的正方体中,点E为棱BC上一点,满足,以点E为球心,为半径的球面与对角面的交线长为______ .17. 4月23日是“世界读书日”,读书可以陶冶情操,提高人的思想境界,丰富人的精神世界,为了丰富校园生活,展示学生风采,某中学在全校学生中开展了“阅读半马比赛”活动.活动要求每位学生在规定时间内阅读给定书目,并完成在线阅读检测.通过随机抽样,得到100名学生的检测得分如下:男生235151812女生051010713若检测得分不低于70分的学生称为“阅读爱好者”,若得分低于70分的学生称为“非阅读爱好者”.根据所给数据①完成下列列联表阅读爱好者非阅读爱好者总计男生女生总计②请根据所学知识判断是否有的把握认为“阅读爱好者”与性别有关;若检测得分不低于80分的人称为“阅读达人”.现从这100名学生中的男生“阅读达人”中,按分层抽样的方式抽取5人,再从这5人中随机抽取3人,求这3人中至少有1人得分在内的概率.附:,其中18. 记的内角A,B,C的对边分别为a,b,c,已知求若点D在边AC上,且,求19. 在三棱锥中,底面ABC是边长为2的等边三角形,点P在底面ABC上的射影为棱BC的中点O,且PB与底面ABC所成角为,点M为线段PO上一动点.证明:;若,求点M到平面PAB的距离.20. 已知函数当时,求函数的最大值;若关于x的方有两个不同的实根,求实数a的取值范围.21. 已知椭圆的离心率为,依次连接椭圆E的四个顶点构成的四边形面积为求椭圆E的标准方程;设点F为E的右焦点,,直线l交E于P,均不与点A重合两点,直线l,AP,AQ的斜率分别为k,,,若,求的周长.22. 在平面直角坐标系xOy中,直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为求曲线C的直角坐标方程;若直线l与曲线C交于A,B两点,求23. 已知函数,当时,求的最小值;若对,,不等式恒成立,求a的取值范围.答案和解析1.【答案】C【解析】解:因为,解得,故故选:解出B中不等式,根据交集含义即可得到答案.本题考查集合的运算,属于基础题.2.【答案】B【解析】解:由题知,,所以故选:根据复数除法运算解决即可.本题主要考查复数的四则运算,属于基础题.3.【答案】B【解析】解:由可得,由几何概型的定义可得使不等式成立的概率为:故选:由可得,再根据几何概型的计算方法求解即可.本题考查几何概型的概率计算方法,属于基础题.4.【答案】D【解析】解:由题意得:,解得:,故C的方程为:故选:根据焦点坐标与渐近线方程,列出方程组,求出,得到C的方程.本题考查双曲线的几何性质,方程思想,属基础题.5.【答案】A【解析】由三视图可知:该几何体是一个棱长为的正方体内挖去一个底面半径为,高为的圆锥,由正方体和圆锥的体积计算公式可得:,故选:根据三视图可得,该几何体是以个正方体内挖去一个底面直径为正方体棱长且等高的圆锥,代入体积计算公式即可求解.本题考查正方体的体积与圆锥的体积的计算,属基础题.6.【答案】B【解析】解:设等比数列的公比为q,由题意得,即,,,,,故选:根据等比中项定义和等比数列通项公式先求出q,进而可求.本题主要考查了等比数列的性质的应用,属于基础题.7.【答案】D【解析】解:圆C方程可化为,圆心坐标为,半径,圆心到直线l:的距离为:,圆C上一点P到直线l:的最大距离为故选:根据圆的一般方程写出圆心坐标和半径,则点P到直线的最大距离为圆心到直线的距离加上半径即可求得结果.本题考查圆的几何性质,直线与圆的位置关系,化归转化思想,属中档题.8.【答案】C【解析】解:,因为,故不是对称轴,故A错误;,不是的一个对称中心,故B错误;当时,,故,所以,即在上的值域为,故C正确;的图象向右平移后对应的解析式为,当时,此时函数对应的函数值为,而,故与不是同一函数,故D错误.故选:化简可得,利用代入检验法可判断AB的正误;利用正弦函数的性质可判断C的正误;求出平移后的解析式可判断D的正误.本题主要考查三角函数的恒等变换公式,考查转化能力,属于基础题.9.【答案】A【解析】解:是定义在R上的函数,为奇函数,则故选:由奇函数定义得,及即可求值.本题主要考查了函数的奇偶性在函数求值中的应用,属于基础题.10.【答案】C【解析】解:由题意可得,,,,,两边取常用对数得,,水温从降至,大约还需要10分钟,故选:由题意可得,代入,得,两边取常用对数得,再利用对数的运算性质即可求出t的值.本题主要考查了函数的实际应用,考查了对数的运算性质,属于中档题.11.【答案】B【解析】解:设准线与x轴的交点为K,作,,垂足分别为,,则根据抛物线定义知,,又,,所以,,设,因为,所以,则,所以,又,可得,所以,所以,可得,即故选:作出辅助线,由抛物线定义得到,,设,则,根据,求出,进而根据求出,得到答案.本题考查了抛物线的性质,属于中档题.12.【答案】A【解析】解:,,,设,则,当时,,函数单调递增,故,即故选:变换,,,构造,确定函数的单调区间得到,得到答案.本题考查利用导数研究函数的单调性,考查实数的大小比较,考查运算求解能力,属于中档题.13.【答案】3【解析】解:向量,,,,求得实数,故答案为:由题意利用两个向量垂直的性质,两个向量的数量积公式,求得m的值.本题主要考查两个向量垂直的性质,两个向量的数量积公式,属于基础题.14.【答案】【解析】解:,,,,解得故答案为:求出的值,以及用m表示出,代入线性回归方程得到关于m的方程,解出即可.本题考查线性回归方程的运用,解题的关键是利用线性回归方程恒过样本中心点,这是线性回归方程中最常考的知识点,属于基础题.15.【答案】144【解析】解:设等差数列的公差为d,则解得,,所以故答案为:利用等差数列的前n项和公式求解即可.本题主要考查等差数列的前n项和公式,属于基础题.16.【答案】【解析】解:如图所示:过点E作于O,P为球面与对角面的交线上一点,平面ABCD,平面ABCD,故,,且,BD,平面,故平面,,故,,则,故P的轨迹是以O为圆心,为半径的圆的一部分,如图所示:,,故,交线长为:故答案为:过点E作于O,确定P的轨迹是以O为圆心,为半径的圆的一部分,计算得到答案.本题主要考查球内接多面体问题,考查运算求解能力,属于中档题.17.【答案】解;根据题意可知,100名学生中男生55人,女生45人;男生中“阅读爱好者”为人,“非阅读爱好者”10人;同理,女生中“阅读爱好者”为30人,“非阅读爱好者”15人;所以列联表如下:阅读爱好者非阅读爱好者总计男生451055女生301545总计7525100利用表中数据可得,所以,没有的把握认为“阅读爱好者”与性别有关;由表可知,男生中“阅读达人”共30人,若按分层抽样的方式抽取5人,则得分在内的人数为人,得分在内的人数为人;则再从这5人中随机抽取3人共有种,其中没有人得分在内的情况为种;所以这3人中至少有1人得分在内的概率为;故这3人中至少有1人得分在内的概率为【解析】根据100名学生的检测得分表,即可完成列联表,利用计算出的值,查表即可得出结论;根据分层抽样方法分别计算出不同成绩区间的人数,再利用“正难则反”的思想计算出不合题意的概率,即可得出结果.本题主要考查独立性检验公式,考查转化能力,属于中档题.18.【答案】解:,在中,由正弦定理得,整理得,由余弦定理得,则,,;,,即,,即,,故,即,,,则【解析】根据正弦定理进行角换边得,结合余弦定理,即可得出答案;利用转化法得,两边同平方得,结合中整理的式子,即可得出答案.本题考查解三角形,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.19.【答案】证明:分别连接AO,AM,为BC中点,为等边三角形,,点P在底面ABC上的投影为点O,平面ABC,又平面ABC,,又,平面APO,平面APO,面APO,又面APO,解:设点M到平面PAB的距离为h,点O到面PAB的距离为d,,,为PB在底面ABC上的投影,为PB与面ABC所成角,,垂直平分BC,,为正三角形,,中,易得,,到PA的距离为,,又,由,,,,点M到平面PAB的距离为【解析】由三线合一得,再根据线面垂直的性质定理得,最后根据线面垂直的判定定理得到面APO,则;设点M到平面PAB的距离为h,点O到面PAB的距离为d,利用等体积法有,即,代入相关数据求出d,则本题主要考查了直线与平面垂直的判定定理,考查了等体积法求点到直线距离,属于中档题.20.【答案】解:当时,,故,当时,,故在上为增函数,当时,,故在上为减函数,故方程即为,整理得到:,令,故,因为,均为R上的增函数,故为R上的增函数,而,故的解为,因为方程有两个不同的实数根,故有两个不同的正数根,设,则,若,则,故在上为增函数,在上至多一个零点,与题设矛盾;若,则时,;时,,故在上为增函数,在上为减函数,由有两个不同的零点可得,故当时,,而,故在有且只有一个零点,又,设,令,,则,故在上为减函数,故,故,故在有且只有一个零点,综上,即实数a的取值范围为【解析】求出函数的导数,讨论其单调性后可得函数的最大值.利用同构可将原方程转化为有两个不同的正数根,利用导数结合零点存在定理可求参数的取值范围.本题考查利用导数研究函数的单调性及最值,考查函数的零点,考查运算求解能力,属于中档题.21.【答案】解:依题意,,解得,故椭圆方程为:设直线l:,,,则,,故,故,由,可得,故,整理得到,又,故,故或,此时均满足若,则直线l:,此时直线恒过,与题设矛盾,若,则直线l:,此时直线恒过,而为椭圆的左焦点,设为,故的周长为【解析】由题设可得基本量的方程组,求出其解后可得椭圆的方程;设直线l:,由题设条件可证明该直线过定点,根据椭圆的定义可求周长.本题考查椭圆的标准方程及其性质,考查直线与椭圆的综合运用,考查运算求解能力,属于中档题.22.【答案】解:变形为,即,因为,故,即;变形为,与联立得:,故,故【解析】对曲线C的极坐标方程变形后,利用求出答案;将直线的参数方程化为,联立椭圆方程后,利用t的几何意义求弦长.本题主要考查简单曲线的极坐标方程,考查转化能力,属于中档题.23.【答案】解:化简得,当时,,当时等号成立,所以的最小值为2;由基本不等式得,当且仅当,即时,等号成立.又因为,当且仅当时,等号成立.所以,解得或,即a的取值范围为或【解析】首先化简得,利用绝对值不等式即可求出的最小值;利用三元基本不等式求出,再根据绝对值不等式得,则有,解出即可.本题主要考查了绝对值不等式的解法,考查了利用基本不等式求最值,属于中档题.。
