2015《数学分析》考试大纲
- 格式:doc
- 大小:54.00 KB
- 文档页数:8
《数学分析》考试大纲一、课程名称:数学分析二、适用专业: 数学与应用数学三、考试方法:闭卷考试四、考试时间:100分钟五、试卷结构:总分:100分,选择题15分,填空题15分,计算题40分,证明题30分。
六、参考书目:1、华东师范大学数学系编著,《数学分析》(上、下册),高等教育出版社,2010年第4版。
2、中国科学技术大学常庚哲史济怀编著,《数学分析教程》(上、下册),高等教育出版社,2003年第1版。
七、考试的基本要求:数学分析是数学与应用数学专业专升本入学考试中专业课考试内容,考生应理解和掌握《数学分析》中函数、极限、连续、微分学、积分学和级数的基本概念、基本理论、基本方法。
应具有抽象思维能力、逻辑推理能力、运算能力和空间想象能力,能运用所学知识正确拙推理证明,准确、简捷地计算。
能综合运用数学分析中的基本理论、基本方法分析和解决实际问题。
八、考试范围第一章实数集与函数(一)考核内容实数及其性质,绝对值与不等式。
区间与邻域,有界集与确界原理。
函数概念,函数的表示法。
函数的四则运算,复合函数,反函数,初等函数。
具有某些特性的函数:有界函数、单调函数、奇函数与偶函数、周期函数。
(二)考核知识点1、实数:实数的概念,实数的性质,绝对值与不等式;2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。
(三)考核要求1、了解实数域及性质;2、掌握几种不等式及应用;3、熟练掌握数域,上确界,下确界,确界原理;4、牢固掌握函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
第二章数列极限(一)考核内容数列。
数列极限的定义,无穷小数列。
收敛数列性质:唯一性、有界性、保号性、不等式性质、迫敛性、四则运算法则。
子列及子列定理。
《数学分析》考试大纲科目名称:数学分析科目代码: 617《数学分析》是数学专业研究生必考的科目,总分值为150分,考试时间为3个小时。
本科目考试的基本知识以华东师范大学数学系编写的《数学分析》(第三版)为基础,除去带*号的内容(包括:第六章§7方程的近似解;第七章§1三实数完备性基本定理的等价性,§3上极限与下极限;第九章§6可积性理论补叙;第十章§6定积分的近似计算)不考,其余内容都是考试所要求掌握的。
参考书目:[1] 华东师范大学数学系,数学分析(第三版),高等教育出版社,2008年4月;[2] 陈守信,数学分析选讲,机械工业出版社,2009年9月.参考题型:河南工业大学2014年硕士研究生入学考试试题(见附页)。
附页河南工业大学2014年硕士研究生入学考试试题考试科目: 数学分析 共 2 页(第 1 页)一、(24分,每小题8分) 计算下列极限: 1. 1211lim 1)n n n n-→+∞+-( ;2. 0x →;3. lim sin sin sin ).n →+∞+++22212n (n n n二、( 48分,每小题12分) 计算下列各类积分:1. 12sin I dx x ππ-=+⎰;2. 2sin y x I dy dx x ππππ-=⎰⎰ ;3. 第二型曲线积分22C xdy ydx x y -+⎰,其中C 为任意简单闭曲线,逆时针为正向; 4. 利用奥高公式计算()()()s I x y z dydz y z x dzdx z x y dxdy =-++-++-+⎰⎰,其中S 是八面体1x y z y z x z x y -++-++-+=的外侧.三、(36分,每小题12分) 完成下列各题1.(12分) 按步骤做出函数23(1)y x x =-的图像.2. 求幂级数111(1)(1)2n n n x n∞=-+++∑的收敛域. 3. 设(,)z z x y =是由方程组,,u v u v x e y e z uv +-===,确定的函数,求当0,0u v == 时的2,dz d z .共 2 页(第 2 页)四、(42分) 完成下列证明题1. (10分) 若函数()f x 在[,)a +∞上连续,lim ()x f x →+∞存在,则()f x 在[,)a +∞上一致连续.2. (10分) 设二元函数f 在圆周222:C x y a +=上连续,证明:存在C 的一条直径的两个端点A 与B ,使得 ()()f A f B =.3. (10分)证明方程0ln x x e π=-⎰在0+∞(,)内有且仅有两个实根. 4. (12分) 证明函数2222222,0(,)0,0x y x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在原点(0,0)处连续,且存在偏导数,但在(0,0)处不可微.。
2015年硕士研究生入学考试大纲考试科目名称:数学分析一、考试要求:1.极限与连续:①. 掌握数列极限和函数极限的基本理论与性质,会用极限的定义与性质证明或计算一般极限方面的命题.②.掌握函数连续性定义与性质,会用函数连续性定义与性质证明相关的命题和结论.③. 了解实数的基本定理,会用实数的基本定理证明相关的命题和结论.2. 一元函数微积分及其应用:①.掌握一元函数微分学的基本理论与性质,会用导数的定义与性质讨论或证明相关的命题和结论.掌握一元函数常见的求导方法,会求一元函数各阶导数.②.掌握导数与微分中值定理及其应用,会用微分中值定理证明相关的命题和结论.会用导数与微分的基本性质讨论函数的单调性,凹凸性,极值.掌握罗比塔法则,会利用罗比塔法则计算或讨论相关的命题和结论.③.掌握原函数、不定积分、定积分的概念与性质,掌握常见的不定积分与定积分计算方法,掌握变上限定积分定义的函数及其求导方法,掌握牛顿-莱布尼兹公式.④.会利用定积分表达或计算一些几何量与物理量,如平面图形的面积、平面曲线的弧长、旋转体的体积及表面积、质心、变力做功、压力等.3. 多元函数微积分学:①.掌握多元函数的极限和连续的基本理论与性质,偏导数和全微分,链式法则,隐函数存在定理及隐函数求导法则,极值和条件极值.②.掌握二重积分、三重积分、曲线积分、曲面积分的概念与性质,掌握格林公式、高斯公式、斯托克司公式,会利用有关的性质与公式计算或证明相关的命题和结论.会利用重积分、曲线积分表达或计算一些几何量与物理量,空间曲线的弧长、立体的体积、质心、引力等.4. 级数理论与广义积分:①.掌握数项级数、函数项级数、幂级数、傅里叶级数的基本理论与性质,掌握函数项级数、幂级数、傅里叶级数的各种收敛理论与性质,会利用常见的判别方法判断各类级数的敛散性,会利用常见幂级数、傅里叶级数计算数项级数的和.②.