分数除法讲义
- 格式:doc
- 大小:216.50 KB
- 文档页数:17
第三讲分数除法讲义(1)一、倒数的概念、特征以及特殊数的倒数。
1、倒数:乘积是一的两个数互为倒数。
强调:互为倒数的意义。
2、整数的倒数小于它本身。
3、真分数的倒数大于它本身。
4、假分数的倒数小于或等于它本身。
5、1的倒数是1,0没有倒数。
6、积与乘数的关系:一个数(零除外)乘大于1的数,积比第一个因数大;乘小于1的数,积比第一个因数小;乘以1,积与第一个因数相等。
7、商的大小与除数的关系:一个数(零除外)除以小于1的数,商大于被除数;除以大于1的数,商小于被除数;除以1,商等于被除数。
二、基础题1、求一个分数的倒数,只要把( )2、 的倒数是( ),( )的倒数是7,1的倒数是( ),0( )3、261时=( )分钟 ; 12.5时=( )分钟 ;453时=( )分钟 4、24等于乙数的倒数,乙数是( )。
5、( )是40的倒数,45是( )的倒数。
二、分数除法的意义分数除法的意义和法则:意义:分数除法与整数除法的意义完全相同,都是已知两个数的积与其中一个因数,求另一个因数的运算。
法则:甲数除以乙数(不为0),等于甲数乘乙数的倒数。
甲数、乙数可以是整数、小数和分数。
一个数(0除外)除以真分数,商>被除数。
一个数(0除外)除以1,商=被除数。
一个数(0除外)除以假分数(大于1),商<被除数【例1】:1)说一说下面各除法算式所表示的意义。
769÷ 251310÷ 14157÷ 10918÷2)列式计算。
①把78平均分成4份,每份是多少? ②已知一个数的32是24,求这个数? ③已知两个因数的积是98,其中的一个因数是40,求另一个因数? 【例2】比较大小。
432743()÷ 545454()÷ 237323()÷小结:整数除以分数,可以转化为乘以这个分数的倒数计算,分数除以分数,可以用被除数乘以除数的倒数计算。
【例3】一个正方体的表面积是43平方米,那么这个正方体一个面的面积是多少平方米?【例4】一辆汽车53小时行36千米,平均每小时行多少千米?四、 课堂练习1、简便运算: 611×360÷7 1÷1001÷10001 454×1353-454×3.62、光明小学六(1)班有学生45人,约占全校人数的1.5%,全校大约有学生多少人?3、一段铁丝长20米,剪成每段4/5米,可以剪成几段?4、 58X = 40 \F(2,5) X = \F(4,9) ×\F(3,8)5、154除51的商,再除以253,商是多少?6、154除以51的商,再除以253,商是多少?五、综合训练判断正误1. 35÷5 = \F(5,3) ×5 ( ) 2、4分米的15和5分米的错误!相等。
倒数与分数除法1、了解倒数、分数除法的意义教学目的2、掌握计算方法3、会运用在实际冋题中重点:计算方法及实际问题中的运用难点:实际问题中的运用教学内【知识点一】:倒数1、倒数的意义:乘积为1的两个数互为倒数。
(1)、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)(2)、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1。
例如:a>b=1则a、b互为倒数。
2、求倒数的方法:①求分数的倒数:交换分子、分母的位置②求整数的倒数:整数分之一。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
3、1的倒数是它本身,因为1>=10没有倒数,因为任何数乘0积都是0,且0不能作分母。
非零整数a的倒数为1;分数b的倒数是空。
a a b1真分数的倒数是假分数,真分数的倒数大于1,也大于它本、身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
2用倒数解决问题、(1)用转化的方法解决倒数问题例题1: 一个自然数与它的倒数的和是5.2,这个自然数是多少?小结:已知一个自然数与它的倒数的和,可以把这个和分成整数和纯小数(或真分数)两部分。
整数部分就是这个自然数,纯小数(或真分数)部分就是这个自然数的倒数。
1、用假设的方法比较数的大小3 3 7例题2:如果aX _ = bX— = cX —,且a,b,c均不为0,把a, b,c这三个数按从大到小的顺4 5 3序排列。