2023年广东省揭阳市高考数学押题试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x∈Z|﹣1<x≤2},B={x||x|≤1},则A∩B=()A.{x|0<x≤1}B.{x|﹣1<x≤1}C.{1}D.{0,1}2.(5分)复数z=2﹣i5(其中i为虚数单位)的共轭复数为()A.2﹣i B.2+i C.1D.33.(5分)已知单位向量,,,满足+=,则向量和的夹角为()A.B.C.D.4.(5分)“”是“方程表示的曲线为双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.(5分)“回文联”是对联中的一种,既可顺读,也可倒读.比如,一副描绘厦门鼓浪屿景色的回文联:雾锁山头山锁雾,天连水尾水连天.由此定义“回文数”,n为自然数,且n的各位数字反向排列所得自然数n'与n相等,这样的n称为“回文数”,如:1221,2413142.则所有5位数中是“回文数”且各位数字不全相同的共有()A.648个B.720个C.810个D.891个6.(5分)已知圆M:(x﹣a)2+(y﹣1)2=r2(r>0),若圆M与x轴交于A,B两点,且=,则r=()A.2B.2C.D.17.(5分)如图1,洛书是一种关于天地空间变化脉络的图案,2014年正式入选国家级非物质文化遗产名录,其数字结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,形成图2中的九宫格,将自然数1,2,3,…,n2放置在n行n列(n≥3)的正方形图表中,使其每行、每列、每条对角线上的数字之和(简称“幻和”)均相等,具有这种性质的图表称为“n阶幻方”.洛书就是一个3阶幻方,其“幻和”为15.则7阶幻方的“幻和”为()A.91B.169C.175D.1808.(5分)已知函数f(x)=sin x+sin2x在(0,a)上有4个零点,则实数a的最大值为()A.πB.2πC.πD.3π二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(多选)9.(5分)进入21世纪以来,全球二氧化碳排放量增长迅速,自2000年至今,全球二氧化碳排放量增加了约40%,我国作为发展中国家,经济发展仍需要大量的煤炭能源消耗.如图是2016﹣2020年中国二氧化碳排放量的统计图表(以2016年为第1年).利用图表中数据计算可得,采用某非线性回归模型拟合时,;采用一元线性回归模型拟合时,线性回归方程为,.则下列说法正确的是()A.由图表可知,二氧化碳排放量y与时间x正相关B.由决定系数可以看出,线性回归模型的拟合程度更好C.利用线性回归方程计算2019年所对应的样本点的残差为﹣0.30D.利用线性回归方程预计2025年中国二氧化碳排放量为107.24亿吨(多选)10.(5分)将函数图象上所有的点向右平移个单位长度,得到函数g(x)的图象,则下列说法正确的是()A.g(x)的最小正周期为πB.g(x)图象的一个对称中心为C.g(x)的单调递减区间为D.g(x)的图象与函数的图象重合(多选)11.(5分)已知函数,g(x)=f(x+1).若实数a,b(a,b均大于1)满足g(3b﹣2a)+g(﹣2﹣a)>0,则下列说法正确的是()A.函数f(x)在R上单调递增B.函数g(x)的图象关于(1,0)中心对称C.D.log a(a+1)>log b(b+1)(多选)12.(5分)如图,已知正方体ABCD﹣A1B1C1D1顶点处有一质点Q,点Q每次会随机地沿一条棱向相邻的某个顶点移动,且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q的初始位置位于点A处,记点Q移动n 次后仍在底面ABCD上的概率为P n,则下列说法正确的是()A.B.P n+1=+C.点Q移动4次后恰好位于点C1的概率为0D.点Q移动10次后恰好回到点A的概率为三、填空题:本题共4小题,每小题5分,共20分.13.(5分)若正数a,b满足ab=4,则的最小值为.14.(5分)已知抛物线y2=2px(p>0),若过点(1,2)的直线l与抛物线恒有公共点,则p的值可以是.(写出一个符合题意的答案即可)15.(5分)2022年3月,中共中央办公厅、国务院办公厅印发了《关于构建更高水平的全民健身公共服务体系的意见》,再次强调持续推进体育公园建设.如图,某市拟建造一个扇形体育公园,其中,OA=OB=2千米.现需要在OA,OB,上分别取一点D,E,F,建造三条分健走长廊DE,DF,EF,若DF⊥OA,EF⊥OB,则DE+EF+FD 的最大值为千米.16.(5分)在四面体ABCD中,已知AB=CD=AC=BD=2,AD=BC=4,记四面体ABCD外接球的球心到平面ABC的距离为d1,四面体ABCD内切球的球心到点A的距离为d2,则的值为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知△ABC内角A,B,C的对边分别为a,b,c,满足4a sin B=3b cos A.(1)求cos A的值;(2)若△ABC的面积为,求的值.18.(12分)已知数列{a n}满足,a2=4.(1)求数列{a n}的通项公式;(2)记数列的前n项和为S n,求证:S n<2.19.(12分)如图1,正方形ABCD中,E,F分别为边BC,AD的中点,将四边形EFDC 沿直线EF折起,使得平面CDFE⊥平面ABEF.如图2,点M,N分别满足,.(1)求证:AN⊥平面BMN;(2)求平面AFM与平面BMN夹角的余弦值.20.(12分)数据显示,中国直播购物规模近几年保持高速增长态势,而直播购物中的商品质量问题逐渐成为人们关注的重点.已知某顾客在直播电商处购买了n(n∈N+)件商品.(1)若n=10,且买到的商品中恰好有2件不合格品,该顾客等可能地依次对商品进行检查.求顾客检查的前4件商品中不合格品件数X的分布列.(2)抽检中发现直播电商产品不合格率为0.2.若顾客购买的n件商品中,至少有两件合格产品的概率不小于0.9984,求n的最小值.21.(12分)已知椭圆C:+=1(a>b>0)的离心率为,且经过点P(1,).(1)求椭圆C的方程;(2)A,B为椭圆C上两点,直线PA与PB倾斜角互补,求△PAB面积的最大值.22.(12分)已知函数f(x)=ln|x|+a cos x+bx,其中a≥0,b∈R.(1)当a=0时,若f(x)存在大于零的极值点,求b的取值范围.(2)若存在x1,(其中x1≠x2),使得曲线y=f(x)在点(x1,f(x1))与点(x2,f(x2))处有相同的切线,求a的取值范围.2023年广东省揭阳市高考数学押题试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x∈Z|﹣1<x≤2},B={x||x|≤1},则A∩B=()A.{x|0<x≤1}B.{x|﹣1<x≤1}C.{1}D.{0,1}【解答】解:集合A={x∈Z|﹣1<x≤2}={0,1,2},B={x||x|≤1}={x|﹣1≤x≤1},则A∩B={0,1}.故选:D.2.(5分)复数z=2﹣i5(其中i为虚数单位)的共轭复数为()A.2﹣i B.2+i C.1D.3【解答】解:∵z=2﹣i5=2﹣i4+1=2﹣i,∴,故选:B.3.(5分)已知单位向量,,,满足+=,则向量和的夹角为()A.B.C.D.【解答】解:单位向量,,,满足+=,∴()2=1+1+2cos<>=1,解得cos<>=﹣,∴0≤<>≤π,∴向量和的夹角为.故选:A.4.(5分)“”是“方程表示的曲线为双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【解答】解:∵方程表示的曲线为双曲线,⇔(2a﹣1)a<0⇔0<a<,∴是方程表示的曲线为双曲线的充要条件,故选:C.5.(5分)“回文联”是对联中的一种,既可顺读,也可倒读.比如,一副描绘厦门鼓浪屿景色的回文联:雾锁山头山锁雾,天连水尾水连天.由此定义“回文数”,n为自然数,且n的各位数字反向排列所得自然数n'与n相等,这样的n称为“回文数”,如:1221,2413142.则所有5位数中是“回文数”且各位数字不全相同的共有()A.648个B.720个C.810个D.891个【解答】解:根据题意,五位“回文数”的万位数字不能为0,有9种情况,千位、百位数字都有10种情况,则五位“回文数”共有9×10×10=900个,其中,各位数字完全相同的情况有9种,则所有5位数中是“回文数”且各位数字不全相同的共有900﹣9=891个,故选:D.6.