掌握一元函数的广义积分的基本理论与性质,会利用常见的判别方法讨论无穷限广义积分,无界函数广义积分,含参变量的广义积分的敛散性.③. 理解广义重积分的基本理论与性质,会计算简单的广义重积分.二、考试内容:1)极限与连续:a:数列极限、函数极限的定义与性质,利用定义与性质证明或计算一般极限方面的命题.b:函数连续、一致连续的定义与性质,利用定义与性质证明或计算一般极限方面的命题.c: 实数基本定理,闭区间上函数连续的性质及其应用.2) 一元函数微积分及其应用:a: 一元函数各阶导数的定义与性质,导数与微分中值定理及其应用:微分中值定理,泰勒公式,函数的单调性,凹凸性,极值,罗比塔法则.利用有关定义微分学的基本理论与性质,讨论或证明相关的命题和结论b: 一元函数积分及其应用:不定积分,定积分,平面图形的面积,曲线的长,旋转体的体积及表面积、质心.c: 原函数、不定积分、定积分的概念与性质,不定积分与定积分计算方法,变上限定积分定义的函数及其求导.利用有关定义微分学的基本理论与性质,讨论或证明相关的命题和结论3) 多元函数微积分学:a: 多元函数的极限和连续的基本理论与性质,偏导数和全微分,链式法则,隐函数存在定理及隐函数求导法则,极值和条件极值.利用有关定义、基本理论与性质,讨论或证明相关的命题和结论.b:二重积分、三重积分、曲线积分,曲面积分的定义与性质,格林公式,高斯公式. 利用有关定义、基本理论与性质,讨论或证明相关的命题和结论.c: 计算多元函数的偏导数和全微分、二重积分、三重积分、曲线积分,曲面积分.4) 级数理论与广义积分:a: 数项级数、函数项级数、幂级数、傅里叶级数的基本理论与性质,数项级数、函数项级数、幂级数、傅里叶级数敛散性的判别. 利用有关定义、基本理论与性质,讨论或证明相关的命题和结论.b:幂级数的收敛域,将函数展成幂级数或傅里叶级数,计算数项级数的和.c: 一元函数的广义积分与广义重积分的基本理论与性质,判别广义积分的敛散性.利用有关定义、基本理论与性质,讨论或证明相关的命题和结论.计算一元函数的广义积分与简单的广义重积分.讨论含参变量的广义积分的性质.三、试卷结构:a)考试时间:180分钟,满分:150分b)题型结构a:基本概念与理论(含填空、选择与判断题)(约40分)b:证明题(约60分)c:计算题(约50分)石油大学华东专业课考研复习资料联系扣扣2410194465四、参考书目1.《数学分析》(上、下册),复旦大学数学系:陈传璋,金福临,朱学炎,欧阳光中编,高等教育出版社,2004年7月,第二版.2.《数学分析》(上、下册),郭大钧,陈玉妹,裘卓明编著,山东科技出版社,2002年8月,第二版.负责人:;联系电话:教学秘书:;联系电话:计算数学系2013-9-23。
《数学分析》专升本考试大纲一、课程名称:数学分析二、适用专业:数学与应用数学三、考试方法:闭卷考试四、考试时间:120分钟五、试卷结构:总分:100分;判断题:10分;填空题20分;选择题15分;计算证明应用题:55分六、参考教材:1、林元重著,新编数学分析(上、下册),武汉大学出版社,2015年3月第1版2、陈纪修、於崇华、金路编,数学分析(上、下册),高等教育出版社,2004年6月第二版3、华东师范大学数学系编,数学分析(上、下册),高等教育出版社,2011年5月第四版七、考试内容及基本要求第1章极限论1.1引言(一) 考核要求1. 了解数学分析是什么.2. 掌握实数的性质(有序性,稠密性,阿基米德性.实数的四则运算),掌握实数的基本概念和最常见的不等式.3.掌握函数概念和函数的不同的表示方法.4. 掌握函数的有界性,单调性,奇偶性和周期性.(二) 考核范围1. 数学分析是什么.2. 实数的基本性质和绝对值的不等式,区间与邻域,集合的上下界.3. 函数的定义与表示法,复合函数与反函数,初等函数.4. 函数的有界性,单调性,奇偶性和周期性.1.2 数列极限概念(一) 考核要求ε-定义证明极限,学会证明1. 深刻理解并掌握数列极限概念,学会用数列极限的N数列极限的基本方法.2. 掌握数列极限的基本性质,掌握四则运算法则.3. 掌握夹逼准则,理解数集确界及确界原理,掌握单调有界准则,理解柯西收敛准则.(二) 考核范围1. 数列极限概念.2. 数列极限的唯一性,有界性,保号性,保不等式性,四则运算法则.3. 数列极限的夹逼准则和单调有界准则,数集的确界及确界原理,数列的子列及相关定理(包括致密性定理),柯西收敛准则.1.3 函数极限概念及性质(一) 考核要求1. 正确理解和掌握函数极限的M ε-定义、εδ-定义,掌握极限与左右极限的关系,能够用定义证明和计算函数的极限.2. 理解并掌握函数极限的基本性质(唯一性,有界性,保号性,保不等式性,四则运算法则),会用这些性质计算函数的极限.(二) 考核范围1. 函数极限的M ε-定义、εδ-定义,左右极限.2. 函数极限的唯一性,有界性,保号性,保不等式性,四则运算法则.1.4 函数极限存在的准则与两个重要极限(一) 考核要求1. 理解并掌握函数极限的归结原则,了解函数极限的单调有界定理,理解函数极限的柯西准则.能够写出函数极限的归结原理和柯西准则.2. 熟练掌握两个重要极限.(二) 考核范围1. 函数极限的归结,函数极限的单调有界定理,函数极限的柯西准则.2. 两个重要极限.1.5 无穷小量与无穷大量(一) 考核要求掌握无穷小量与无穷大量以及它们的阶数的概念.(二) 考核范围无穷小量与无穷大量,高阶无穷小,同阶无穷小,等价无穷小,无穷大.1.6 连续性概念(一) 考核要求深刻理解并掌握函数连续性概念.(二) 考核范围1. 函数连续,函数左右连续,区间上函数连续的概念.2. 间断点及其分类.1.7 连续函数的局部性质与初等函数的连续性(一) 考核要求掌握连续函数的局部性质和和初等函数的连续性.(二) 考核范围1. 连续函数的局部有界性,局部保号性,四则运算.2. 复合函数的连续性,反函数的连续性,初等函数的连续性.1.8 闭区间上连续函数的性质(一) 考核要求1. 理解闭区间上连续函数的最大最小值定理,介值性定理.2. 理解并掌握一致连续性概念,理解一致连续性定理.(二) 考核范围1. 连续函数的最大最小值定理,介值性定理.2. 一致连续性概念,一致连续性定理.1.9 实数的连续性与上(下)极限(一)考核要求1. 理解区间套定理、聚点定理,了解上(下)极限及其性质.2. 理解有限覆盖定理,了解几个基本定理的等价性.(二)考核范围1. 区间套定理、聚点定理,上(下)极限及其性质.2. 有限覆盖定理,几个基本定理的等价性.第2章一元函数微分学2.1 导数的概念(一) 考核要求1. 理解并掌握导数的定义,掌握导数的几何意义,了解导数的物理意义.2. 了解增量——微分公式,掌握可导与连续的关系.了解费马定理、达布定理.