(精选)眼图观察测量实验
- 格式:doc
- 大小:3.62 MB
- 文档页数:26
一、實驗目的及要求:1)實驗目的: 學會觀察眼圖及其分析方法2)實驗要求: 1 分析電路的工作原理,敘述其工作過程;2 敘述眼圖的產生原理以及它的作用;3 繪出實驗觀察到的眼圖形狀。
二、實驗原理:我們知道衡量整個通信系統的傳輸品質,最直觀的方法就是用眼圖來觀察傳輸畸變和雜訊干擾。
我們知道,在實際的通信系統中,數位信號經過非理想的傳輸系統必定要產生畸變,信號通過通道後,也會引入雜訊和干擾,也就是說,總是在不同程度上存在碼間串擾。
在碼間串擾和雜訊同時存在情況下,系統性能很難進行定量的分析,常常甚至得不到近似結果。
為了便於評價實際系統的性能,常用觀察眼圖進行分析。
眼圖可以直觀地估價系統的碼間干擾和雜訊的影響,是一種常用的測試手段。
什麼是眼圖?所謂“眼圖”,就是由解調後經過低通濾波器輸出的基帶信號,以碼元定時作為同步信號在示波器螢幕上顯示的波形。
干擾和失真所產生的傳輸畸變,可以在眼圖上清楚地顯示出來。
因為對於二進位信號波形,它很像人的眼睛的過程眼圖。
在圖15-1中畫出兩個無雜訊的波形和相應的“眼圖”,一個無失真,另一個有失真(碼間串擾)。
(無失真及有失真時的波形及眼圖):(a)無碼間串擾時波形; 無碼間串擾眼圖(b)有碼間串擾時波形; 有碼間串擾眼圖圖15-1中可以看出,眼圖是由虛線分段的接收碼元波形疊加組成的。
眼圖中央的垂直線表示取樣時刻。
當波形沒有失真時,眼圖是一隻“完全張開”的眼睛。
在取樣時刻,所有可能的取樣值僅有兩個:+1或-1。
當波形有失真時,在取樣時刻信號取值分佈在小於+1或大於-1附近,“眼睛”部分閉合。
這樣,保證正確判決所容許的雜訊電平就減小了。
換言之,在隨機雜訊的功率給定時,將使誤碼率增加。
“眼睛”張開的大小就表明失真的嚴重程度。
為便於說明眼圖和系統性能的關係,我們將它簡化成圖15-2的形狀。
(眼圖的重要性質,其中U=U++U)(a) 二进制系统(b) 随机数据输入后的二进制系统三、實驗步驟:、眼圖觀察及分析實驗;、模擬眼圖觀察測量實驗;观察眼图SP109 SP614 SP615CPLD 32PN 码'()H ω观察眼图SP708PSK 译码SP614SP615'()H ω1、打開實驗箱右側電源開關,電源指示燈亮,按動帶鎖開關使L2(紅燈)點亮表示系統正常工作;2、連接SP614和SP109或SP809,送入基帶信號;3、用模擬示波器CH1觀察SP105,CH2觀察SP615,調節示波器特性調節電位器,可以觀察到有碼間串擾和無碼間串擾時的眼圖;4、當連接SP809是將PSK 解調模組解調還原的數位基帶信號送入眼圖電路。
课程名称:光纤通信实验名称:实验5 眼图观测实验姓名:班级:学号:实验时间:指导教师:得分:一、实验目的1、了解和掌握眼图的形成过程和意义。
2、掌握光纤通信系统中的眼图观测方法。
二、实验内容1、观测数字光纤传输系统中的眼图张开和闭合效果。
2、记录眼图波形参数,分析系统传输性能。
三、实验器材1.主控&信号源模块2.25号光收发模块3.示波器四、实验原理1、实验原理框图眼图测试实验系统框图2、实验框图说明本实验是以数字信号光纤传输为例,进行光纤通信测量中的眼图观测实验;为方便模拟真实环境中的系统传输衰减等干扰现象,我们加入了可调节的带限信道,用于观测眼图的张开和闭合等现象。
如眼图测试实验系统框图所示,系统主要由信号源、光发射机、光接收机以及带限信道组成;信号源提供的数字信号经过光发射机和接收机传输后,再送入用于模拟真实衰减环境的带限信道;通过示波器测试设备,以数字信号的同步位时钟为触发源,观测TP1测试点的波形,即眼图。
3、眼图基本概念及实验观察方法所谓眼图,它是一系列数字信号在示波器上累积而显示的图形。
眼图包含了丰富的信息,反映的是系统链路上传输的所有数字信号的整体特征。
利用眼图可以观察出码间串扰和噪声的影响,分析眼图是衡量数字通信系统传输特性的简单且有效的方法。
●被测系统的眼图观测方法通常观测眼图的方法是,如下图所示,以数字序列的同步时钟为触发源,用示波器YT模式测量系统输出端,调节示波器水平扫描周期与接收码元的周期同步,则屏幕中显示的即为眼图。