(5分)已知圆M:(x﹣a)2+(y﹣1)2=r2(r>0),若圆M与x轴交于A,B两点,且=,则r=()A.2B.2C.D.1【解答】解:∵圆M:(x﹣a)2+(y﹣1)2=r2(r>0),∴圆心M(a,1),半径为r,圆心到x轴的距离为1,∵圆M与x轴交于A,B两点,且=,∴可设|AB|=,|MB|=t(t>0),∴由垂径定理可得,,即,解得t=2,∴圆的半径r=t=2.故选:B.7.(5分)如图1,洛书是一种关于天地空间变化脉络的图案,2014年正式入选国家级非物质文化遗产名录,其数字结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,形成图2中的九宫格,将自然数1,2,3,…,n2放置在n行n列(n≥3)的正方形图表中,使其每行、每列、每条对角线上的数字之和(简称“幻和”)均相等,具有这种性质的图表称为“n阶幻方”.洛书就是一个3阶幻方,其“幻和”为15.则7阶幻方的“幻和”为()A.91B.169C.175D.180【解答】解:将自然数1,2,3,…,n2放置在n行n列(n≥3)的正方形图表中,使其每行、每列、每条对角线上的数字之和(简称“幻和”)均相等,故当n=7时,S=1+2+3+…+49=,故7阶幻方的“幻和”为×=175.故选:C.8.(5分)已知函数f(x)=sin x+sin2x在(0,a)上有4个零点,则实数a的最大值为()A.πB.2πC.πD.3π【解答】解:∵f(x)=sin x+sin2x=sin x(1+2cos x)在(0,a)上有4个零点,∴sin x=0或cos x=﹣,∴x=kπ(k∈Z且k≠0)或x=2kπ±(k∈Z),当sin x=0在(0,a)上取到第二个零点,但取不到第三个零点时,a∈(2π,3π];当y=cos x与y=﹣在(0,a)上取到第三个交点时的x的值为,∴满足题意的实数a的最大值为,故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(多选)9.(5分)进入21世纪以来,全球二氧化碳排放量增长迅速,自2000年至今,全球二氧化碳排放量增加了约40%,我国作为发展中国家,经济发展仍需要大量的煤炭能源消耗.如图是2016﹣2020年中国二氧化碳排放量的统计图表(以2016年为第1年).利用图表中数据计算可得,采用某非线性回归模型拟合时,;采用一元线性回归模型拟合时,线性回归方程为,.则下列说法正确的是()A.由图表可知,二氧化碳排放量y与时间x正相关B.由决定系数可以看出,线性回归模型的拟合程度更好C.利用线性回归方程计算2019年所对应的样本点的残差为﹣0.30D.利用线性回归方程预计2025年中国二氧化碳排放量为107.24亿吨【解答】解:对于A,由图表可知,图象中的点呈上升趋势,即二氧化碳排放量y与时间x正相关,故A正确,对于B,∵,∴线性回归模型的拟合程度更好,故B正确,对于C,2019年,对应x=4,2019年所对应的样本点的残差为98.06﹣(1.58×4+91.44)=0.3,故C错误,对于D,2025年,对应x=10,预计2025年中国二氧化碳排放量为1.58×10+91.44=107.24亿吨,故D正确.故选:ABD.(多选)10.(5分)将函数图象上所有的点向右平移个单位长度,得到函数g(x)的图象,则下列说法正确的是()A.g(x)的最小正周期为πB.g(x)图象的一个对称中心为C.g(x)的单调递减区间为D.g(x)的图象与函数的图象重合【解答】解:将函数图象上所有的点向右平移个单位长度,得到函数g(x)=cos(2x﹣)的图象,对于A:函数的最小正周期为π,故A正确;对于B:当x=时,g()=0,故B正确;对于C:令(k∈Z),整理得函数的单调递减区间为,故C正确;对于D:函数g(x)=cos(2x﹣)=,故D错误.故选:ABC.(多选)11.(5分)已知函数,g(x)=f(x+1).若实数a,b(a,b均大于1)满足g(3b﹣2a)+g(﹣2﹣a)>0,则下列说法正确的是()A.函数f(x)在R上单调递增B.函数g(x)的图象关于(1,0)中心对称C.D.log a(a+1)>log b(b+1)【解答】解:对于A,∵>=|2x|,∴+2x>0在R上恒成立,∴f(x)定义域为R,即f(x)的定义域关于原点对称,∵f(x)+f(﹣x)=ln[(+2x)(﹣2x)]=ln1=0,∴f(x)为奇函数,∴函数f(x)的图象关于点(0,0)中心对称,∵y=x3,y=+2x,y=lnx在(0,+∞)上单调递增,∴函数数在(0,+∞)上单调递增,∴函数f(x)在R上单调递增,故A正确;对于B,∵g(x)=f(x+1)的图象是将y=f(x)的图象向左平称一个单位得到,∴函数g(x)的图象关于点(﹣1,0)中心对称,故B错误;对于C,∵函数g(x)的图象关于点(﹣1,0)中心对称,∴g(a)+g(﹣2﹣a)=0,∴﹣g(﹣2﹣a)=g(a),∵g(3b﹣2a)+g(﹣2﹣a)>0,∴g(3b﹣2a)>﹣g(﹣2﹣a)=g(a),∵g(x)相当于f(x)向左平移1个单位,∴g(x)和f(x)单调性相同,∴函数g(x)在R上单调递增,∴3b﹣2a>a,∴b>a>1,∴e a﹣b<e0=1<,故C错误;对于D,令h(x)=(x>1),∴h′(x)=(x>1),令s(x)=xlnx(x>1),则s′(x)=lnx+1>0,∴s(x)在(1,+∞)上单调递增,∴xlnx<(x+1)ln(x+1),∴h′(x)=<0,∴h(x)在(1,+∞)上单调递减,∵b>a>1,∴h(a)>h(b),∴log a(a+1)>log b(b+1),故D正确.故选:AD.(多选)12.(5分)如图,已知正方体ABCD﹣A1B1C1D1顶点处有一质点Q,点Q每次会随机地沿一条棱向相邻的某个顶点移动,且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q的初始位置位于点A处,记点Q移动n 次后仍在底面ABCD上的概率为P n,则下列说法正确的是()A.B.P n+1=+C.点Q移动4次后恰好位于点C1的概率为0D.点Q移动10次后恰好回到点A的概率为【解答】解:在正方体中,每一个顶点由3个相邻的点,其中两个在同一底面,∴当点Q在下底面时,随机移动一次仍在下底面的概率为,在上底面时,随机移动一次回到下底面的概率为,∴P2==,故A正确;P n+1=+=,故B错误;点Q由点A移动到点C1处至少需要3次,任意折返都需要2次移动,∴移动4次后不可能到达点C1,故C正确;由于P n+1=+,∴,且P1﹣=,∴,∴P n=,∴P9=,∴点Q移动10次后恰好回到点A的概率为=,故D正确.故选:ACD.三、填空题:本题共4小题,每小题5分,共20分.13.(5分)若正数a,b满足ab=4,则的最小值为3.【解答】解:因为a>0,b>0,且ab=4,所以≥2=2×=2×=3,当且仅当=,即a=,b=6时取“=”,所以+的最小值为3.故答案为:3.14.(5分)已知抛物线y2=2px(p>0),若过点(1,2)的直线l与抛物线恒有公共点,则p的值可以是不小于2的实数.(写出一个符合题意的答案即可)【解答】解:抛物线方程为y2=2px(p>0),若过点(1,2)的直线l与抛物线恒有公共点,则点(1,2)在抛物线内部或在抛物线上,可得22≤2p,即p≥2.∴p的值可以是不小于2的实数.故答案为:不小于2的实数.15.(5分)2022年3月,中共中央办公厅、国务院办公厅印发了《关于构建更高水平的全民健身公共服务体系的意见》,再次强调持续推进体育公园建设.如图,某市拟建造一个扇形体育公园,其中,OA=OB=2千米.现需要在OA,OB,上分别取一点D,E,F,建造三条分健走长廊DE,DF,EF,若DF⊥OA,EF⊥OB,则DE+EF+FD的最大值为千米.【解答】解:据题意,设∠BOF=α,则∠DOF=,结合OF=2,EF=2sinα,,α∈(),显然O,E,F,D四点共圆,且直径为2,故,DE=,所以DE+EF+FD=+2(sinα+sin())=,易知,当时,原式取得最大值.故答案为:.16.(5分)在四面体ABCD中,已知AB=CD=AC=BD=2,AD=BC=4,记四面体ABCD外接球的球心到平面ABC的距离为d1,四面体ABCD内切球的球心到点A的距离为d2,则的值为.【解答】解:由题意可将四面体ABCD放在一个长方体中,如图所示,设长宽高为a,b,c,则,解得,设外接球的半径为R1,则,在△ABC中,,则,设△ABC的外接圆半径为r,则,则,所以,可得,设四面体ABCD内切球的半径为R2,因为四面体的各个面都相等,且,则,解得,因为d1=R2,四面体的各个面都相等,则外接球的球心到各个面的距离相等,所以外接球的球心和内切球的球心重合,所以,所以.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知△ABC内角A,B,C的对边分别为a,b,c,满足4a sin B=3b cos A.(1)求cos A的值;(2)若△ABC的面积为,求的值.【解答】解:(1)因为4a sin B=3b cos A,由正弦定理得:4sin A sin B=3sin B cos A,因为sin B>0,所以4sin A=3cos A,又因为sin2A+cos2A=1,A∈(0,),所以;(2)由(1)及余弦定理知,整理得:5b2+5c2﹣5a2=8bc,①由面积公式:,整理得:5a2﹣5c2=3bc,②由①②得:5b2=11bc,所以.18.