(3):用假设的方法解决倒数问题1例题3:两个连续自然数的倒数差是12,求这两个自然数。
小结:解决此类问题,解可以假设其中一个自然数是a,另一个为a+1,再根据题意中的数量关系求【巩固练习二】31、3的倒数是(812、一X()2 ),0.25 和()互为倒数。
18)X 2 = 1X( )= 3 X( )= 17213. 一个自然数与它的倒数的差是21-22,这个数是多少?4 2 14.如果X X - = y X -=z X 1,且X, y,z均不为0,请按照从小到大的顺序排列这三个数。
课 题倒数与分数除法教 学 目 的1、了解倒数、分数除法的意义2、掌握计算方法3、会运用在实际问题中重 难 点重点:计算方法及实际问题中的运用 难点:实际问题中的运用教 学 内 容【知识点一】 :倒数1、倒数的意义:乘积为1的两个数互为倒数。
(1)、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)(2)、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1则a 、b 互为倒数。
2、求倒数的方法:①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之一。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
3、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母。
非零整数a 的倒数为a 1 ;分数 a b的倒数是ba 。
1、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
2、用倒数解决问题(1)用转化的方法解决倒数问题例题1:一个自然数与它的倒数的和是5.2,这个自然数是多少?小结:已知一个自然数与它的倒数的和,可以把这个和分成整数和纯小数(或真分数)两部分。
整数部分就是这个自然数,纯小数(或真分数)部分就是这个自然数的倒数。
1、用假设的方法比较数的大小 例题2:如果a ×43 = b ×53 = c ×37,且a ,b ,c 均不为0,把a ,b ,c 这三个数按从大到小的顺序排列。
(3): 用假设的方法解决倒数问题 例题3:两个连续自然数的倒数差是121,求这两个自然数。
小结:解决此类问题,可以假设其中一个自然数是a ,另一个为a+1,再根据题意中的数量关系求解【巩固练习二】1、83的倒数是( ),0.25和( )互为倒数。
2、21×( )=( )×718=1×( )=3×( )=13. 一个自然数与它的倒数的差是212221,这个数是多少?4.如果x ×74 = y ×92=z ×21,且x ,y ,z 均不为0 ,请按照从小到大的顺序排列这三个数。
分数除法 讲义知识点一、分数除法的意义及运算法则例1、计算(1)20÷310×45 (2)34÷38÷118 (3)(15−16)÷110(4)30÷(14+15) (5)716×45−79÷143(6)310÷0.5×23(7)(43+415)÷15÷16总结:1、除以一个不为0的数,等于乘以它的________。
这样除法问题就可以转化为乘法问题来解决。
2、带分数要转化为_______,小数要转化为_______,再找出它们的倒数。
3、除法没有分配律!乘法才有分配律。
4、注意运算顺序,先乘除,后加减,审题时看清楚。
的倒数是(),()的倒数是0.75.例2、156例3、0.125的倒数是(),3的倒数是()。
性质:○10(1)一个正数乘以一个小于1的数,结果比原来小。
例如10×34○10(2)一个正数乘以一个大于1的数,结果比原来大。
例如10×54性质:○10(1)一个正数除以一个小于1的数,结果比原来_____。
例如10÷34(2)一个正数除以一个大于1的数,结果比原来_____。
例如10÷5○104总结:“将未知的知识转化为已知的知识来解决”、“化难为易”、“化繁为简”这样的思想叫做“化归思想”。
例4、在○里填上>、<或=。
(1)95÷16○95(2)37÷9○37(3)53÷83○53(4)38÷12○38÷2(5)95÷1.5○95÷0.3(6)34÷0.7○34÷4.2知识回顾:乘法和除法互为____运算。
例5、不为0的三个数A、B、C,如果A×B=C,那么C÷B=A,C÷A=B例6、如果3×4=12,那么12÷4=3,12÷3=4分数除法、小数除法、整数除法的意义是相同的...。