(二) 考核范围1. 变化率——导数,单侧导数,导函数,几个基本导数公式,几何意义.2. 增量——微分公式,可导与连续的关系.2.2 导数的运算法则(一) 考核要求1. 熟练掌握导数的四则运算法则,理解反函数的求导法则.2. 熟练掌握复合函数的求导法则及基本导数公式.3. 知道求分段函数在分段点处的导数.(二) 考核范围1.导数的四则运算法则,反函数的求导法则.2. 复合函数的求导法则,对数求导法,基本导数公式.2.3 参变量函数和隐函数的导数(一) 考核要求掌握参变量函数的求导法则,知道求隐函数的导数,会运用求导法则求相关变化率.(二) 考核范围参变量函数的求导法则,隐函数的求导法,相关变化率.2.4 微分(一) 考核要求1. 深刻理解并掌握微分的概念,掌握微分的运算方法,了解微分在近似计算中的应用.2. 理解微分与导数的关系,会利用微分法则求参变量函数和隐函数的导数.(二) 考核范围1. 微分的概念,微分的运算法则,一阶微分形式的不变性,微分在近似计算中的应用.2. 利用微分法则求参变量函数和隐函数的导数.2.5 高阶导数与高阶微分(一) 教学目的1. 掌握高阶导数的概念和计算,掌握高阶导数的莱布尼茨公式.2. 了解高阶微分及其计算,知道高阶导数与高阶微分的关系.(二) 考核范围1. 高阶导数及其计算,高阶导数的莱布尼茨公式.2. 高阶微分及其计算.2.6 拉格朗日定理和函数的单调性、极值(一) 考核要求1. 掌握罗尔定理和拉格朗日中值定理的条件、结论及证明方法,会应用中值定理证明一些不等式和一些中值公式,了解达布定理和导数极限定理.2. 掌握求函数的单调区间和极值及最值的一般方法.(二) 考核范围1. 极值概念与费马定理.2. 罗尔定理,拉格朗日中值定理,应用中值定理证明不等式和中值公式举例,达布定理,导数极限定理.3. 函数的单调性与极值,函数的最值,最值应用题举例.2.7 柯西中值定理和不定式极限(一) 考核要求掌握柯西中值定理,掌握罗比达法则,会求各种形式的不定式极限.(二) 考核范围柯西中值定理及其简单应用举例,洛必达法则,不定式极限计算举例.2.8 泰勒公式(一) 考核要求理解带两种余项形式的泰勒公式,掌握基本初等函数的麦克劳林公式(熟记六个),会利用它们求不定式极限,了解泰勒公式在求高阶导数、函数极值以及近似计算方面的应用.(二) 考核范围1. 带佩亚诺余项和带拉格朗日余项的泰勒公式和麦克劳林公式,几个基本初等函数的麦克劳林公式.2. 泰勒公式应用举例(不定式极限,高阶导数,函数极值,近似计算).2.9其它应用(一) 考核要求1. 掌握函数凸性与拐点的概念,会求函数凹凸区间与拐点,了解函数凸性在证明不等式方面的应用.2.会求曲线的渐近线,了解函数作图的一般步骤,会描绘函数的图像.f x=近似解的牛顿切线法.3. 了解求方程()0(二) 考核范围f x=的近似解.函数的凸性与拐点,凸性的判定,渐近线,函数作图,方程()0第3章一元函数积分学3.1 不定积分的概念与线性运算(一) 考核要求理解原函数与不定积分的概念,熟练掌握基本积分公式及不定积分的线性运算法则,了解不定积分的几何意义,了解连续分段函数的原函数的求法.(二) 考核范围原函数与不定积分的概念,基本积分公式与线性运算法则,不定积分的几何意义.3.2 换元积分法与分部积分法(一) 考核要求理解并熟练掌握第一、二换元积分法与分部积分法.(二) 考核范围第一、二换元积分法,分部积分法.3.3 有理函数和三角函数有理式的不定积分(一) 考核要求掌握有理函数不定积分的计算方法,会计算一些三角函数有理式的不定积分,会计算一些简单无理函数的不定积分,了解欧拉变换法.(二) 考核范围有理函数的不定积分,三角函数有理式的不定积分,两类无理函数的不定积分.3.4 定积分的概念与牛顿——莱布尼茨公式(一) 考核要求-定义,了解定积分的几何1. 深刻理解并掌握定积分的概念,知道定积分概念的εδ意义和物理意义.2. 熟练掌握牛顿——莱布尼茨公式,会利用牛顿——莱布尼茨公式计算一些特殊的和式极限.(二) 考核范围-定义),牛顿—定积分的几何背景和物理背景,定积分的定义(极限形式的定义和εδ—莱布尼茨公式.3.5 可积函数类与定积分的性质(一) 考核要求1. 理解函数可积的必要条件,函数可积的充要条件(可积准则),掌握三类可积函数,对这些定理的证明及其证明思路只要求读懂,不作其它较高要求.2. 理解并掌握定积分的若干基本性质,能证明一些简单的积分不等式.(二) 考核范围1. 可积的必要条件,上(下)和与上(下)积分,可积的充要条件(可积准则),可积函数类.2. 定积分的基本性质,积分第一中值定理.3.6 微积分学基本定理、定积分的计算(续)(一) 考核要求1. 掌握微积分学基本定理,会求变上(下)限的定积分的导数.2. 熟练掌握换元积分法与分部积分法.3. 理解积分第二中值定理,理解泰勒公式的积分型余项,了解定积分近似计算.(二) 考核范围变上(下)限的定积分,微积分学基本定理,换元积分法与分部积分法,积分第二中值定理,泰勒公式的积分型余项,定积分近似计算.3.7 (3.8)定积分的应用(一) 考核要求1. 领会微元法的要领,掌握平面图形面积、由平行截面面积求体积、平面曲线弧长的计算公式,了解曲线的曲率,旋转曲面的面积.2. 领会定积分在物理应用方面的基本方法.(二)考核范围1. 微元法概述.2. 平面图形的面积,由平行截面面积求体积,平面曲线的弧长与曲率,旋转曲面面积.3. 功,液体静压力,引力.3.9 无穷积分与瑕积分(一) 考核要求1. 掌握无穷积分与瑕积分的定义和计算.2. 理解无穷积分的基本性质,掌握非负函数无穷积分的收敛性判别的比较判别法,掌握绝对收敛和条件收敛的概念,理解狄利克雷判别法和阿贝尔判别法(不作其它较高要求).3. 了解瑕积分与无穷积分的关系,了解瑕积分的收敛性判别法.(二) 考核范围1. 无穷积分与瑕积分的定义和计算.2. 无穷积分的基本性质,比较判别法(包括极限形式及特殊形式),绝对收敛与条件收敛,狄利克雷判别法与阿贝尔判别法.3. 瑕积分的收敛性判别法.第4章 级数论4.1 数项级数的基本概念及性质(一) 考核要求1. 理解数项级数收敛与发散的定义,掌握收敛级数的基本性质,能够根据定义或性质判别一些简单简单级数的敛散性.2. 掌握等比级数与调和级数.3. 理解级数收敛的柯西准则,对应用柯西准则判别级数的敛散性不作较高要求.(二) 考核范围数项级收敛与发散的定义和基本性质,等比级数,调和级数,柯西准则.4.2 正项级数(一) 考核要求1. 掌握判别正项级数敛散性的基本方法:比较判别法,比式判别法和根式判别.2. 了解积分判别法和拉贝判别法.(二) 考核范围1. 比较判别法,比式判别法,根式判别法.2. 