(12分)已知数列{a n}满足,a2=4.(1)求数列{a n}的通项公式;(2)记数列的前n项和为S n,求证:S n<2.【解答】解:(1)∵﹣=1,∴{}是以1为公差的等差数列,又∵a2=4,﹣=1,∴=1,∴=n,则a n=n2;(2)证明:由(1)可知==<==2(﹣),所以S n=++•••+<2[(1﹣)+(﹣)+•••+(﹣)]=2﹣,又n∈N*,故S n=2﹣<2.19.(12分)如图1,正方形ABCD中,E,F分别为边BC,AD的中点,将四边形EFDC 沿直线EF折起,使得平面CDFE⊥平面ABEF.如图2,点M,N分别满足,.(1)求证:AN⊥平面BMN;(2)求平面AFM与平面BMN夹角的余弦值.【解答】解:(1)证明:连结AE交BN于点G,连结MG,设AB=2,因为平面CDFE⊥平面ABEF,平面CDFE∩平面ABEF=EF,CE⊂平面CDFE,CE⊥EF,所以CE⊥平面ABEF,因为点N是EF的中点,NE∥AB,所以AG=2GE,又因为AM=2MC,所以MG∥CE,所以MG⊥平面ABEF,因为AN⊂平面ABEF,所以MG⊥AN,又AB=2,,所以AN⊥NB,因为NB∩MG=G,NB,MG⊂平面BMN,所以AN⊥平面BMN.(2)如图,分别以FA,FE,FD所在直线为x,y,z轴建立空间直角坐标系,所以F(0,0,0),A(1,0,0),,所以,,设平面AFM的法向量为,由,解得,令y=1,得,由(1)知平面BMN的法向量为,设平面AFM与平面BMN的夹角为θ,所以,所以平面AFM与平面BMN夹角的余弦值为.20.(12分)数据显示,中国直播购物规模近几年保持高速增长态势,而直播购物中的商品质量问题逐渐成为人们关注的重点.已知某顾客在直播电商处购买了n(n∈N+)件商品.(1)若n=10,且买到的商品中恰好有2件不合格品,该顾客等可能地依次对商品进行检查.求顾客检查的前4件商品中不合格品件数X的分布列.(2)抽检中发现直播电商产品不合格率为0.2.若顾客购买的n件商品中,至少有两件合格产品的概率不小于0.9984,求n的最小值.【解答】解:(1)由题意可知,X的取值为0,1,2.,,.所以顾客检查的前4件商品中不合格品件数X的分布列为X015P(2)记“顾客购买的n件商品中,至少有两件合格产品”为事件A,则,由题意可知1﹣(1+4n)⋅0.2n≥0.9984,所以(1+4n)⋅0.2n≤0.0016,即(1+4n)⋅0.2n﹣4≤1,设f(n)=(1+4n)⋅0.2n﹣4,则f(n+1)﹣f(n)=(5+4n)⋅0.2n﹣3﹣(1+4n)⋅0.2n ﹣4=﹣16n⋅0.2n﹣3<0,所以f(n+1)<f(n),因为f(5)=21×0.2=4.2>1,f(6)=25×0.04=1,所以当n≥6时,f(n)≤1成立,所以n的最小值为6.21.(12分)已知椭圆C:+=1(a>b>0)的离心率为,且经过点P(1,).(1)求椭圆C的方程;(2)A,B为椭圆C上两点,直线PA与PB倾斜角互补,求△PAB面积的最大值.【解答】解:(1)由题意得:,解得:,,∴椭圆方程为.(2)由题意可知直线AB的斜率一定存在,设直线AB的方程为y=kx+t,A(x1,y1),B(x2,y2),将y=kx+t代入得:(k2+3)x2+2ktx+t2﹣6=0,∴,,则y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=,x1y2+x2y1=x1(kx2+t)+x2(kx1+t)=kt(x1+x2)+2ktx1x2=,∵直线PA和直线PB的倾斜角互补,∴,化简可得:,即,即,∵直线AB不过点P,∴,∴,,则,又点P到直线AB的距离为,∵Δ=12t2﹣24(t2﹣6)>0,∴,∴,当且仅当时等号成立,∴△PAB面积最大值为.22.(12分)已知函数f(x)=ln|x|+a cos x+bx,其中a≥0,b∈R.(1)当a=0时,若f(x)存在大于零的极值点,求b的取值范围.(2)若存在x1,(其中x1≠x2),使得曲线y=f(x)在点(x1,f(x1))与点(x2,f(x2))处有相同的切线,求a的取值范围.【解答】解:(1)由题意知f(x)=ln|x|+bx,.①若b≥0,当x∈(0,+∞)时,f'(x)>0,f(x)单调递增,无极值点;②若b<0,当x∈(0,﹣)时,f'(x)<0,f(x)单调递减;当x∈(﹣,+∞)时,f'(x)>0,f(x)单调递增;f(x)在(0,+∞)上存在唯一的极小值点﹣,故b的取值范围是(﹣∞,0).(2)由题意,f(x)在点(x1,f(x1))处的切线方程为y﹣f(x1)=f'(x1)(x﹣x1),即y=f'(x1)x﹣x1f'(x1)+f(x1),同理f(x)在点(x2,f(x2))处的切线方程为y=f'(x2)x﹣x2f'(x2)+f(x2),因为两切线相同,所以,化简得,令h(x)=ax sin x+ln|x|+a cos x,,当时,h'(x)>0,h(x)单调递增;当时,h'(x)<0,h(x)单调递减.注意到h(x)为偶函数,且x1≠x2,h(x1)=h(x2),故x1+x2=0,令,注意到g(x)的奇函数,所以当x1+x2=0时,g(x1)+g(x2)=0,又因为g(x1)=g(x2),故g(x1)=g(x2)=0,因为a>0,,所以,当时,g(x)单调递减,,当时,g(x)单调递减,.故,所以,即a∈[,+∞).。
2023年高考数学模拟试卷班级姓名一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x | x² - 2x - 3≤0},B={x | x≤3,x∈N},则A∩B=A.[- 1,3)B. {- 1,0,1,2,3}C. {0,1,2,3} D,{1,2,3}2.已知函数f(x)=若f [ f ( 2 ) ] = 2 ,则a =A.0B.C.D.13.z(i-1),则复数z可能为A. 1+iB.1—iC.2+iD. 1+2i4.已知等差数列{a}的前n项和为S n,若S2=5,S₅=2,则S7=nA.7B.-7C.- 10D.105.若α∈A. B. C. D.16 已知 1 < m ≤ 3 , 则的取值范围为A. B. C. D.7.已,则A.a<b<cB.b<a<cC.b<c<aD.c<b<a8.若双曲线C .上存在E 、F 、M 、N 四点,使得四边形EFMN 为正方形,且原点O 为正方形中心,A 为双曲线右顶点,M 在第一象限,2MA= 3OM,设双曲线的离心率为e,则e²= A.B.D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求, 全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列命题不正确的是 A. 若a >b ,则ac²>bc²B. 三个数a,b,c 成等比数列的充要条件是b²=acC. 向量a,b 共线的充要条件是有且仅有一个实数λ,使b=λaD. 已知命题p:Vx>0时,则命题p 的否定为:∃x>0时,10.已 知 当x ∈( 0 , π)时 ,f ( x ) = c o s x ,并 且 满 足f ( 2 π十x ) = f ( 2 π - x ) , f ( π十x ) + f(π-x)=0,则下列关于函数f(x)说法正确的是A.B. 周期T=2πC . f(x)关于x=π对称 D.f(x)关于(一 π,0)对称11. 如图几何体由两个棱长为1的正方体堆叠而成,G 为A 2D 2的中点,下列说法正确的是 A.平面B 1GD 1⊥平面AA 2C 1 B. 三棱锥A 2-B ₁GD 1的体积为 241C. 该几何体外接球的体积为66πD. 若P 为动点,且B ₁P= 2,则P 点运动轨迹与该几何体表面相交的长度为3π.12.星形线又称为四尖瓣线,是数学中的瑰宝,在生产和生活中有很大应用,1y x3232=+便是它的一种表达式,下列有关说法正确的是A. 星形线关于y=x 对称B. 星形线图象围成的面积小于2C. 星形线上的点到x 轴,y 轴距离乘积的最大值D. 星形线上的点到原点距离的最小值三、填空题:本题共4小题,每小题5分,共20分.13.毛泽东思想是党的重要思想,某学校在团员活动中将四卷不同的《毛泽东选集》分发给三名同 学,每个人至少分发一本, 一共有 种分发法. 14.已知随机变量X 服从正态分布N(2,σ²),且P(X² -4X+3≤0)=0 .6827,则P(X<- 1)= . ( 附 : 若X ~N ( u ,σ ² ) ,则P ( u - σ ≤ X ≤ u + σ ) = 0 . 6 8 2 7 ,P(u-2σ≤X≤u+2σ)=0.9545,P(u-3σ≤X≤u+3σ)=0.9973) 15.已 知 0是该函数的极值点,定义<x 〉表示超过实数z 的最小整数,则f(<x o 〉)的值为16.单位圆中,AB 为一条直径,C 、D 为圆上两点且弦CD 长为 3,则 AC ·BD 的取值范围是四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分10分) 已知在△ABC 中, D 在BC 边上, AD 平分∠BAC,AD=3,AB=5,AC=7 . (1)求cos ∠BAD; (2)求△ABC 的面积. 18. (本小题满分12分)已知{ax}为等差数列(1)求{an}的通项公式; (2)若T n 为b n 的前n 项和,求T n .19. (本小题满分12分)在斜三棱柱ABC -A ₁B ₁C 1中,△ABC 是等腰直角三角形,AB=BC,AC=32,平面ACC 1A 1⊥底面ABC,A 1B=AA ₁=2 .(1)证明: A 1B ⊥AC;(2)求二面角A 1-BC-C 1的正弦值.20. (本小题满分12分)已知椭圆L 1by a x 2222=+ (a >b >0) ,椭圆上的点到两焦点的距离和为52,在椭圆 L 上 . (1)求椭圆L 的标准方程;(2)过点P(0,2)作直线L 交椭圆于A,B 两点,点E 为点P 关于x 轴的对称点,求△ABE 面积的最大值.21. (本小题满分12分)小明和小红进行比赛抛掷硬币,规定小明和小红每人抛6次,小明得分规则为每连续抛掷n (2≤n≤6)次结果相同则得1-n 2分(规定连续抛掷结果不同不得分,如正反正反正反不得分, 正正反正反反得4分),小红每抛掷一次正面结果则得2分,得分高者获胜. (1)求小红得8分的概率;(2)求小明得分的分布列和期望,并比较两人谁获胜的概率大? 22. (本小题满分12分) 已知f(x)=,3-3x alnae x ++2e 3x ln x f x g x+++=)()((a≠0). (1)当a=1时,求g(x)的单调性;(2)若f(x)恒大于0,求a 的取值范围.。