眼图测试方法框图●眼图的形成示意图一个完整的眼图应该包含从“000”到“111”的所有状态组,且每个状态组发送的此时要尽量一致,否则有些信息将无法呈现在示波器屏幕上。
八种状态如下所示:八种状态示意图眼图合成示意图如下所示:眼图合成示意图一般在无串扰等影响情况下从示波器上观测到的眼图与理论分析得到的眼图大致接近。
●眼图参数及系统性能眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。
眼图观测实验报告一、实验目的1、了解和掌握眼图的形成过程和意义。
2、掌握光纤通信系统中的眼图观测方法。
二、实验器材主控&信号源模块25号光收发模块示波器三、实验原理1、实验原理框图2、实验框图说明本实验是以数字信号光纤传输为例,进行光纤通信测量中的眼图观测实验;为方便模拟真实环境中的系统传输衰减等干扰现象,我们加入了可调节的带限信道,用于观测眼图的张开和闭合等现象。
如眼图测试实验系统框图所示,系统主要由信号源、光发射机、光接收机以及带限信道组成;信号源提供的数字信号经过光发射机和接收机传输后,再送入用于模拟真实衰减环境的带限信道;通过示波器测试设备,以数字信号的同步位时钟为触发源,观测TP1测试点的波形,即眼图。
3、眼图基本概念及实验观察方法所谓眼图,它是一系列数字信号在示波器上累积而显示的图形。
眼图包含了丰富的信息,反映的是系统链路上传输的所有数字信号的整体特征。
利用眼图可以观察出码间串扰和噪声的影响,分析眼图是衡量数字通信系统传输特性的简单且有效的方法。
被测系统的眼图观测方法:通常观测眼图的方法是,如下图所示,以数字序列的同步时钟为触发源,用示波器YT模式测量系统输出端,调节示波器水平扫描周期与接收码元的周期同步,则屏幕中显示的即为眼图。
眼图的形成示意图一个完整的眼图应该包含从“000”到“111”的所有状态组,且每个状态组发送的此时要尽量一致,否则有些信息将无法呈现在示波器屏幕上。
八种状态如下所示:眼图参数及系统性能眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。
眼图的张开度受噪声和码间干扰的影响,当光收端机输出端信噪比很大时眼图的张开度主要受码间干扰的影响,因此观察眼图的张开度就可以估算出光收端机码间干扰的大小。
其中,垂直张开度水平张开度从眼图中我们可以得到以下信息:(1)最佳抽样时刻是“眼睛”张开最大的时刻。
(2)眼图斜边的斜率表示了定时误差灵敏度。
斜率越大,对位定时误差越敏感。
实验12 眼图观察测量实验一、实验目得1、学会观察眼图及其分析方法,调整传输滤波器特性。
二、实验仪器1、眼图观察电路(底板右下侧)2.时钟与基带数据发生模块,位号:G 3.噪声模块,位号E 4.100M双踪示波器1台三、实验原理在整个通信系统中,通常利用眼图方法估计与改善(通过调整)传输系统性能。
我们知道,在实际得通信系统中,数字信号经过非理想得传输系统必定要产生畸变,也会引入噪声与干扰,也就就是说,总就是在不同程度上存在码间串扰。
在码间串扰与噪声同时存在情况下,系统性能很难进行定量得分析,常常甚至得不到近似结果。
为了便于评价实际系统得性能,常用观察眼图进行分析。
眼图可以直观地估价系统得码间干扰与噪声得影响,就是一种常用得测试手段。
什么就是眼图?所谓“眼图”,就就是由解调后经过接收滤波器输出得基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示得波形称为眼图。
干扰与失真所产生得传输畸变,可以在眼图上清楚地显示出来。
因为对于二进制信号波形,它很像人得眼睛故称眼图。
在图12-1中画出两个无噪声得波形与相应得“眼图”,一个无失真,另一个有失真(码间串扰)。
图12-1中可以瞧出,眼图就是由虚线分段得接收码元波形叠加组成得。
眼图中央得垂直线表示取样时刻。
当波形没有失真时,眼图就是一只“完全张开”得眼睛。
在取样时刻,所有可能得取样值仅有两个:+1或-1。
当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。