积分判别法,拉贝判别法.4.3 变号级数(一) 考核要求1. 掌握交错级数的莱布尼茨判别法,掌握绝对收敛与条件收敛概念.2. 理解狄利克雷判别法与阿贝尔判别法,对其应用一般不作较高要求.3. 理解绝对收敛级数的两条重要性质,对其应用不作较高要求.(二) 考核范围1. 交错级数及其莱布尼茨判别法,绝对收敛与条件收敛.2. 狄利克雷判别法与阿贝尔判别法.3. 绝对收敛级数的重排,绝对收敛级数的乘积.4.4 函数项级数及其一致收敛性(一) 考核要求1. 深刻理解并掌握函数列和函数项级数一致收敛性的定义,理解一致收敛的柯西准则.2. 掌握一致收敛的另一充要条件(即lim sup ()()0n n x D f x f x →∞∈-=lim sup ()0n n x DR x →∞∈=),掌握判别函数项级数的魏尔斯特拉斯判别法即优级数判别法.3. 理解判别函数项级数收敛性的狄利克雷判别法和阿贝尔判别法,对其应用不作较高要求.(二) 考核范围1. 函数列与函数项级数一致收敛性的定义,一致收敛的柯西准则.2. 一致收敛的另一充要条件,魏尔斯特拉斯判别法.3. 函数项级数收敛性的狄利克雷判别法和阿贝尔判别法.4.5 一致收敛函数序列与函数项级数的性质(一) 考核要求理解并掌握一致收敛函数列和函数项级数的连续性,逐项积分与逐项求导法则.(二) 考核范围一致收敛函数列与函数项级数的连续性,逐项积分与逐项求导法则.4.6 幂级数及其性质(一) 考核要求掌握幂级数的收敛半径及收敛域的求法,掌握幂级数的基本性质和运算法则.(二) 考核范围幂级数的收敛半径,收敛半径的计算公式,收敛区间和收敛域的概念.4.7 函数的幂级数展开(一) 考核要求掌握泰勒级数和麦克劳林级数,熟记一些初等函数的幂级数展开式,掌握初等函数的幂级数展开.(二) 考核范围泰勒级数,麦克劳林级数,五种基本初等函数的幂级数展开式,初等函数的幂级数展开(直接法和间接法).4.8 傅里叶级数(一) 考核要求1. 理解三角级数和傅里叶级数定义,掌握傅里叶级数的收敛定理,能够按照收敛定理将比较简单的函数展开成傅里叶级数.2. 掌握以2l为周期的函数的展开式,掌握偶函数和奇函数的傅里叶级数的展开,掌握正弦级数,余弦级数.3. 了解收敛定理的证明,了解傅里叶级数的一致收敛性.(二) 考核范围1. 三角级数;正交函数系,傅里叶级数,收敛定理,傅里叶级数的展开式举例.2. 以2l为周期的函数的展开式,掌握偶函数和奇函数的傅里叶级数的展开式,函数的奇延拓与偶延拓及正弦级数与余弦级数.3.黎曼引理,收敛定理的证明,贝塞尔不等式,一致收敛性定理.第5章多元函数微分学5.1多元函数与极限(6)(一) 考核要求1. 理解二元及多元函数的定义.了解平面中邻域,开域,闭域的定义.-定义,知道二元函数极限存在的充要条件,了解方向2. 理解二元函数重极限的εδ极限与累次极限,了解重极限与累次极限的区别与联系.(二) 考核范围1. 二元函数及多元函数,平面中的邻域,开域,闭域.2. 二元函数重极限定义,二元函数极限存在的充要条件,方向极限与累次极限.5.2 二元函数的连续性(一) 考核要求1. 理解二元函数的连续性的定义,知道二元初等函数的连续性.R上的完备性定理,知道有界闭区域上连续函数的整体性质.2. 了解有关二维空间2(二) 考核范围1. 二元函数的连续性的定义,二元初等函数的连续性.R中的聚点定理,致密性定理,闭区域套定理,有限覆盖定理.2. 23. 有界闭域上连续函数的最大最小值定理,介值性定理和一致连续性.(1) 基本要求:掌握二元函数的连续性的定义,了解有界闭域上连续函数的性质.(2) 较高要求:掌握有界闭域上连续函数性质的证明要点.5.3 偏导数与全微分(一) 考核要求1. 理解并掌握多元函数偏导数的定义,知道偏导数的几何意义,能够熟练的求出初等函数的偏导数和高阶偏导数,能够求二元函数在一些特殊的导数,知道混合偏导数与求导顺序无关的条件.2. 理解并掌握二元函数可微和全微分的定义,掌握微分法则,掌握可微的必要条件,理解可微的充分条件,了解高阶全微分及其运算.(二) 考核范围1. 多元函数偏导数与高阶偏导数,偏导数的几何意义,混合偏导数与求导顺序无关的条件.2. 二元函数可微和全微分的定义,微分法则,可微的必要条件,可微的充分条件,高阶全微分及其运算.5.4 复合函数微分法与方向导数(一) 考核要求理解并熟练掌握复合函数求导的链式法则,掌握方向导数与梯度的定义及其运算,了解二元函数的梯度的几何意义.(二) 考核范围1. 复合函数链式法则,复合函数的全微分,一阶全微分形式不变性.2. 方向导数与梯度5.5 多元函数的泰勒公式(一) 考核要求理解并掌握多元函数的泰勒公式,了解泰勒公式的一个推论——中值定理.(二) 考核范围泰勒公式与中值定理,泰勒公式的计算与应用举例.5.6 隐函数及其微分法(一) 考核要求1. 理解隐函数定理和可微性定理,掌握隐函数微分法.2. 了解隐函数组及其可微性定理,知道求隐函数组的偏导数.(二) 考核范围1. 隐函数存在性定理,隐函数可微性定理.2. 隐函数组及其可微性定理,反函数组定理.5.7 多元函数偏导数的几何应用(一) 考核要求1. 理解空间曲线(两种表示形式)的切线方程的推导,掌握空间曲线的切线与法平面方程的求法,理解曲面(两种表示形式)的切平面方程的推导,掌握曲面的切平面与法线的求法.2. 了解二元函数全微分的几何意义,了解三元函数梯度的几何意义.(二) 考核范围1. 空间曲线的切线与法平面方程,曲面的切平面与法线方程.2. 二元函数全微分的几何意义,、三元函数梯度的几何意义.5.8多元函数的极值与条件极值(一) 考核要求1. 掌握二元函数的极值的必要条件与充分条件.2. 了解拉格朗日乘数法,会用拉格朗日乘数法求条件极值.(二) 考核范围1. 二元函数的极值,必要条件与充分条件.2. 条件极值,拉格朗日乘数法,用条件极值的方法证明不等式.第6章多元函数积分学6.1 二重积分(一) 考核要求1. 了解平面点集的面积定义及其性质,理解二重积分的定义和性质,理解有界闭区域上的连续函数可积的结论,理解并熟练掌握化二重积分为累次积分的计算公式.2. 理解二重积分变量变换公式的证明,掌握用极坐标计算二重积分.(二) 考核范围1. 二重积分的定义和性质,化二重积分为累次积分的计算公式.2. 二重积分的变量变换公式,用极坐标计算二重积分.6.2 三重积分(一) 考核要求1. 掌握三重积分的定义,了解三重积分的性质,熟练掌握化三重积分为累次积分的计算公式(柱体法和截面法).2. 了解三重积分变量变换公式,掌握用球坐标和柱坐标计算三重积分.(二) 考核范围1. 三重积分的定义,化三重积分为累次积分的计算公式(柱体法和截面法).2. 