2023年江西省5市重点中学高考数学联考试卷(文科)1. 已知集合,,则( )A. B. C. D.2. 若复数z满足,则( )A. B. C. 5 D. 173. 函数,则( )A. B. C. 1 D. 24. 已知双曲线C:的一条渐近线的斜率为2,焦距为,则( )A. 1B. 2C. 3D. 45. 已知向量,,且,则向量的夹角是( )A. B. C. D.6.在直三棱柱中,是等边三角形,,D,E,F分别是棱,,的中点,则异面直线BE与DF所成角的余弦值是( )A. B. C. D.7. 某校举行校园歌手大赛,5名参赛选手的得分分别是9,,,x,已知这5名参赛选手的得分的平均数为9,方差为,则( )A. B. C. D.8. 设函数的导函数为,若在其定义域内存在,使得,则称为“有源”函数.已知是“有源”函数,则a的取值范围是( )A. B. C. D.9. 如图,这是第24届国际数学家大会会标的大致图案,它是以我国古代数学家赵爽的弦图为基础设计的.现用红色和蓝色给这4个三角形区域涂色,每个区域只涂一种颜色,则相邻的区域所涂颜色不同的概率是( )A. B. C. D.10. 已知函数,则( )A. 的最小正周期是B. 在上单调递增C. 的图象关于点对称D. 在上的值域是11. 在锐角中,角A,B,C所对的边分别为a,b,已知,则的取值范围是( )A. B. C. D.12. 已知实数x,y满足约束条件,则的最大值为______ .13. 已知是第二象限角,且,则______ .14. 已知是定义在上的减函数,且的图象关于点对称,则关于x的不等式的解集为______ .15. 已知抛物线:的焦点为F,过点F作两条互相垂直的直线,,且直线,分别与抛物线C交于A,B和D,E,则四边形ADBE面积的最小值是______ .16. 国际足联世界杯,简称“世界杯”,是由全世界国家级别球队参与,象征足球界最高荣誉,并具有最大知名度和影响力的足球赛事年卡塔尔世界杯共有32支球参加比赛,共有64场比赛.某社区随机调查了街道内男、女球迷各200名,统计了他们观看世界杯球赛直播的场次,得到下面的列联表:求a的值,并完成列联表;少于32场比赛不少于32场比赛总计男球迷女球迷a总计若一名球迷观看世界杯球赛直播的场次不少于32场比赛,则称该球迷为“资深球迷”,请判断能否有的把握认为该社区的一名球迷是否为“资深球迷”与性别有关.参考公式:,其中参考数据:17. 已知正项数列的前n项和满足求的通项公式;设,数列的前n项和为,证明:18. 如图,在四棱锥中,四边形ABCD是直角梯形,,,,,,E是棱PB的中点.证明:平面ABCD;若F是棱AB的中点,,求点C到平面DEF的距离.19. 已知椭圆E:的左、右焦点分别为,,E的离心率为,斜率为k的直线l过E的左焦点,且直线l与椭圆E相交于A,B两点.若,,求椭圆E的标准方程;若,,,求k的值.20. 已知函数当时,求曲线在处的切线方程;若对任意的,恒成立,求a的取值范围.21. 在平面直角坐标系xOy中,曲线C的参数方程为为参数,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程是求曲线C的普通方程和直线l的直角坐标方程;若直线l与曲线C交于A,B两点,点,求的值.22. 已知函数求的最小值;若,不等式恒成立,求a的取值范围.答案和解析1.【答案】A【解析】解:,,故选:解不等式求得集合B,由交集定义可求得结果.本题主要考查了集合的基本运算,属于基础题.2.【答案】C【解析】解:,,故选:利用复数的运算法则、模的计算公式即可得出.本题主要考查复数的四则运算,以及复数模公式,属于基础题.3.【答案】D【解析】解:由,得,则故选:根据函数解析式,先求出,进而可求.本题主要考查了函数值的求解,属于基础题.4.【答案】A【解析】解:双曲线C:的渐近线方程为,由题意可得,即有,又,,故选:求出双曲线的渐近线方程,可得,由a,b,c的关系和离心率公式计算即可得到所求值.本题考查双曲线的离心率的求法,注意运用渐近线方程,考查运算能力,属基础题.5.【答案】D【解析】解:,,,又,故选:由可求得,根据向量夹角公式可求得结果.本题主要考查平面向量的夹角公式,属于基础题.6.【答案】A【解析】解:取等边的AC边的中点O,连接OB,则,过O作的平行线,则以O为原点,分别以OB、OC、Oz为x轴、y轴、z轴,建立空间直角坐标系,如图所示,设等边的边长为2,则根据题意可得:,,,,,,,,异面直线BE与DF所成角的余弦值为,故选:取等边的AC边的中点O,以O为原点建立空间直角坐标系,运用异面直线所成角的计算公式即可得结果.本题考查向量法求解异面直线所成角问题,向量夹角公式的应用,属中档题.7.【答案】D【解析】解:因为平均数为,所以,因为方差为,所以,所以,又因为,所以,所以,所以故选:先由平均数和方差分别得到和的值,再整体代入计算的值即可.本题主要考查了数据的数字特征,属于基础题.8.【答案】A【解析】解:,,由“有源”函数定义知,存在,使得,即有解,记,所以a的取值范围是函数的值域,则,当时,,此时单调递增,当时,,此时单调递减,所以,所以,即a的取值范围是故选:根据“有源”函数概念,转化为函数有解问题,利用导函数求出函数值域即可得到参数a的范围.本题主要考查利用导数研究函数的单调性,考查运算求解能力,属于中档题.9.【答案】A【解析】解:将四块三角形区域编号如下,由题意可得总的涂色方法有种,若相邻的区域所涂颜色不同,即12同色,34同色,故符合条件的涂色方法有2种,故所求概率故选:根据古典概型概率的计算公式即可求解.本题主要考查了古典概型的概率公式,属于基础题.10.【答案】B【解析】解:,对于A,的最小正周期,A错误;对于B,当时,,此时单调递减,在上单调递增,B正确;对于C,令,解得,此时,的图象关于点对称,C错误;对于D,当时,,则,在上的值域为,D错误.故选:利用两角和与差的余弦公式、二倍角和辅助角公式化简,再根据正弦型函数的图象与性质判断各选项即可.本题主要考查了三角函数的恒等变换和三角函数的图象和性质,属于基础题.11.【答案】B【解析】解:,,由正弦定理得:,即,,或,解得或舍去,又为锐角三角形,则,,解得,,又,,,,即的取值范围故选:由正弦定理边化角可得,由为锐角三角形可得,运用降次公式及辅助角公式将问题转化为求三角函数在上的值域.本题主要考查解三角形,考查转化能力,属于中档题.12.【答案】9【解析】解:由约束条件可得可行域如下图阴影部分所示,当取得最大值时,在y轴截距最大,由图形可知:当过点A时,在y轴截距最大,由得,即,故答案为:由约束条件作出可行域,将问题转化为在y轴截距最大值的求解,采用数形结合的方式可求得结果.本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.13.【答案】【解析】解:是第二象限角,,,,故答案为:利用同角三角函数关系和二倍角正弦公式可直接求得结果.本题主要考查了同角基本关系及二倍角公式的应用,属于基础题.14.【答案】【解析】解:设函数,因为的图象关于点对称,所以的图象关于原点对称,故是定义在上的奇函数.因为是定义在上的增函数,所以也是定义在上的增函数.由,得,即,即,则,解得,即不等式的解集为故答案为:构造函数,利用其单调性奇偶性解不等式即可.本题考查函数的性质,奇偶性,单调性,属于中档题.15.【答案】128【解析】解:不妨设直线的倾斜角为,,则直线的倾斜角为,对,设A到准线的距离为d,则根据抛物线的定义可得:,,同理可得,,同理可得,四边形ADBE面积为:,,当时,四边形ADBE面积取得最小值为,故答案为:根据抛物线的倾斜角的弦长公式,函数思想,即可求解.本题考查抛物线的倾斜角的弦长公式的应用,函数思想,属中档题.16.【答案】解:由题意可得,解得列联表如下:少于32场比赛不少于32场比赛总计男球迷100100200女球迷12080200总计220180400,因为,所以有的把握认为该社区的一名球迷是否为“资深球迷”与性别有关.【解析】根据男、女球迷各200名,把表格填完整;直接代入公式计算即可.本题考查独立性检验,属于基础题.17.