章节复习考点讲义(人教版)人教版数学六年级上册章节考点精讲精练第三单元《分数除法》知识点一:倒数的认识1.倒数的意义乘积是1的两个数互为倒数。
倒数具备两个条件:一是两个数;二是乘积是1。
2.互为倒数的两个数特点如果两个数都是分数,那么两个分数的分子和分母正好颠倒了位置;如果一个是整数,则另一个分数的分子是1,分母是这个整数。
3.求一个数倒数的方法知识互联网知识导航(1)通过计算,乘积是1的两个数互为倒数。
(2)交换这个数的分子和分母的位置。
4.特殊的1的倒数是1,0没有倒数。
知识点二:分数除法的计算法则一个数除以一个不等于0的数,等于乘这个数的倒数。
知识点三:分数四则混合运算规律1. 只有乘、除法,按照从左到右的顺序依次进行计算。
2. 在没有括号的算式里,既有加、减法又有乘、除法,要先算乘、除法,再算加、减法。
3. 在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
知识点四:分数除法的应用题1.解决“已知一个数的几分之几是多少,求这个数”的问题,一般方法:方程法:(1)找出单位“1”,设未知量为x;(2)找出题中的等量关系式;(3)列出方程并解答;(4)检验并写出答案。
2. “已知比一个数多(少)几分之几的数是多少,求这数”的问题的解法:方程法:根据题中的等量关系:“单位‘1’的量×(1±几分之几)=已知量”或“单位‘1’的量±单位‘1’的量×几分之几=已知量”,设单位“1”的量为x,列方程解答。
3. 已知两个量的和(差),其中一个量是另一个量的几分之几,求这两个量的问题的解法:有两个量都是未知的,先把谁看作单位“1”都可以,设其中一个量为未知数x,用这个量表示另一个量,然后找出等量关系,列方程解答出一个量,再解答第二个量。
4. 利用抽象的“1”解决实际问题:工程问题是分数问题的特例,工作总量与工作效率都不是具体的数,而是用抽象的分数来表示。
分数的除法一、分数除法例:1 、每盒水果糖重 100g,3 盒有多重? 100g 也可以写成 110千克100 ×3=300(g )133(kg )10 10怎样改编用除法计算的问题呢?3 盒水果糖重 300g, 每盒有多重?300÷3=100(g )3 3 1(kg)1010300g 水果糖,每盒 100g, 可以装几盒?300 ÷100=3(盒)3 13 (盒)10 10做一做一、根据乘法算式直接写出除法算式的得数2 4 8 1 、7 21 38 2(8 4 )21 3 )(2174 2 82 、3 15 58 2( 8 4 15 3 )5154 2、把一张纸的平均分成 2 份,每份是这张纸的几分之几?自己试着折一折,5算一算。
42 份,就是把 4 个 1把 5 平均分成5 平1 ,就是2 均分成两份, 每份就是两个5 544 25 25把4 平均分成 2 份,每份就是455的 1,也就是412524 4 15 225 如果把这张纸的4平均分成 3份,每份是这张纸的几分之几?5453根据上面的折纸实验和算式,你能发现什么规律?3、小明2小时走 2km,小红5小时走了5km。
谁走得快些?312 62小明平均每小时走: 23 怎么计算呢?画个图试试吧想:先求1小时走了多少千米,也就是求 2 的1,即21。
再求 3 个1小时走了3 2 2 3多少千米,即 2 1 3 。
22 2 1333 (km)32 22 2小红平均每小时走:5 5 5 122(km)6 12 6 512为什么写成“”答:小明走得快。
通过以上两个例子,你发现了什么?分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
做一做一、用你发现的规律计算下面各题。
9 3 2381024897 4 16 5二、直接写出得数。
1 1= 4÷12=8 3= 13=3 ÷12 7 9 ÷7 ÷4 10 14 5 5 9 35 ÷11 = 11 ÷ 21= 8 ÷6 = 10 ÷5 =三、填一填。
分数除法导学:一、解题技巧:一抓,二找,三确定,四对应。
1、一抓:抓住关键句——分率句;(含几分之几的句子)2、二找:找准单位“1”的量;(“的”前“比”后的量)3、三确定:确定单位“1”是已知还是未知(已知单位1用除法,未知单位1用乘法)4、四对应:找出相对应的数量与分率,列出算式。