三重积分变量变换公式,柱坐标变换公式,球坐标变换公式.6.3 n重积分和广义重积分(一) 考核要求了解n重积分和广义二重积分的概念和性质,了解广义二重积分的收敛性判别.(二) 考核范围n重积分的定义,计算公式,广义二重积分的性质,收敛性判别.6.4 重积分的应用(一) 考核要求掌握用重积分计算计算面积和体积,掌握曲面面积的计算公式,了解物体的重心,转动惯量与引力及其计算公式.(二) 考核范围平面区域的面积,立体的体积,曲面的面积,物体重心,转动惯量,引力.6.5 第一型曲线积分(一) 考核要求理解并掌握第一型曲线积分的定义,性质和计算公式.(二) 考核范围第一型曲线积分的定义,性质和计算公式.6.6 第二型曲线积分(一) 考核要求1. 理解并掌握第二型曲线积分的定义,性质,坐标形式和计算公式.2. 了解两类曲线积分之间的联系.(二) 考核范围1. 第二型曲线积分的定义,性质,坐标形式和计算公式.2. 两类曲线积分之间的联系.6.7 格林公式(一) 考核要求理解并掌握格林公式以及曲线积分与路线无关的条件.(二) 考核范围格林公式,曲线积分与路线无关的条件.6.8 第一型曲面积分(一) 考核要求理解并掌握第一型曲面积分的定义和计算公式.(二) 考核范围第一型曲面积分的定义和计算公式.6.9 第二型曲面积分(一) 考核要求理解并掌握第二型曲面积分的定义、性质,了解两类曲面积分的联系,掌握第二型曲面积分的计算公式.(二) 考核范围有向曲面的概念,第二型曲面积分的定义、性质,两类曲面积分的联系,第二型曲面积分的计算公式.6.10 高斯公式与斯托克斯公式(一) 考核要求理解并掌握高斯公式和斯托克斯公式.(二) 考核范围高斯公式,斯托克斯公式,沿空间曲线的第二型积分与路径无关的条件.*6.11 含参变量的积分(一) 考核要求1. 理解并掌握含参变量的定积分的连续性,可微性和可积性定理,掌握计算含参变量的定积分基本方法.2. 了解含参变量的广义积分的一致收敛性概念和性质,了解一致收敛性判别法(魏尔斯特拉斯判别法,狄里克雷判别法和阿贝尔判别法.3. 了解含参变量的广义积分的连续性,可微性与可积性定理,了解含参变量的定积分基本方法.4. 了解Γ函数与β函数的定义、性质及其联系.(二) 考核范围1. 含参变量的定积分的连续性,可微性和可积性定理的证明,定理的应用.2. 含参变量的广义积分的一致收敛性概念和性质,一致收敛性判别法.3. 连续性,可微性与可积性定理,定理的应用.4.Γ函数与β函数的定义、性质及其联系,余元公式.萍乡学院工程与管理学院2019年3月20日。
2015华中科技大学考研:《数学分析》考试大纲
店铺考研频道为大家提供2015华中科技大学考研:《数学分析》考试大纲,希望大家喜欢。
2015华中科技大学硕士研究生入学考试《数学分析》考试大纲
适用专业:应用数学,计算数学,概率统计,基础数学
题型:计算题、证明题
总分:150分
考查要点
1.极限、极限概念;收敛性判定;极限计算。
2.微分法。
一元与多元函数求导;隐函数微分法;参数表示的函数的微分法。
3.中值定理。
Rolle定理;Lagrange中值定理;Cauchy中值定理;Taylor公式。
4.微分学的应用,极值问题;几何应用。
5.定积分。
Newton-Leibniz公式;变量代换公式;分部积分公式;广义积分。
6.曲线积分与二重积分。
曲线积分;二重积分;Green公式。
7.曲面积分与二重积分,曲面积分;三重积分;Gauss公式。
8.幂级数,收敛域;Taylor展开;级数求和。
9.Fourier级数,Fourier系数;正弦级数;余弦级数。
10.基本定理及其应用,Cauchy收敛原理;聚点原理;区间套定理;确界存在定理。
2015数学(一)考研大纲2015数学(一)考研大纲2015年考研大纲将于2014年9月份发布,考研集训营网会在第一时间公布2015年考研大纲,希望对大家备考有所帮助。
由于考研大纲每年变化不大,同学们可以先参考2014年考研大纲进行备考,祝大家考研顺利!考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1x x e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。
数学与应用数学专业《数学分析》、《高等代数》考试大纲专业性质:师范类课程性质:专业课试卷包括数学分析和高等代数两个部分。
数学分析是高等师范院校基础数学专业和应用数学专业的必修课。
本课程是进一步学习许多后继课程,如复变函数论,常微分方程,数理方程,微分几何,概率论,实变函数论等课程的必要的基础知识。
也为在更高层次上理解中学数学的相关内容打下必要的基础。
高等代数是高等师范院校数学与应用数学专业的一门重要核心课程,也是理科各学科的一门重要基础课。
它是中学代数的继续和提高,它的思想和方法已经渗透到数学的各个领域。
高等代数的全部内容分两大部分,多项式理论和线性代数理论。
其中线性代数理论显得十分重要,不仅在自然科学的各分支有着重要应用,而且在社会科学领域中也有着广泛的应用。
考核方式:专业课试卷数学分析部分占60%,高等代数部分占40%,采用闭卷考试。
考核内容:《数学分析》部分第一章函数函数定义,函数的四则运算;四类特殊函数的概念;复合函数、反函数的概念。
第二章极限定义证明一些数列极限;收敛数列的三个性质、四则运算和两边夹法则;Cauchy 收敛准则;两边夹定理的应用;函数极限定义;函数极限的三个性质,四则运算法则,两类重要极限;等价无穷小在计算极限中的应用。
第三章函数连续函数连续概念;间断点的定义及分类;函数的左连续与右连续;连续函数的运算及其性质;初等函数的连续性;闭区间上连续函数三个性质。
第四章导数与微分导数定义及几何意义;可导与连续的关系;求导法则及基本初等函数的求导公式,复合函数求导法则;隐函数与参数方程的求导方法;微分的定义;初等函数的高阶导数。
第五章微分学基本定理及其应用Lagrange中值定理,Rolle中值定理,Lagrange中值定理及其应用;洛必达法则;Taylor公式及其应用;导数在研究函数上的应用。
第六章不定积分不定积分的性质,不定积分公式表;分部积分法与换元积分法;有理函数的不定积分法;简单无理函数与三角函数的不定积分。
《数学分析》(610)研究生入学考试大纲一、参考书目:1.《数学分析》第四版(上、下册)华东师范大学数学系编(高等教育出版社)。
2.《数学分析》(上、下册)盛炎平等编(机械工业出版社)。