【答案】解:因为①,所以②,由②-①得,,即,因为,所以又由解得,故数列为等差数列,公差故;证明:因为,所以所以【解析】由,两式相减得,再由得,然后求出,说明数列为等差数列,进而求得通项公式;由先求出,然后利用裂项求和求出即可证明.本题主要考查等差数列的定义、通项公式、裂项相消法在数列求和中的应用、不等式的放缩等基础知识,属于中档题.18.【答案】解:证明:连接BD,,,,又,,为棱PB中点,,又,,PC,平面PBC,平面PBC,又平面PBC,;在直角梯形ABCD中,取CD中点M,连接BM,,,又,,,四边形ABMD为正方形,,,,又,,,,BD,平面PBD,平面PBD,平面PBD,;,,,,又,BC,平面ABCD,平面,,,,由知:平面ABCD,,则点E到平面ABCD的距离,;,,,,F分别为棱PB,AB中点,,,,,,,,,由余弦定理得:,则,,设点C到平面DEF的距离为,,解得:,即点C到平面DEF的距离为【解析】由线面垂直判定可证得平面PBC,进而得到;利用勾股定理和线面垂直的判定得到平面PBD,从而得到;利用勾股定理可证得,由此可得结论;设点C到平面DEF的距离为,利用等体积转换的方式,由,结合棱锥体积公式可构造方程求得结果.本题考查线面垂直的判定以及点到平面的距离求解,考查逻辑推理能力和运算求解能力,属于中档题.19.【答案】解:由,,可得,,椭圆E的方程化为:直线l的方程为,联立,化为,解得,;,,解得,椭圆E的标准方程为设,,直线l的方程为,,,,,,解得,,联立,化为,,,,又,解得,,,【解析】由,,可得,,椭圆E的方程化为:直线l的方程为,联立化为,解得点A,B坐标,利用两点之间的距离公式即可得出a,b,c,可得椭圆E的标准方程.设,,直线l的方程为,根据,,,及其椭圆的定义可得,,直线l的方程与椭圆方程联立化为,利用根与系数的关系即可得出m,本题考查了椭圆的标准方程及其性质、相似三角形的性质、一元二次方程的根与系数的关系、转化方法、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.20.【答案】解:当时,,所以,所以,,所以所求切线方程为,即对任意的,恒成立,等价于对任意的,恒成立.①当时,显然成立.②当时,不等式等价于设,所以设,则当时,,当时,,所以在上单调递减,在上单调递增.因为,所以,又因为在中,,所以当时,,当时,,所以在上单调递减,在上单调递增,所以,所以,即a的取值范围为【解析】根据切点处导函数值等于切线斜率,运用点斜式求切线方程即可;分,,两种情况解决,当时,参数分离得,设,得,设,求导讨论单调性,得在上单调递减,在上单调递增,即可解决.本题考查导数的几何意义,考查利用导数研究函数的单调性,极值及最值,考查不等式的恒成立问题,考查分类讨论思想及运算求解能力,属于中档题.21.【答案】解:,①②得,根据极坐标方程与直角坐标方程关系可知直线l的直角坐标方程为:;由可知点过直线l,故直线l的参数方程可写为为参数,代入曲线C的普通方程得,由韦达定理可知:,,所以【解析】曲线C的参数方程通过平方消元得到普通方程;通过极坐标方程与直角坐标方程关系得到直线l的直角坐标方程;由题可知点P过直线l,利用直线的参数方程中参数与定点位置关系即可列式计算.本题主要考查简单曲线的极坐标方程,考查转化能力,属于中档题.22.【答案】解:当时,,当时,,当时,,综上,,由此可知由可知,解得,当时,欲使不等式恒成立,则,即,解得,即a的取值范围是值;本题主要考查不等式恒成立问题,函数最值的求法,绝对值不等式的解法,考查运算求解能力,属于中档题.。
2023年全国高考数学模拟试卷一、单选题1.设全集U={1 2 3 4 5 6 7 8} 集合S={1 3 5} T={3 6} 则∁U (S∁T )等于( ) A .∁B .{2 4 7 8}C .{1 3 5 6}D .{2 4 6 8}2.在四边形ABCD 中= +则四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .平行四边形3.已知复数 z =(2+i)(a +2i 3) 在复平面对应的点在第四象限 则实数 a 的取值范围是( ) A .(−∞,−1)B .(4,+∞)C .(−1,4)D .[-1,4]4.在直三棱柱 ABC −A ′B ′C ′ 中 侧棱长为2 底面是边长为2的正三角形 则异面直线 AB ′ 与BC ′ 所成角的余弦值为( ) A .12B .√33C .14D .√555.一个袋子中有5个大小相同的球 其中有3个黑球与2个红球 如果从中任取两个球 则恰好取到两个同色球的概率是( ) A .15B .310C .25D .126.已知 f(x)=√3sin2020x +cos2020x 的最大值为A 若存在实数 x 1 x 2 使得对任意的实数x 总有 f(x 1)≤f(x)≤f(x 2) 成立 则 A|x 1−x 2| 的最小值为( )A .π2020B .π1010C .π505D .π40407.已知函数f(x)是定义在R 上的奇函数 其最小正周期为3 且x∁(-320)时 f(x)=log 2(-3x+1)则f(2011)=( ) A .4B .2C .-2D .log 278.已知函数f(x)={1−x ,0≤x ≤1lnx ,x >1 若f(a)=f(b) 且a ≠b 则bf(a)+af(b)的最大值为( ) A .0 B .(3−ln2)⋅ln2 C .1D .e二、多选题9.下列命题中正确的命题的是()A.已知随机变量服从二项分布B(n,p)若E(x)=30D(x)=20则p=23;B.将一组数据中的每个数据都加上同一个常数后方差恒不变;C.设随机变量ξ服从正态分布N(0,1)若P(ξ>1)=p则P(−1<ξ≤0)=12−P;D.某人在10次射击中击中目标的次数为X X~B(10,0.8)则当x=8时概率最大.10.已知抛物线C:x2=4y的焦点为F准线为l P是抛物线C上第一象限的点|PF|=5直线PF 与抛物线C的另一个交点为Q 则下列选项正确的是()A.点P的坐标为(4 4)B.|QF|=54C.S△OPQ=103D.过点M(x0,−1)作抛物线C的两条切线MA,MB其中A,B为切点则直线AB的方程为:x0x−2y+2=011.已知函数f(x)=e x g(x)=ln x2+12的图象与直线y=m分别交于A、B两点则()A.|AB|的最小值为2+ln2B.∃m使得曲线f(x)在A处的切线平行于曲线g(x)在B处的切线C.函数f(x)−g(x)+m至少存在一个零点D.∃m使得曲线f(x)在点A处的切线也是曲线g(x)的切线12.已知正n边形的边长为a 内切圆的半径为r 外接圆的半径为R 则()A.当n=4时R=√2a B.当n=6时r=√32aC.R=a2sinπ2n D.R+r=a2tanπ2n三、填空题13.某学校有教师300人男学生1500人女学生1200人现用分层抽样的方法从所有师生中抽取一个容量为150人的样本进行某项调查则应抽取的女学生人数为.14.在(2x2﹣√x)6的展开式中含x7的项的系数是.15.函数f(x)=|2x−1|−2lnx的最小值为.16.定义max{a,b}={a,a≥bb,a<b已知函数f(x)=max{(12)x,12x−34}则f(x)最小值为不等式f(x)<2的解集为.四、解答题17.记S n为数列{a n}的前n项和.已知a n>06S n=a n2+3a n−4.(1)求{a n}的通项公式;(2)设b n=a n2+a n+12a n a n+1求数列{b n}的前n项和T n.18.已知数列{a n}的前n项和为S n a1=2n(a n+1−2a n)=4a n−a n+1.(1)证明:{a nn+1}为等比数列;(2)求S n.19.记△ABC的内角A B C的对边分别为a b c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B求C;(2)证明:2a2=b2+c2.20.受突如其来的新冠疫情的影响全国各地学校都推迟2020年的春季开学某学校“停课不停学” 利用云课平台提供免费线上课程该学校为了解学生对线上课程的满意程度随机抽取了100名学生对该线上课程评分、其频率分布直方图如图.(1)求图中a的值;(2)求评分的中位数;(3)以频率当作概率若采用分层抽样的方法从样本评分在[60,70)和[90,100]内的学生中共抽取5人进行测试来检验他们的网课学习效果再从中选取2人进行跟踪分析求这2人中至少一人评分在[60,70)内的概率.21.已知椭圆与双曲线x 22−y2=1有相同的焦点坐标且点(√3,12)在椭圆上.(1)求椭圆的标准方程;(2)设A、B分别是椭圆的左、右顶点动点M满足MB⊥AB垂足为B连接AM交椭圆于点P(异于A)则是否存在定点T使得以线段MP为直径的圆恒过直线BP与MT的交点Q若存在求出点T的坐标;若不存在请说明理由.22.已知函数f(x)=e x(x−2),g(x)=x−lnx.(1)求函数y=f(x)+g(x)的最小值;(2)设函数ℎ(x)=f(x)−ag(x)(a≠0)讨论函数ℎ(x)的零点个数.答案解析部分1.【答案】B 2.【答案】D 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】D 9.【答案】B,C,D 10.【答案】A,B,D 11.【答案】A,B,D 12.【答案】B,D 13.【答案】60 14.【答案】240 15.【答案】116.【答案】14;(−1,112)17.