这样,保证正确判决所容许得噪声电平就减小了。
换言之,在随机噪声得功率给定时,将使误码率增加。
“眼睛”张开得大小就表明失真得严重程度。
为便于说明眼图与系统性能得关系,我们将它简化成图12-2得形状。
由此图可以瞧出:(1)最佳取样时刻应选择在眼睛张开最大得时刻;(2)眼睛闭合得速率,即眼图斜边得斜率,表示系统对定时误差灵敏得程度,斜边愈陡,对定位误差愈敏感; (3)在取样时刻上,阴影区得垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区得间隔垂直距离之半就是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5) 阴影区与横轴相交得区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息得解调器有重要影响。
實驗八眼圖觀察ㄧ、原理說明高速電路產品的發展現況及其傳輸速度,很清楚顯示已經進入gigabit時代了,訊號傳輸的穩定性變得很重要,如何觀察其穩定性呢?目前廣泛使用的技術為眼圖或抖動(jitter)的量測,利用眼圖來觀測訊號的品質。
影響訊號傳輸品質的因素很多,其中傳輸線的損耗影響很大,特別是gigabit訊號的傳輸,以下就模擬設計一個有損耗之傳輸線,經由傳送不同之距離觀測其眼圖特性即可清楚知道其訊號傳輸品質的好壞。
如下左(50cm)右(5cm)兩圖,可清楚知道右圖之訊號傳輸品質比左圖好,其眼睛張的比較大,訊號上升或下降時間比較正常。
二、下面在ADS中建立一個新的模擬Project “eye_diagram”從Window XP 工具列中 開始 程式集 Advanced Design System 2005A 點選Advanced Design System 選項,開啟ADS主視窗。
ADS主視窗在ADS主視窗中點選進入資料夾C:/users/default/ ,如下圖所示在default資料夾上點選兩下,立即進入default資料夾內,如下圖所示在功能表上選擇【File】 【New Project】開啟建立【New project】的視窗,如下圖所示在【Name】c:\users\default\下鍵入eye_diagram,如下圖所示按ok鍵,進入【eye_diagram】資料夾中;一併開啟Schematic 視窗,如下圖所示在schematic視窗中點選功能表中【File】>【Save Design】存】鍵結束此視窗,並返回Schematic視窗中請在Schematic視窗中TLines-Multilayer元件庫中選取【MLSUBSTRA TE2】元件,並放入視窗中以滑鼠左鍵連續點擊【MLSUBSTRA TE2】元件兩下,進入元件的屬性視窗,並一一輸入其參數值Er=4.45,H=0.7mm,TanD=0.02,T[1]=0.05mm,T[2]=0.05mm,如下圖所示,輸入完後點選OK鍵結束視窗在TLines-Multilayer元件庫中選取【ML2CTL_C】元件,並放入視窗中CLIN1及CLIN2選取功能表中Tools>LineCalc>StartLineCalc開啟LineCalc 視窗。
实验二数字光纤通信系统信号眼图测试一.实验目的1.了解眼图产生的基础,根据眼图测量数字通信系统性能的原理;2.学习通过数字示波器调试、观测眼图;3.掌握判别眼图质量的指标;4.熟练使用数字示波器和误码仪。
二.实验原理眼图是估计数字传输系统性能的一种十分有效的实验方法。
这种方法已广泛应用于数字通信系统,在光纤数字通信中也是评价系统性能的重要实验方法。
眼图是在时域进行的用示波器显示二进制数字信号波形的失真效应的测量方法。
图2.1是测量眼图的装置图。
由Aς5233X误码仪产生一定长度的伪随机二进制数据流(AMI码、H∆B3码、PZ码、NPZ码)调制单模光产生相应的伪随机数据光脉冲并通过光纤活动连接器注入单模光纤,经过光纤传输后,再与光接收机相接。
光接收机将从光纤传输的光脉冲变为电脉冲,并输入到Aς4451(500MHζ)示波器,示波器显示的扫描图形与人眼相似,因此称为眼图。