二、考试大纲:(第一章~第二十二章,所有带*号的部分不用看)第一章实数集与函数数集的确界,确界原理.第二章数列极限极限定义,收敛数列性质,单调有界原理,重要极限.第三章函数极限函数极限定义,函数极限性质,两个重要极限,无穷大量与无穷小量,渐近线.第四章函数连续性函数连续概念,间断点分类,连续函数的性质,一致连续的概念.第五章导数与微分导数概念,导数几何意义,求导法则,基本求导公式,参变量函数求导,高阶导数,微分的概念,几何意义.第六章微分中值定理及其应用罗尔定理,拉格朗日定理,函数单调性的判定,柯西中值定理,不定式极限的罗必达法则,泰勒公式,,函数极值的判定,最值问题,函数凹凸性的判定.第七章实数的完备性了解刻画实数完备性定理的内容.第八章不定积分原函数与不定积分概念,基本积分公式,换元法与分部积分法.第九章定积分定积分概念,定积分性质,牛顿-莱布尼兹公式,变限积分和原函数存在定理,积分中值定理,计算积分的换元法与分部积分法.第十章定积分应用计算平面图形面积,立体体积,曲线弧长,旋转曲面面积.第十一章反常积分无穷积分和瑕积分的概念和性质,非负无穷积分和瑕积分的比较判别法,一般无穷积分和瑕积分的狄立克莱判别法和阿贝尔判别法.第十二章数项级数级数收敛的定义,级数的性质,正项级数的比较、根值、比值判别法,一般项级数的阿贝尔判别法和狄立克雷判别法.第十三章函数列与函数项级数函数列的一致收敛性,一致收敛的柯西准则及充要条件,一致收敛函数列的极限函数的性质,函数项级数一致收敛概念,判别法,一致收敛函数项级数的性质.第十四章幂级数幂级数的收敛半径、收敛区间、收敛域,收敛半径的计算,幂级数的性质,泰勒级数,初等函数的幂级数展开.第十五章傅立叶级数三角级数,正交系,收敛定理,周期函数的傅里叶展开,偶函数与奇函数的傅里叶级数与展开.第十六章多元函数的极限与连续二元函数的极限与连续.第十七章多元函数微分学偏导数的概念,全微分的概念,偏导数的几何意义,复合函数的求导法则,方向导数与梯度的概念,多元函数的极值问题.第十八章隐函数定理及其应用了解隐函数定理,会隐函数求导,曲线的切线,曲面的切平面与法线,条件极值问题.第十九章含参积分该章不考察.第二十章曲线积分第一型曲线积分定义与计算,第二型曲线积分的定义与计算,两类积分的联系.第二十一章重积分二重积分的概念、性质,直角坐标计算,极坐标计算,格林公式,曲线积分与路径的无关性,三重积分的定义,性质,利用直角坐标计算,柱坐标计算,球坐标计算.第二十二章曲面积分第一型曲面积分定义与计算,第二型曲面积分的定义与计算,高斯公式与斯托克斯公式三、试卷结构:1.概念简答题;2.计算题;3.证明题.。
《数学分析》考试大纲一、课程性质和目的《数学分析》是数学系的一门重要基础课,其主要任务是使学生获得数学的基本思想方法和极限论、单元和多元微积分、级数论、反常积分等方面的系统知识。
它一方面为后继课程(如《微分方程》、《实变函数》、《概率论与数理统计》及有关的《泛函分析》、《微分几何》等限选课程及《普通物理学》等)提供一些所需的基础理论和知识,另一方面还对提高学生思维能力,开发学生智能加强“三基”(基础知识、基本理论、基本技能)及培养学生独立工作能力等起着重要的作用。
通过本课程教学的主要环节(讲授与讨论、习题课、作业、辅导等),使学生对极限思想和方法有较深的认识和理解,从而有助于培养学生辩证唯物主义基本观点及正确理解《数学分析》的基本概念和论证方法及分析问题和解决问题的能力。
整个课程注重培养学生的数学逻辑及思想方法,训练学生举一反三的能力,在单元函数和多元函数相平行的内容以单元函数为主,引导学生通过独立思考得到多元函数的相应结论。
二、课程内容充分条件,必要条件,充要条件,绝对值,不等式,函数,单调函数,周期函数,奇偶函数,复合函数,反函数,初等函数,数列极限,数列极限的性质,单调有界数列,子数列,函数极限,函数极限的性质,函数极限与数列极限的关系,两个重要极限,无穷小量与无穷大量,闭区间套定理,上确界与下确界,确界存在定理,有限覆盖定理,致密性定理,柯西收敛准则,连续,左连续,右连续,间断点,函数在一点连续的性质,中间值定理,有界性定理,最大值与最小值定理,反函数的连续性定理,一致连续性定理,初等函数的连续性,导数,求导法则,微分,微分与导数的关系,高阶导数,高阶微分,参数方程求高阶导数,费尔马定理,洛尔定理,拉格朗日定理,柯西定理,洛必达法则,泰勒公式,单调性判别法,极值,凹凸性,拐点,曲线的渐近线,函数作图,不定积分,换元法,分部积分法,有理函数积分法,三角函数有理式积分,无理函数的积分,平面图形的面积,立体的体积,平面曲线的弧长,曲线的曲率,上极限,下极限,数项级数,正项级数,任意项级数,绝对收敛,条件收敛,无穷乘积,无穷积分,瑕积分,反常积分的收敛与发散,反常积分的计算,柯西主值,函数列,函数项级数,一致收敛,非一致收敛,一致收敛级数的性质,幂级数的收敛域,幂级数的性质,幂级数的展开,富里埃级数,富里埃级数的展开,平面点集,多元函数的极限,多元函数的连续性,偏导数,全微分,方向导数,复合函数的偏导数,一阶全微分形式的不变性,高阶偏导数,高阶全微分,泰勒公式,多元函数的极值,隐函数存在定理,空间曲线的切线与法平面,曲面的切平面与法线,条件极值,含参变量的定积分,含参变量反常积分的一致收敛,含参变量反常积分的分析性质,欧拉积分,二重积分,三重积分,第一型曲线积分,第二型曲线积分,格林公式,平面曲线积分与路径无关的条件,第一型曲面积分,第二型曲面积分,奥高公式,斯托克斯公式。
2015数学考试大纲2015年的数学考试大纲是针对不同教育阶段和不同类型考试的指导性文件,它规定了考试内容、考试范围、考试形式以及评分标准等关键要素。
虽然具体的考试大纲会因地区和考试类型(如高考、中考、大学入学考试等)而有所不同,但通常它们都会包含以下几个方面:一、考试内容1. 基础数学知识:包括算术、几何、代数和初等函数等基础数学概念和运算。
2. 数学思维能力:考查学生运用数学知识解决问题的能力,如逻辑推理、抽象思维等。
3. 数学应用:强调数学知识在日常生活和实际问题中的应用,如统计分析、概率计算等。
二、考试范围1. 小学数学:通常包括基本的算术运算、简单的几何形状识别和基本的数学概念理解。
2. 初中数学:扩展到更复杂的代数表达式、函数、几何证明以及初步的统计和概率知识。
3. 高中数学:进一步深入到微积分、线性代数、几何学、概率与统计等更高级的数学领域。
三、考试形式1. 选择题:要求学生从多个选项中选择正确答案。
2. 填空题:要求学生在空白处填入正确答案。
3. 解答题:要求学生详细解释和证明他们的答案。
4. 应用题:要求学生将数学知识应用于解决实际问题。
四、评分标准1. 准确性:答案的正确性是评分的主要依据。
2. 解题过程:对于解答题,解题过程的清晰性和逻辑性也是评分的重要部分。
3. 创新性:在某些考试中,鼓励学生展示创新思维和解决问题的独特方法。
五、考试准备建议1. 系统复习:建议学生系统地复习所有数学概念和公式,确保没有遗漏。
