高二下学期期中考试数学(理)试题
- 格式:doc
- 大小:120.00 KB
- 文档页数:3
甘肃省兰州市第一中学2021-2022学年高二下学期期中考试数学理科试题说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.〖答案〗写在答题卡上.交卷时只交答题卡.一.选择题(共12小题,满分60分,每小题5分)1. 复数2iz=-(i为虚数单位)的共轭复数的虚部为()A. -1B. 1C. i-D. i〖答案〗B〖解析〗由题意知:2iz=+,则虚部为1.故选:B.2. 在用反证法证明“已知x,y∈R,且x y+<,则x,y中至多有一个大于0”时,假设应为()A. x,y都小于0 B. x,y至少有一个大于0C. x,y都大于0 D. x,y至少有一个小于0〖答案〗C〖解析〗“至多有一个大于0”包括“都不大于0和有且仅有一个大于0”,故其对立面为“x,y都大于0”.故选:C.3. 函数y=x2cos 2x的导数为()A. y′=2x cos 2x-x2sin 2xB. y′=2x cos 2x-2x2sin 2xC. y′=x2cos 2x-2x sin 2xD. y′=2x cos 2x+2x2sin 2x〖答案〗B〖解析〗y′=(x2)′cos 2x+x2(cos 2x)′=2x cos 2x+x2(-sin 2x)·(2x)′=2x cos 2x-2x2sin 2x.故选:B.4. 函数21ln2y x x=-的单调递减区间为()A. ()1,1-B.()1,+∞C.()0,1D.()0,∞+〖答案〗C〖解 析〗函数21ln 2y x x=-的定义域为()0,∞+, ()()21111x x x y x x x x +--=-==′,()()1100x x x x ⎧+-<⎪⎨⎪>⎩,解得01x <<,所以函数21ln 2y x x=-的单调递减区间为()0,1. 故选:C.5. 用S 表示图中阴影部分的面积,则S 的值是( )A. ()d ca f x x⎰B. ()d caf x x⎰C.()d ()d bc abf x x f x x +⎰⎰D.()d ()d cb baf x x f x x-⎰⎰〖答 案〗D〖解 析〗由定积分的几何意义知区域内的曲线与x 轴的面积代数和. 即()d ()d cbbaf x x f x x-⎰⎰,选项D 正确.故选D .6. 把3封信投到4个信箱中,所有可能的投法共有( ) A. 7种 B. 12种C. 43种D. 34种〖答 案〗D〖解 析〗由题意可得,第1封信投到信箱中有4种投法,第2封信投到信箱中有4种投法,第3封信投到信箱中有4种投法,所以由分步乘法计数原理可得共有34444⨯⨯=种投法, 故选:D.7. 设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是( )A. B.C.D.〖答 案〗A 〖解 析〗根据()f x 的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从左到右,是:正、负、正、负.结合选项可知,只有A 选项符合,故本题选A. 8. 已知函数()33f x x x m=-+只有一个零点,则实数m 的取值范围是( )A.[]22-, B.()(),22,-∞-+∞C.()2,2-D.(][),22,-∞-+∞〖答 案〗B 〖解 析〗由函数()33f x x x m=-+只有一个零点,等价于函数33y x x =-+的图像与y m =的图像只有一个交点,33y x x =-+,求导233y x '=-+,令0y '=,得1x =±当1x <-时,0y '<,函数在(),1-∞-上单调递减; 当11x -<<时,0y '>,函数在()1,1-上单调递增;当1x >时,0y '<,函数在()1,+∞上单调递减;故当1x =-时,函数取得极小值2y =-;当1x =时,函数取得极大值2y =; 作出函数图像,如图所示,由图可知,实数m 的取值范围是()(),22,-∞-+∞.故选:B.9. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A. 120种 B. 240种 C. 360种 D. 480种〖答 案〗B〖解 析〗先将5名志愿者分为4组,有25C 种分法, 然后再将4组分到4个项目,有44A 种分法,再根据分步乘法原理可得不同的分配方案共有2454C A 240⋅=种.故选:B. 10. (1+2x 2 )(1+x )4的展开式中x 3的系数为( ) A. 12B. 16C. 20D. 24〖答 案〗A〖解 析〗由题意得x 3的系数为3144C 2C 4812+=+=,故选A . 11. 