【答案】(1)解:当 n =1 时 6S 1=a 12+3a 1−4 所以 a 1=4 或 −1 (不合 舍去). 因为 6S n =a n 2+3a n −4① 所以当 n ⩾2 时 6S n−1=a n−12+3a n−1−4② 由①-②得 6a n =a n 2+3a n −a n−12−3a n−1所以 (a n +a n−1)(a n −a n−1−3)=0 . 又 a n >0 所以 a n −a n−1=3 .因此 {a n } 是首项为4 公差为3的等差数列. 故 a n =4+3(n −1)=3n +1 .(2)解:由(1)得 b n =(3n+1)2+(3n+4)2(3n+1)(3n+4)=2+33n+1−33n+4所以 T n =2+34−37+2+37−310+⋯+2+33n+1−33n+4=2n +(34−37+37−310+⋯+33n +1−33n +4)=2n +9n4(3n +4)18.【答案】(1)证明:∵n(a n+1−2a n )=4a n −a n+1∴na n+1−2na n =4a n −a n+1 即(n +1)a n+1=2⋅a n (n +2)∴a n+1n+2=2⋅a nn+1 故{a nn+1}为等比数列. (2)解:由(1)知 a nn+1=1×2n−1⇒a n =(n +1)⋅2n−1 S n =2×20+3×2+4×22⋅⋅⋅+(n +1)⋅2n−1 2S n =2×21+3×22+4×23⋅⋅⋅+(n +1)⋅2n∴−S n =2+2+22+⋯+2n−1−(n +1)⋅2n=2+2−2n−1×21−2−(n +1)⋅2n=−n ⋅2n∴S n =n ⋅2n19.【答案】(1)解:∵sinCsin(A −B)=sinBsin(C −A)且 A =2B∴sinCsinB =sinBsin(C −A) ∵sinB >0∴sinC =sin(C −A)∴C=C-A (舍)或C+(C-A )=π 即:2C-A=π又∵A+B+C=π A=2B ∴C= 5π8(2)证明:由 sinCsin(A −B)=sinBsin(C −A) 可得sinC(sinAcosB −cosAsinB)=sinB(sinCcosA −cosCsinA) 再由正弦定理可得 accosB −bccosA =bccosA −abcosC 然后根据余弦定理可知12(a 2+c 2−b 2)−12(b 2+c 2−a 2)=12(b 2+c 2−a 2)−12(a 2+b 2−c 2) 化简得: 2a 2=b 2+c 2 故原等式成立.20.【答案】(1)解:由题意 (0.005+0.010+0.030+a +0.015)×10=1所以 a =0.040 ;(2)解:由频率分布直方图可得评分的中位数在 [80,90) 内 设评分的中位数为x则 (0.005+0.010+0.030)×10+0.040×(x −80)=0.5 解得 x =81.25 所以评分的中位数为81.25;(3)解:由题知评分在 [60,70) 和 [90,100] 内的频率分别为0.1和0.15 则抽取的5人中 评分在 [60,70) 内的为2人 评分在 [90,100] 的有3人记评分在 [90,100] 内的3位学生为a b c 评分在 [60,70) 内的2位学生为D E 则从5人中任选2人的所有可能结果为:(a,b) (a,c) (a,D) (a,E) (b,c) (b,D) (b,E) (c,D) (c,E) (D,E) 共10种;其中 这2人中至少一人评分在 [60,70) 内可能结果为:(a,D) (a,E) (b,D) (b,E) (c,D) (c,E) (D,E) 共7种;所以这2人中至少一人评分在 [60,70) 的概率 P =710.21.【答案】(1)解:因为双曲线 x 22−y 2=1 的焦点坐标为 (±√3,0)所以设所求的椭圆的方程为 x 2a 2+y 2b2=1 ( a >b >0 )则 {a 2=b 2+33a 2+14b 2=1 解得 a 2=4,b 2=1 所以椭圆的标准方程是 x 24+y 2=1(2)解:设直线AP 的方程是 y =k(x +2) ( k ≠0 )将其与 x 24+y 2=1 联立 消去y 得 (4k 2+1)x 2+16k 2x +16k 2−4=0 设 P(x 1,y 1)则 −2⋅x 1=16k 2−44k 2+1所以 x 1=2−8k 24k 2+1,y 1=4k 4k 2+1 所以 P(2−8k 24k 2+1,4k4k 2+1) 易知 M(2,4k)设存在点 T(x 0,y 0) 使得以MP 为直径的圆恒过直线BP 、MT 的交点Q ⇔MT ⊥BP ⇔4k−y 02−x 0⋅4k−16k2=−1 对于任意 k ≠0 成立 即 4k(1−x 0)+y 0=0 对于任意 k ≠0 成立 x 0=1,y 0=0 所以存在 T(1,0) 符合题意.22.【答案】(1)解:令 φ(x)=f(x)+g(x)φ′(x)=e x(x−1)+(1−1x)=(x−1)(e x+1x)令φ′(x)=0,x=1φ′(x)>0,x>1,φ′(x)<0,0<x<1所以φ(x)的单调递增区间是(1,+∞)单调递减区间是(0,1)所以x=1时φ(x)取得极小值也是最小值所以φ(x)min=φ(1)=1−e(2)解:g′(x)=1−1x=x−1x令g′(x)=0,x=1g′(x)<0,0<x<1,g′(x)>0,x>1 g(x)的递减区间是(0,1)递增区间是(1,+∞)所以g(x)的极小值为g(1)也是最小值g(x)≥g(1)=1>0.所以ℎ(x)=0⇔a=e x(x−2)x−lnx=s(x)因为s′(x)=e x(x−1)(x−lnx−1+2x)(x−lnx)2令k(x)=x−lnx−1+2x⇒k′(x)=(x+1)(x−2)x2令k′(x)=0,x=2k′(x)<0,0<x<2,k′(x)>0,x>2k(x)的递减区间是(0,2)递增区间是(2,+∞)所以k(x)的极小值为k(2)也是最小值所以k(x)≥k(2)=2−ln2>0所以s(x)的递减区间是(0,1)递增区间是(1,+∞)又因为x→0+,s(x)→0,x→+∞,s(x)→+∞且s(1)=−e 所以当a<−e时ℎ(x)有0个零点;当a=−e或a>0时ℎ(x)有1个零点;当−e<a<0时ℎ(x)有2个零点.。
2023届高考理科数学模拟试卷四十一(含参考答案)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,,则“”是“”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 2.下列函数中,在区间(0,+∞)上是增函数的是( ).(A ) y = - x 2(B )2y=2x - (C ) x1y=2⎛⎫⎪⎝⎭(D )21y=log x3.如果直线l 与直线3x -4y +5=0关于x 轴对称,那么直线l 的方程为( ). (A )(B )(C )(D )4.定积分220dx π⎰(x -sinx )的值为( )(A )38π (B )318π+(C )3124π- (D )3124π+5.已知函数f (x)的定义域为[–2,+∞),部分对应值如下表;f ′(x)为f (x)的导函数,函数y = f ′(x)的图象如下图所示.若实数a 满足f (2a + 1)<1,则a 的取值范围是( ) (A )(B ) (C )(D ) 6.若满足条件60,C AB BC a =︒==的ABC ∆有两个,那么a 的取值范围是( )(A)(B)(C)2) (D)(1,,2)7.若函数f (x )=2x 2-lnx 在其定义域内的一个子区间(k -1,k +1)内不是..单调函数,则实数k 的取值范围是( ))23,23(-13(,)22-3(0,)217(,)22x –2 0 4f (x) 1 –1 1x y \O -2A .[1,+∞)B .[1,32)C .[1,2)D .[32,2)8. 设等比数列的前项和为,若,则下列式子中数值不能确定的是( )A.B. C. D.9.已知函数()c os ()(f x A x x R ωϕ=+∈的图象的一部分如右图所示,其中0,0,2A πωϕ>><,为了得到函数()f x 的图象,只要将函数22()2cos 2sin ()22x xg x x R =-∈的图象上所有的点( )(A)向右平移6π个单位长度,再把所得各点的横坐标变为原来的12倍,纵坐标不变;(B)向右平移6π个单位长度,再把所得各点的横坐标变为原来的2倍;纵坐标不变;(C)向左平移3π个单位长度,再把得所各点的横坐标变为原来的12倍;纵坐标不变; (D)向左平移3π个单位长度,再把所得各点的横坐标变为原来的2倍,纵坐标不变.10.在△中,是边中点,角的对边分别是,若c 0AC aPA bPB ++=,则△的形状为( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形11.已知函数是等差数列,的值( )A .恒为正数B .恒为负数C .恒为OD .可正可负12.已知11)(1+-=x x x f ,对任意*N n ∈,恒有)]([)(11x f f x f n n =+,则=)2013(2014f ( ) A.10071006 B.10061007- C.2013 D. 20131- 二、填空题.(共4小题,每小题5分,共20分) 13. 已知幂函数223()(1)m m f x m m x+-=--在0=x 处有定义,则实数m =14. “函数在上存在零点”的充要条件是{}n a n n S 0852=+a a 35a a 35S S nn a a 1+n n S S 1+ABC P B C AB C 、、a b c 、、ABC 531()4(),{}5n f x x x x x a =++∈R 数列31350,()()()a f a f a f a >++则()3+=ax x f []2,1-15已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则f (2)=_________16.已知集合123{,,}n A a a a a =…,,记和中所有不同值的个数为.如当时,由,,,,,得.对于集合123{,,}n B b b b b =…,,若实数123,,n b b b b …,成等差数列,则= .三、解答题:本大题共6小题,满分70分。