2. 练习题目:通过大量练习来提高解题速度和准确性。
3. 模拟考试:参加模拟考试可以帮助学生适应考试环境,提高考试技巧。
4. 时间管理:学会合理分配考试时间,确保所有题目都能得到充分的思考和解答。
六、考试注意事项1. 审题:仔细阅读题目,确保理解题目要求。
2. 草稿:在草稿纸上做好计算和解题步骤,避免在答题纸上直接作答导致错误。
3. 检查:在考试结束前,留出时间检查答案,确保没有计算错误或遗漏。
数学分析(二)考试大纲一、说明:1.数学分析的阶段性考试(期中考试与期末考试)旨在考查基础知识、基本技能、基本方法, 考核学生的运算能力、逻辑思维能力、论证推理能力及运用所学知识、方法分析问题和解决问题的能力。
2.考试要求分五个层次, 这五个层次由低到高依次为: 识记; 理解; 应用; 分析; 综合。
3.教材: 华东师范大学数学系编, 数学分析(第三版), 高等教育出版社, 2001.二、考试内容:参阅《数学分析教学大纲》三、考试要求:7.实数的连续性理解: 确界的概念; 聚点的概念; 实数连续性定理的等价性;应用: 区间套定理; 确界的概念; 确界存在定理; 聚点的概念; 聚点定理; 致密性定理; 柯西准则; 有限覆盖定理;理解: 一致连续性的概念;应用: 闭区间连续函数的性质;8.不定积分理解: 原函数与不定积分的概念; 基本积分表; 不定积分的性质;应用: 分部积分法; 换元积分法;应用: 有理函数的积分;应用: 简单无理函数的积分; 三角函数有理式的积分;9.定积分理解: 定积分的概念; 可积的必要条件;应用: 可积的充要条件; 可积函数类;1应用: 定积分的性质( 线性性, 区间可加性, 单调性, 不等式,绝对可积性, 积分中值定理 );理解: 积分上限函数;应用: 微积分学基本定理; 牛顿─莱布尼兹公式; 分部积分与换元积分法; 定积分的近似计算( 矩形法, 梯形法, 抛物线法 );10.定积分的应用应用:平面图形的面积;平面曲线的弧长与弧微分, 曲率, 已知截面面积函数的立体体积, 旋转体的体积, 旋转体的侧面积, 函数的平均值, 变力作功, 重心, 液体压力, 转动惯量11.非正常积分理解: 无穷积分收敛与发散的概念; 无穷积分收敛的性质; 无穷积分与数项级数的关系; 绝对收敛与条件收敛的概念;应用: 无穷积分敛散性的判别( 无穷积分收敛与发散的概念, 柯西准则, 比较原则, 比式判别法, 阿贝尔判别法, 狄利克莱判别法 );12.数项级数识记: 绝对收敛级数的重排定理;理解: 级数收敛与发散的概念; 收敛级数的基本性质; 柯西准则; 绝对收敛与条件收敛的概念;应用: 正项级数敛散性的判别( 比较原则, 比式判别法与根式判别法 ); 交错级数的莱布尼兹判别法; 一般项级数的阿贝尔判别法与狄利克莱判别法;13.函数项级数理解: 函数列的收敛与一致收敛的概念; 函数项级数的收敛与一致收敛的概念;应用: 函数列一致收敛的判别( 一致收敛的概念, 柯西准则, 一致收敛原理 ); 函数列极限函数的分析性质( 连续性, 可微性, 可积性 ); 函数项级数一致收敛的判别( 一致收敛的概念, 柯西准则, 维尔斯特拉斯判别法, 一致收敛原理, 阿贝尔判别法, 狄利克莱判别法 ); 函数项级数的和函数的分析性质( 连续2性, 逐项可微性, 逐项可积性 );14.幂级数理解: 幂级数的收敛域; 泰勒级数的概念; 阿贝尔第一定理; 阿贝尔第二定理; 函数的泰勒展开条件;应用: 求幂级数的收敛半径与收敛区间; 幂级数的和函数的分析性质( 连续性, 逐项微分, 逐项积分 ); 幂级数的四则运算; 初等函数的泰勒展开; 幂级数在近似计算中的应用;15.富立叶级数识记: 三角级数的概念; 三角函数系的正交性; 傅里叶级数的概念; 贝塞尔不等式;理解: 黎曼─勒贝格定理; 傅里叶级数的部分和公式; 收敛定理; 奇函数与偶函数的富里叶级数; 一致收敛定理; 傅里叶级数的逐项微分与逐项积分;应用: 函数的傅里叶级数展开;四、命题结构和要求1、严格按照教学大纲出题,不出超纲题、偏题、怪题;2、试题以考查数学的基本概念、基本方法和基本原理为主,在此基础上,加强对考生的运算能力、抽象概括能力、逻辑思维能力、空间想象能力、综合运用所学知识解决实际问题能力的考查;3、力求试卷难度控制在0.5 ~ 0.55 之间,并确保试题具有较高的区分度,能将优秀的学生区分出来。
硕士《数学分析》考试大纲课程名称:数学分析科目代码:661适用专业:数学与应用数学专业参考书目:1、《数学分析》(上下册)第一版,陈纪修,於崇华,金路;高等教育出版社1999.92、《数学分析》(上下册)第二版,陈纪修,於崇华,金路;高等教育出版社2004.103、《数学分析》(上下册),卓里奇;高等教育出版社2006.124、《数学分析》(上下册),华东师范大学,高等教育出版社2010.7一、数列极限1、充分认识实数系的连续性;理解并掌握确界存在定理及相关知识。
2、充分理解数列极限的定义,熟练掌握用数列极限的定义证明有关极限问题,以及数列极限的各种性质及其运算。
3、掌握无穷大量的概念及其相关知识;熟练掌握Stolz定理的内容及其结论及应用。
4、理解单调有界数列收敛定理的内容及其结论,并能熟练解决相关的极限问题。
5、充分理解区间套定理、致密性定理、完备性定理各自的内容和结论;进一步认识实数系的连续性与实数系的完备性的关系;明确有关收敛准则中的各定理之间逻辑关系。
二、函数极限与连续函数1、充分理解函数极限的定义,熟练掌握用函数极限的定义证明有关极限问题;以及函数极限的各种性质及其运算。
2、明确数列极限与函数极限的关系;熟练掌握单侧极限以及各种极限过程的极限。
3、充分理解连续函数的概念,熟练掌握用连续函数的定义和运算解决有关函数连续性问题。
明确不连续点的类型;掌握反函数、复合函数的连续性。
4、熟练掌握无穷小(大)量的概念以及自身的比较,并能熟练应用于极限问题当中。
5、充分掌握闭区间上连续函数的各种性质;充分理解函数的一致连续性及相关定理。
三、微分1、充分理解微分的概念、导数的概念,以及可微、可导、连续三者的关系。
2、熟练掌握导数的运算、反函数、复合函数的求导法则,做到得心应手。
3、理解高阶导数和高阶微分的概念,熟练掌握高阶导数的运算法则。
四、微分中值定理及其应用1、充分理解以Lagrange中值定理为核心的各微分中值定理的内容和结论;掌握应用微分中值定理揭示函数自身的特征和函数之间的关系。
1、《数学分析》是数学专业最重要的基础课之一,必须让学生真正学好该门课的知识,为学习其他专业课程打下坚实的基础,因此在抓好该门课教学其他环节的同时,必须抓好考试这一重要环节,为此特制定本“考试大纲”。