用眼图法测量系统时应有多种字型,可以采用各比特位上0和1出现的概率相等的随机数字信号进行测试。
Aς5233X误码仪用来产生伪随机数字序列信号。
在这里“伪随机”的意义是伪随机码型发生器产生N比特长度的随机二进制数字信号是数字序列在N 比特后发生重复,并不是测试时间内整个数字序列都是随机的,因此称为“伪随机”。
伪随机序列如果由2比特位组成,则共有四种组合,3比特数字信号有8种组合,N比特数字信号有2N个组合。
伪随机数字信号的长度为2N-1,这种选择可保证字型不与数据率相关。
例如N可取7、10、15、23、31等。
如果只考虑3比特非归零码,应有如图2.2所示的8种组合。
将这8种组合同时叠加,就可形成如图2.3所示的眼图。
图2.1 眼图测量装置许多数字通信系统的重要性能可以从眼图测试中得到。
为了理解眼图测量原理,考虑图2.4所示简化的眼图,可以得到关于信号幅度失真、定时抖动和系统上升时间等系统性能参数。
接收信号的最佳取样时间是纵向眼开度最大的时刻t1。
眼图观察实验实验九眼图观察实验实验内容1、PN码/CMI码的眼图。
2、噪声、码间干扰对眼图的影响。
3、眼图的垂直张开度与水平张开度。
一、实验目的1、熟悉基带信号的眼图观察方法。
2、学会用眼图判断数字信道的传输质量。
3、分析眼图的垂直张开度与水平张开度。
二、眼图观察电路眼图是在同步状态下,各个周期的随机信码波形,重叠在一起所构成的组合波形。
其形状类似一只眼睛故名眼图。
其形成是由于人眼的视觉暂留作用把随机信号在荧屏上反复扫描的波形复合起来。
眼图是用来观察数字传输系统是否存在码间干扰的最简单、直观的方法。
将示波器置于外同步状态,平台的输出时钟接往示波器的通道1,伪随机码接往示波器的通道2,缓慢调整示波器的“同步”旋钮,当时钟与信码的相位同步时即可在示波器屏幕上观察到眼图。
眼图的垂直张开度反映信码幅度的变化量,可用来表示系统的抗噪声能力,垂直张开度越大,抗噪声能力越强。
水平张开度则反映信码的码间干扰。
水平张开度越大,表示信码的码间干拢越小。
垂直张开度与水平张开度越大,越有利于信码再生器的判决,还原出来信码的误码率就越小。
Vt11垂直张开度E= 水平长开度E1= 0tV22V V 12 t 1 t 2图9-1 模型化眼图平台上专门设置有眼图观察电路,它是一级由运算放大器和RC网络组成的低通滤波器,把输入数字信号的高频分量滤除,得到一个模拟的升余弦波,以获得眼图观察效果。
输入的PN码数字信号由U101 CDLD可编程模块二内的数字信号产生电路产生,经过 U101 CPLD可编程模块二 70 CMI码 34 产生电路 35 5 36 31 PN2 2KB/S PN 32 码产生电路CMIOUTCMI MCMI 数字信号眼图FCMI 测试点测试点TP902 TP903 HPN2 FPN2 眼 HPN2 CMI码 1 图 HPN32 2 PN32 3 K02 观 FPN32 察 HC1 1KHz方波电产生电路 FC1 路 HC2 FC2 32KHz方波产生电路 U301 U302 FPGA可编程模块一 39 CMI码产生电路 47 2KB/S PN 码产生电路 48 32KB /S PN 码产生电路 ? ? ? ? 图9-2 眼图观察方框图 ? ? FPGA/CPLD模块选择开关K01和PN码/CMI码选择开关K02的3~2送入眼图观察电路。
实验报告光纤信道眼图观察实验者姓名:合作者姓名:专业:班级:学号:指导老师:实验日期:目录一实验目的 (2)二实验原理 (3)三基本操作过程? (4)四仪器与设备 (4)五安全注意事项 (4)六实验内容、数据记录与处理 (4)七思考题 (5)八结果与讨论 (5)参考文献*一、实验目的1.了解眼图产生原理。
2.用示波器观测扰码的光纤信道眼图。
二、实验原理本实验系统主要由两大部分组成:电端机部分、光信道部分。
电端机又分为电信号发射和电信号接收两子部分,光信道又可分为光发射端机、光纤、光接收端机三个子部分。
在本实验中,涉及的电发射部分有两个功能模块: 8位的自编数据功能和扰码功能。