2023年高考数学周考试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知x ,y 是正数,且x +2y =1,下列叙述正确的是( )A. x +y 最大值为1B. x 2+y 2的最大值为1 B. (x +y)y 最大值为14D.x+2y 2xy最小值为42.假期里,有4名同学去社区做文明实践活动,根据需要,要安排这4名同学去甲、乙两个文明实践站,每个实践站至少去1名同学,则不同的安排方法共有( )A.20种B.14种C.12种D.10种3.在一个数列{a n }中,如果∀n ∈N ∗,都有a n a n+1a n+2=k(k 为常数),那么这个数列叫等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+...+a 2021=( )A.2021B.4042C.4714D.53874. 已知圆C:(x −2)2+(y −3)2=2,直线l 过点A(1,2)且与圆C 相切,若直线l 与两坐标轴交点分别为M,N ,则|MN|=( )A.2√2B.4C.3√2D.√105. 在平面直角坐标系中,角θ的终边绕坐标原点按逆时针方向旋转π6后经过点(−1,√3),则tan(2θ+π3)=A.−√3B.√33C.√3D.07.函数f(x)=asinx -bcosx ,若f(4π-x)=f(4π+x),则直线ax -by +c =0的倾斜角为( ) A.4π B.3πC.23πD.34π 8.若过点(a,b)可以作曲线y =lnx 的两条切线,则( )A.a <lnbB.b <lnaC. lnb <aD.lna <b二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知二项式(ax)6,则下列说法正确的是()A.若a=2,则展开式的常数为60B.展开式中有理项的个数为3C.若展开式中各项系数之和为64,则a=3D.展开式中二项式系数最大为第4项10.抛掷一颗质地均匀的骰子一次,记事件M为“向上的点数为1或4”,事件N为“向上的点数为奇数”,则下列说法正确的是()A.M与N互斥但不对立B.M与N对立C.P(MN)=16D.P(M+N)=2311.已知声音是由物体振动产生的声波,其中包含着正弦函数或余弦函数,而纯音的数学模型是函数y= sinωt,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数f(x)= 2sinx−sin3x,则下列说法正确的是()A.π是f(x)的一个周期B.f(x)在[0,2π]上有7个零点C.f(x)的最大值为3D.f(x)在[π6,π2]上是增函数12.已知圆M:x2+(y−2)2=1,点P为x轴上一个动点,过点P作圆M的两条切线,切点分别为A,B,直线AB与MP交于点C,则下列结论正确的是()A.四边形PAMB周长的最小值为2+2√3B.|AB|的最大值为2C.直线AB过定点D.存在点N使|CN|为定值三、填空题:本题共4小题,每小题5分,共20分13.函数f(x)=1cosxsinx-的图象在点(2π,1)处的切线方程为.14.斜率为k的直线与x216+y28=1椭圆相交于A,B两点,点M(1,1)为线段AB的中点,则k=____.15.已知函数f(x+12)为奇函数,设g(x)=f(x)+2.则g(12022)+g(22022)+…+g(20212022)=。
16.一边长为4的正方形ABCD,M为AB的中点,将∆AMD,∆BMC分别沿MD,MC折起,使MA,MB重合,得到一个四面体,则该四面体外接球的表面积为_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(满分10分)已知数列{a n}的前项和S n=12n2+12n+1.(1)求数列{a n}的通项公式;(2)设数列{1a n a n+2}的前n项的和为T n,不等式T n<a对任意的正整数n恒成立,求实数a的取值范围.18.(满分12分)小张经常在某网上购物平台消费,该平台实行会员积分制度,每个月根据会员当月购买实物商品和虚拟商品(充话费等)的金额分别进行积分,详细积分规则以及小张每个月在该平台消费不同金额的概率如下面的表1和表2所示,并假设购买实物商品和购买虚拟商品相互独立. 表1 表2购买虚拟商品(元)(0,20) [20,50) [50,100) [100,200)积分 1 2 3 4 概率13141416(1)求小张一个月购买实物商品和虚拟商品均不低于100元的概率; (2)求小张一个月积分不低于8分的概率;(3)若某个月小张购买了实物商品和虚拟商品,消费均低于100元,求他这个月的积分X 的分布列与均值.19.(满分12分)如图,在四边形ABCD 中,ΔBCD 是等腰直角三角形,∠BCD =90∘,∠ADB =90∘,sin∠ABD =√55,BD=2,AC 与BD 交于点E.(1)求sin∠ACD ; (2)求ΔABE 的面积.20. (满分12分)在如图所示的多面体中,点E,F 在矩形ABCD 的同侧,直线ED ⊥平面ABCD ,平面BCF ⊥平面ABCD ,且△BCF 为等边三角形,ED=AD=2,AB=√2. (1)证明:AC ⊥EF;(2)求平面ABF 与平面ECF 所成锐二面角的余弦值.购买实物商品(元)(0,100) [100,500)[500,1 000)概率14121421(满分12分)已知椭圆C:x 24+y 2=1,A 、B 是椭圆C 的左右顶点,点P 是椭圆C 上任意一点.(1)证明直线PA 与直线PB 的斜率乘积是定值.(2)设经过点D(1,0)且斜率不为0的直线l 交椭圆于M,N 两点,直线AM 与直线BN 交于点Q ,求证:OA ⃗⃗⃗⃗⃗ ∙OQ ⃗⃗⃗⃗⃗⃗ 为定值.22.(满分12分)已知函数f(x)=1lnxx+ (1)求f(x)的极值;(2)若两个不相等正数x 1,x 2满足f(x 1)=f(x 2),证明:x 1+x 2>1211x x +.参考答案1-8 DBCC CADD 9.AD 10.CD 11.BCD 12.ACD 13.x −y +1−π2=0 14.−1215.4042 16.76π317.18.解 (1)小张一个月购买实物商品不低于100元的概率为12+14=34,购买虚拟商品不低于100元的概率为16,因此所求概率为34×16=18.(2)根据条件,积分不低于8分有两种情况:①购买实物商品积分为6分,购买虚拟商品的积分为2,3,4分; ②购买实物商品积分为4分,购买虚拟商品的积分为4分, 故小张一个月积分不低于8分的概率为14×⎝⎛⎭⎫1-13+12×16=14. (3)由条件可知X 的可能取值为3,4,5.P (X =3)=1313+14+14=25,P (X =4)=P (X =5)=1413+14+14=310,即X 的分布列如下:E (X )=3×25+4×310+5×310=3910.19.20.21.22.解:(1) f ′(x )=-ln xx2,由f ′(x )=0可得x =1,………………………………(2分)当x 变化时,f ′(x ),f (x )的变化情况如表所示:↗ ↘由表可知函数f (x )5分) (2) 不妨设x 1>x 2>0,f (x 1)=f (x 2) =a ,则ln x 1=ax 1-1,ln x 2=ax 2-1, ……(6分) 所以ln x 1+ln x 2=a (x 1+x 2) -2,ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a ,(8分)欲证x 1+x 2>1x 1+1x 2,只需证x 1x 2>1,即证ln x 1+ln x 2>0.因为ln x 1+ln x 2=a (x 1+x 2)-2=ln x 1-ln x 2x 1-x 2(x 1+x 2)-2=x 1+x 2x 1-x 2ln x 1x 2-2=x 1x 2+1 x 1x 2-1ln x 1x 2-2,故只需证ln x 1x 2>2(x 1x 2-1) x 1x 2+1, ……………………………(10分)令c =x 1x 2(c >1),则所证不等式变为ln c >2(c -1)c +1.令h (c )=ln c -2(c -1)c +1,c >1,则h ′(c )=1c -4(c +1)2=(c -1)2c (c +1)2>0,所以h (c )在(1,+∞)上单调递增,所以h (c )>h (1)=ln 1-0=0,即ln c -2(c -1)c +1>0(c >1),因此原不等式得证. ……………………………(12分)。