2、本大纲的指导思想是,准确、客观、真实地考察本系数学专业本科对《数学分析》这门课程的教学质量,促进该门课程的改革,培养高素质的数学专门人才和合格的中学数学教师。
3、制定本大纲的依据是①根据教育部颁发以及我们本系制定的“《数学分析》教学大纲”的基本要求。
②根据我国一些国优教材所讲到基本内容和知识点。
这些教材是:Ⅰ).华东师大编《数学分析》(上、下册)。
2、考试对象:数学系学生。
纲要的内容、范围及基本要求(分学期列出)
(以华东师大编《数学分析》为蓝本)
第一学期
1、范围:第1章-第7章。
2、内容及要求:
第1章实数集与函数
(1)了解实数域及性质
(2)掌握几种不等式及应用。
(3)熟练掌握领域,上确界,下确界,确界原理。
(4)牢固掌握函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
第2章数列极限
(1)熟练掌握数列极限“
”定义。
(3)掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。
第3章函数极限
”,“”语言,叙述各
(1)熟练掌握使用“
类型函数极限。
(2)掌握函数极限的若干性质。
(3)掌握函数极限存在的条件。
(归结原则,柯西准则,左、右极限、单调有界等)。
(4)熟练应用两个特殊极限
(5)牢固掌握无穷小(大)的定义、性质、阶的比较。
第4章函数连续性
在X0点连续的定义,等价定义。
(1)熟练掌握
(3)了解在区间上连续的定义。
在一点连续性质及在区间上连续性质。
(4)掌握
第5章导数与微分
(1)熟练掌握导数的定义,几何、物理意义。
(2)牢固记住求导法则、求导公式。
(3)会求各类的导数(复合、参量、隐函数、幂指函数、高阶导数(莱布尼兹公式))。
(4)掌握微分的概念,并会用微分进行近似计算。
(5)理解连续、可导、可微之关系。
第6章微分中值定量、不定式极限
(1)牢固掌握微分中值定理及应用(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)。
(2)会用洛比达法则求极限,(掌握如何将其他类型的
不定型转化为型)。
3、重点与难点
(1)重点:①基本概念:极限、连续、可导、可微。
②基本定理:单调有界,柯西准则,归结原则,微分中值定理。
③基本计算:求极限的方法与类型。
(2)难点:应用微分中值定理,证明问题,连续函数性质应用。
第7章导数应用
(1)掌握单调与符号的关系,并用它证明f(x)单调,
不等式、求单调区间、极值等。
(2)利用f''(x)判定凹凸性及拐点。
(3)了解凸函数及性质
(4)会求曲线各种类型的渐近线性。
第二学期
1、范围:第8章-第15章。
2、内容及要求:
第8章极限与连续(续)
(1)掌握下列基本概念:区间套、覆盖、有限覆盖、聚点、子列。
(2)了解刻划实数完备性的七个定理的等价性,各定理的条件与结论。
第9章不定积分
(1)掌握原函数与不定积分的概念。
(2)记住基本积分公式。
(3)熟练掌握换元法、分部积分法。
(4)了解有理函数积分步骤,并会求可化为有理函数的积分。
第10章定积分
(1)掌握定积分定义、性质。
(2)了解可积条件,可积类。
(3)深刻理解微积分基本定理,并会熟练应用。
(4)熟练计算定积分。
(5)掌握广义积分收敛定义及判别法,会计算广义积分。
第11章定积分应用
(1)熟练计算各种平面图形面积。
(2)会求旋转体或已知截面面积的体积。
(3)会利用定积分求孤长。
(4)会用微元法求解某些物理问题(压力、变力功、重心等)。
第12章数项级数
(1)掌握数项级数敛散的定义、性质。
(2)熟练掌握正项级数的敛、散判别法。
(3)掌握条件、绝对收敛及莱布尼兹定理。
3、重点、难点
(1)重点:导数的应用,积分法则,微积分基本定理,数项级数敛散判别,广义积分敛散判别。
(2)难点:定积分的可积性及可积函数类的讨论,定积分及数项级数的一些证明题,广义积分及数项级数敛散的阿贝尔,狄利克雷判别法。
第13章函数列与函数项级数
(1)掌握函数列及函数项级数的一级收敛定义。
(2)了解函数列、函数项级数一致收敛的判别法。
(3)函数列的极限函数,函数项级数的和函数性质。
第14章幂级数
(1)熟练幂级数收敛域,收敛半径及和函数的求法。
(2)了解幂级数的若干性质。
(3)了解求一般任意阶可微函数的幂级数展式的方法。
六种函数的马克劳林展式。
记住
第15章傅里叶级数
(1)熟记傅里叶系数公式,并会求之。
(2)掌握以2Л为周期函数的傅里叶展式。
(3)理解掌握定义在(0,1)上函数可以展成余弦级数,正弦级数,一般傅里叶级数。
第三学期
1、范围:第16章-第22章
2、内容及要求:
第16章多元函数极限与连续
(1)了解平面点集的若干概念。
(2)掌握二元函数二重极限定义、性质。
(3)掌握二次极限,并掌握二重极限与二次极限的关系。
(4)掌握二元连续函数定义、性质。
第17章多元函数微分学
(1)熟练掌握,可微,偏导的意义。
(2)掌握二元函数可微,偏导,连续以及偏导函数连续,概念之间关系。
(3)会计算各种类型的偏导,全微分。
(4)会求空间曲面的切平面,法线。
(5)会求函数的方向导数与梯度。
(6)会求二元函数的泰勒展式及无条件极值。
第18章隐函数定理及其应用
(1)掌握由一个方程确定的隐函数的条件,会求隐函数的导数(偏导)。
(2)掌握由m个方程n个变元组成方程组,确定n-m
个隐函数组的条件,并会求这n-m个隐函数对各个变元的偏导数。
(3)会求空间曲线的切线与法平面。
(4)会求空间曲面的切平面与法线。
(5)掌握条件极值的拉格朗日乘子法。
3、重点、难点
(1)重点:函数列、函数项级数一致收敛判别,求幂级数的收敛域,和函数,幂级数展式,多元函数极限,连续、偏导、可微概念。
计算部分:求各类偏导,全微分,求方向导数与梯度,求傅里叶展式,求方程(组)确定隐函数(组)的偏导。
应用部分:无条件极值,条件极值,曲线的切线与法平向,曲面的切平面与法线。
(2)难点:函数列与函数项级数一致收敛判别及性质,条件极值。
第20章重积分
(1)了解二重积分,三重积分定义与性质。
(2)掌握二重积分的换序,变量代换。
(3)了解三重积分的换序,会用球、柱、广义球坐标进行代换计算三重积分。
(4)重积分应用:求曲面面积,转动惯量,重心坐标等。
第22章曲线积分与曲面积分
(1)熟练掌握第一、二型曲线、曲面积分的计算方法。
(2)了解两种曲线积分,两种曲面积分关系。
(3)熟练运用格林公式,高斯公式,斯托克斯公式计算。
(4)掌握积分与路径无关的条件。
3、重点和难点
(1)重点:二重积分换序,计算方法;曲线,曲面积分的计算。
格林公式,高斯公式,斯托克斯公式,积分与路径无关。
(2)难点:三重积分的换序,重积分的应用。