涉及的电接收部分就是收端均衡滤波器电路、时钟提取、再生、相应的解扰功能。
眼图观测的实验结构如下图所示:图1.1.1 CMI码光纤通信基本组成结构在整个通信系统中,通常利用眼图方法估计和改善传输系统性能。
我们知道,在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间串扰。
在码间串扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。
为了便于评价实际系统的性能,常用观察眼图进行分析。
眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。
什么是眼图?所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元同可以在眼1.1.2 无失真及有失真时的波形及眼图(a) 无码间串扰时波形;无码间串扰眼图(b) 有码间串扰时波形;有码间串扰眼图在图6.6.2中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。
图6.6.2中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。
眼图中央的垂直线表示取样时刻。
当波形没有失真时,眼图是一只“完全张开”的眼睛。
在取样时刻,所有可能的取样值仅有两个:+1或-1。
当波形有失真时,在取样时刻信号取值分布在小于+1或大于-1附近,“眼睛”部分闭合。
实验12 眼图观察测量实验一、实验目的1.学会观察眼图及其分析方法,调整传输滤波器特性。
二、实验仪器1. 眼图观察电路(底板右下侧)2.时钟与基带数据发生模块,位号:G 3.噪声模块,位号E 4.100M双踪示波器1台三、实验原理在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。
我们知道,在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间串扰。
在码间串扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。
为了便于评价实际系统的性能,常用观察眼图进行分析。
眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。
什么是眼图?所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。
干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。
因为对于二进制信号波形,它很像人的眼睛故称眼图。
在图12-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。
图12-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。
眼图中央的垂直线表示取样时刻。
当波形没有失真时,眼图是一只“完全张开”的眼睛。
在取样时刻,所有可能的取样值仅有两个:+1或-1。
当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。
这样,保证正确判决所容许的噪声电平就减小了。
换言之,在随机噪声的功率给定时,将使误码率增加。
“眼睛”张开的大小就表明失真的严重程度。
为便于说明眼图和系统性能的关系,我们将它简化成图12-2的形状。
由此图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感; (3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5) 阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息的解调器有重要影响。
实验室理想状态下的眼图如图12-3 所示。