单位“1”的量×分率=分率对应量(分率对应量÷分率=单位“1”的量)第一步:分数除法1、分数除法的运算意义已知两个因数的积与其中一个因数,求另一个因数的运算。
2、分数除法的计算法则除以一个数(0除外),等于乘这个数的倒数。
3、分数混合运算分数混合运算与整数混合运算的顺序相同。
【典型例题1】张师傅53小时做6个零件,1小时可以做几个零件? 【思路导航】根据分数除法的计算法则,列出算式。
【举一反三】(1)7÷61 (2)52÷54 (3)2116÷32【典型例题2】一盒果汁53升,每杯可以装101升,已经装了2杯,这盒果汁还可以装几杯? 【思路导航】用一盒果汁的总量÷每杯装的总量 = 一共装的杯数。
再用一共装的杯数-已经装的杯数 = 还可以装的杯数【举一反三】(1)2÷41+3 (2)1200÷53-500 (3)12÷54÷83第二步:解决问题简单的和稍复杂的“已知一个数的几分之几,求这个数”的问题的解题规律:1、设“单位1”的量为x ,列方程解答。
2、已知量÷已知量所对应总量的几分之几 = “单位1”的量。
【典型例题1】新安村种棉花9公顷,占全村耕地面积的53,全村耕地面积有多少公顷? 【思路导航】找出解决问题所需要的条件,得出等量关系。
全村耕地面积×53 = 棉花种植面积【举一反三】林场有柳树180棵,是杨树棵树的43,林场有杨树多少棵?【典型例题2】果园里有桃树168棵,比枣树多71,枣树有多少棵? 【思路导航】本题是把枣树看做“单位1”,桃树比枣树多出的部分,相当于枣树的71。
分数的除法一、分数除法例:1、每盒水果糖重100g,3盒有多重?100×3=300(g)1033101=⨯(kg)怎样改编用除法计算的问题呢?①3盒水果糖重300g,每盒有多重?300÷3=100(g)1013103=÷(kg)②300g水果糖,每盒100g,可以装几盒?300÷100=3(盒)3101103=÷(盒)做一做一、根据乘法算式直接写出除法算式的得数1、2187432=⨯=÷32218()=÷74218()2、1583254=⨯=÷32158()=÷54158100g也可以写成101千克2、把一张纸的54平均分成2份,每份是这张纸的几分之几?自己试着折一折,算一算。
=÷=÷524254=⨯=÷2154254 如果把这张纸的54平均分成3份,每份是这张纸的几分之几?=÷354根据上面的折纸实验和算式,你能发现什么规律?把54平均分成2份,就是把4个51平均分成两份,每份就是两个51,就是52把54 平均分成2份,每份就是54的21,也就是2154⨯3、小明32小时走2km,小红125小时走了65km 。
谁走得快些?小明平均每小时走:322÷想:先求31小时走了多少千米,也就是求2的21,即212⨯。
再求3个31小时走了多少千米,即3212⨯⨯。
32323212322=⨯=⨯⨯=÷(km )小红平均每小时走:)(25126512565km =⨯=÷答:小明走得快。
通过以上两个例子,你发现了什么?分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
为什么写成“512⨯” 怎么计算呢?画个图试试吧做一做一、用你发现的规律计算下面各题。
=÷3109=÷283=÷9824 54167÷二、直接写出得数。
分数除法奥数讲义
《分数除法奥数讲义》
哎呀呀,说起分数除法,我就想起了一件特别有意思的事儿。
有一次,我和几个小伙伴一起去买糖果。
我们到了糖果店,哇,那五颜六色的糖果真是让人眼花缭乱啊!我们几个就商量着一起买一大包糖果来分。
这时候问题就来了,这包糖果总共重 10 颗,我们有 5 个人,那每个人能分到多少呢?这不就是分数除法嘛!我们就开始算呀算,10 除以 5 等于2 呀,那就是每个人能分到 2 颗糖果。
可其中一个小伙伴不干了,他说他想要多一点,那怎么分呢?我们又开始重新计算,如果他想要 3 颗,那其他人就只能分到(10-3)÷4=1.75 颗了,这可就有点复杂了呢。
就为了这几颗糖果,我们几个在那讨论了半天,感觉比做奥数题还认真呢!最后好不容易达成了一致,开开心心地分好了糖果。
你看,这分数除法在生活中还真是经常能遇到呀,虽然只是小小的分糖果这件事,但也让我们体会到了它的用处呢。
以后再遇到类似的情况,我们就知道该怎么用分数除法来解决啦!哈哈,分数除法其实也没那么难嘛,只要我们多留意生活中的这些小事,就能更好地理解和掌握它啦!。