衡量眼图质量的几个重要参数有:1.眼图开启度(U-2Δ U)/U指在最佳抽样点处眼图幅度“张开”的程度。
无畸变眼图的开启度应为100%。
其中U=U++U-2.“眼皮”厚度2Δ U/U指在最佳抽样点处眼图幅度的闭合部分与最大幅度之比,无畸变眼图的“眼皮”厚度应等于0。
2.交叉点发散度Δ T/T指眼图过零点交叉线的发散程度,无畸变眼图的交叉点发散度应为0。
3.正负极性不对称度指在最佳抽样点处眼图正、负幅度的不对称程度。
无畸变眼图的极性不对称度应为0。
最后,还需要指出的是:由于噪声瞬时电平的影响无法在眼图中得到完整的反映,因此,即使在示波器上显示的眼图是张开的,也不能完全保证判决全部正确。
不过,原则上总是眼睛张开得越大,误判越小。
在图12-3 中给出从示波器上观察到的比较理想状态下的眼图照片。
本实验主要是完成PSK 解调输出基带信号的眼图观测实验。
四、各测量点和可调元件作用底板右下侧“眼图观察电路”W06:接收滤波器特性调整电位器。
P16:眼图观察信号输入点。
P17:接收滤波器输出升余弦波形测试点(眼图观察测量点)。
五、实验步骤1.插入有关实验模块:在关闭系统电源的情况下,按照下表放置实验模块:模块名称放置位号时钟与基带数据发生模块G噪声模块E对应位号可见底板右上角的“实验模块位置分布表”,注意模块插头与底板插座的防呆口一致。
2.信号线连接使用专用导线按照下表进行信号线连接:源端目的端连线作用4P01(G)3P01(E)将待传输的码元数据送入高斯白噪声信道;3P02(G)P16(底板)将经过加噪后的信号送入眼图观察电路;3.加电打开系统电源开关,底板的电源指示灯正常显示。
若电源指示灯显示不正常,请立即关闭电源,查找异常原因。
4.实验内容设置拨码器“4SW02”(G)设置为“00011”,4P01 产生32K 的 511 位m 序列;5.眼图观测(1)用示波器的一根探头CH1 放在“4P02”(G)上,另一根探头CH2 放在“P17”(底板)上,选择示波器触发方式为CH1。
(2)调整示波器的扫描旋纽,则可观察到若干个并排的眼图波形。
眼图上面的一根水平线由连1 引起的持续正电平产生,下面一根水平线由连0 码引起的持续的负电平产生,中间部分过零点波形由1.0 交替码产生。
无噪声眼图波形观察(1)调节3W01(E)电位器,将3TP01 噪声电平调为0,使传输信道无噪声;(2)调整接收滤波器r() H (这里可视为整个信道传输滤波器() H )的特性,使之构成一个等效的理想低通滤波器。
观看眼图,调整电位器W06 直到眼图波形的过零点位置重合、线条细且清晰,此时的眼图为无码间串扰、无噪声时的眼图。
在调整电位器W06 过程中,可发现眼图波形过零点线条有时弥散,此时的眼图为有码间串扰、无噪声时的眼图,并且线条越弥散,表示码间串扰越大;在调整过程中,还可发现W06 在多个不同位置,眼图波形的过零点都重合,由于 W06 不同位置,对应的不同特性,它正好验证了无码间串扰传输特性不是唯一的。
()H有噪声时眼图波形观察调节3W01(E),逐渐增加噪声电平。
在增大噪声电平的过程中,注意观察眼图的形状变化,分析噪声电平对眼图的影响,反过来通过不同状态的眼图,分析当前传输信道的噪声。
调整眼图电路参数后眼图观察调节W06(底板)电位器,改变眼图信道传输滤波器的带宽,在调整过程中,分析信道带宽对眼图电路的影响,并结合眼图理论分析带宽、码间串扰6. 关机拆线实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。
六、实验报告要求1.分析电路的工作原理,叙述其工作过程。
2.叙述眼图的产生原理以及它的作用。
答:实验13 数字频率合成实验一、实验目的1.加深对基本锁相环工作原理的理解;2.熟悉锁相式数字频率合成器的电路组成与工作原理。
二、实验仪器1.数字频率合成模块,位号:B2.时钟与基带数据发生模块,位号:G3.100M 双踪示波器1 台三、实验原理1.锁相环的构成及工作原理(1)锁相环的基本组成图13-1 是锁相环的基本组成方框图,它主要由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)组成。
①压控振荡器(VCO)VCO 是本控制系统的控制对象,被控参数通常是其振荡频率,控制信号为加在VCO 上的电压。
所谓压控振荡器就是振荡频率受输入电压控制的振荡器。
②鉴相器(PD)PD 是一个相位比较器,用来检测输出信号0 V (t)与输入信号i V (t)之间的相位差(t),并把 (t)转化为电压V (t) d 输出,V (t) d 称为误差电压,通常V (t) d 作为一直流分量或一低频交流量。
③环路滤波器(LF)LF 作为一低通滤波电路,其作用是滤除因 PD的非线性而在V (t) d 中产生的无用组合频率分量及干扰,产生一个只反映(t)大小的控制信号V (t) C 。
4046 锁相环芯片包含鉴相器(相位比较器)和压控振荡器两部分,而环路滤波器由外接阻容元件构成。
(2)锁相环锁相原理锁相环是一种以消除频率误差为目的反馈控制电路,它的基本原理是利用相位误差电压去消除频率误差。
按照反馈控制原理,如果由于某种原因使VCO 的频率发生变化使得与输入频率不相等,这必将使V (t) O 与V (t) i 的相位差(t)发生变化,该相位差经过PD 转换成误差电压V (t) d 。
此误差电压经过LF滤波后得到V (t) c ,由V (t) c 去改变VCO 的振荡频率,使其趋近于输入信号的频率,最后达到相等。
环路达到最后的这种状态就称为锁定状态。
当然由于控制信号正比于相位差,即V (t) d 正比于(t),因此在锁定状态,(t)不可能为零,换言之,在锁定状态V (t) O 与V (t) i 仍存在相位差。
虽然有剩余相位误差存大,但频率误差可以降低到零,因此环路锁定时,压控振荡器输出频率O F 与外加基准频率(输入信号频率)i F 相等,即压控振荡器的频率被锁定在外来参考频率上。
3.数字频率合成器的基本工作原理频率合成技术是现代通信对频率源的频率稳定度与准确度,频谱纯度及频带利用率提出越来越高的要求的产物。
它能够利用一个高稳标准频率源(如晶体振荡器)合成出大量具有同样性能的离散频率。
直接式锁相频率合成器构成如图13-2 所示。
图中fR 为高稳定的参考脉冲信号(如晶体振荡器输出的信号),压控振荡器(VCO)输出经N 次分频后得到频率为fN 的脉冲信号。
fR 和fN 在鉴相器(PD)进行比较,当环路处于锁定状态时,则:数字锁相环频率合成器原理图如图13-3,35U02(4046)锁相环的功能框图如图13-4 所示, 35U02(MC14522)、35U03(MS14522)构成二级可预置分频器,35U02.35U03 分别对应着总分频比N 的十位、个位分频器。
模块上的两个4 位红色拨动开关35SW01.35SW02 分别控制十位数、个位数的分频比,它们以8421BCD 码形式输入。
拨动开关往上拨为“1”,往下拨为“0”。
使用时按所需分频比N 预置好35SW01.35SW02 的输入数据,例如N=7 时,35SW01 置“0000”,35W02 置“0111”;N=17 时,35SW01 置“0001”,35SW02 置“0111”。
但是应当注意,当35SW02 置“1111”时,个位分频比N1=15,如果35SW01 置“0001”时,此时的总分频比为N=25。
因此为了计算方便,建议个位分频比的预置不要超过9。
当程序分频器的分频比N 置成1,也就是把35SW01 置“0000”,35SW02 置成“0001” 状态。
这时,该电路就是一个基本锁相环电路。
当二级程序分频器的N 值可由外部输入进行编程控制时,该电路就是一个锁相式数字频率合成器电路。
外引线排列管脚功能简要介绍:第1 引脚(PDO3):相位比较器2 输出的相位差信号,为上升沿控制逻辑。
第2 引脚(PDO1):相位比较器1 输出的相位差信号,它采用异或门结构,即鉴相特性为PDO1=PDI1PDI2第3 引脚(PDI2):相位比较器输入信号,通常PD 为来自VCO 的参考信号。
第4 引脚(VCOO):压控振荡器的输出信号。
第5 引脚(INH):控制信号输入,若INH 为低电平,则允许VCO 工作和源极跟随器输出:若INH 为高电平,则相反,电路将处于功耗状态。