下列说法正确的是( )①设函数()y f x =可导,则()()()11lim13x f x f f x →+-'=△△△;②过曲线()y f x =外一定点做该曲线的切线有且只有一条;③已知做匀加速运动的物体的运动方程是()2s t t t=+米,则该物体在时刻2t =秒的瞬时速度是5米/秒;④一物体以速度232v t t =+(米/秒)做直线运动,则它在0=t 到2t =秒时间段内的位移为12米;⑤已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充要条件. A. ①③ B. ③④C. ②③⑤D. ③⑤〖答 案〗B〖解 析〗对于选项①,设函数()f x ,则()()()()001(1)1111limlim 1333x x f x f f x f f xx →→+-+-==',故①错.对于选项②,过曲线()y f x =外一定点做该曲线的切线可以有多条,故②错.对于选项③,已知做匀速运动的物体的运动方程为()2S t t t=+,则()21S t t '=+,所以()25S '=,故③正确.对于选项④,一物体以速度232v t t =+做直线运动,则它在0=t 到2t =时间段内的位移为()223220032d (| 2)1tt t t t +=+=⎰,故④正确.对于选项⑤,已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充分不必要条件,例如()3,'()0f x x f x =≥,故⑤错.故选B . 12. 已知()2cos f x x x=+,x ∈R ,若()()1120f t f t ---≥成立,则实数t 的取值范围是( )A. 20,3⎛⎫ ⎪⎝⎭B. 20,3⎡⎤⎢⎥⎣⎦C.()2,0,3∞∞⎛⎫-⋃+⎪⎝⎭D. 23⎛⎤-∞ ⎥⎝⎦,〖答 案〗B 〖解 析〗函数()y f x =的定义域为R ,关于原点对称,()()()2cos 2cos f x x x x x f x -=-+-=+=,∴函数()y f x =为偶函数,当0x ≥时,()2cos f x x x=+,()2sin 0f x x '=->,则函数()y f x =在[)0,∞+上为增函数,由()()1120f t f t ---≥得()()112f t f t -≥-,由偶函数的性质得()()112f t f t -≥-,由于函数()y f x =在[)0,∞+上为增函数,则112t t-≥-,即()()22112t t -≥-,整理得2320t t -≤,解得203t ≤≤,因此,实数t 的取值范围是20,3⎡⎤⎢⎥⎣⎦. 故选:B.二.填空题(共5小题,满分25分,每小题5分)13.10d ⎤=⎦⎰x x ___________.〖答 案〗142π-〖解析〗11]d d =-⎰⎰⎰x x x x x ,根据定积分的几何意义可知,⎰x 表示以()1,0为圆心,1为半径的圆的四分之一面积,所以201144ππ=⋅⋅=⎰x ,而1210011d |22⎛⎫=+= ⎪⎝⎭⎰x x x c ,所以101]d 42π=-⎰x x .故〖答 案〗为:142π-.14. 在二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为______. 〖答 案〗243〖解 析〗因为二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32, 所以232n=,故5n =,取1x =可得二项式5214x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为53,即243.故〖答 案〗为:243.15. 若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.〖答案〗〖解析〗由题设知:1(sin sin sin )sin()sin 3332A B C A B C π++++≤==,∴sin sin sin 2A B C ++≤,当且仅当3A B C π===时等号成立.故〖答案〗为:2.16. 在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 〖答 案〗(e, 1).〖解 析〗设点()00,A x y ,则00ln y x =.又1y x '=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,代入点(),1e --,得001ln 1ex x ---=-,即00ln x x e =,考查函数()ln H x x x=,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,>H x H x 单调递增,注意到()H e e=,故00ln x x e=存在唯一的实数根0x e=,此时01y =,故点A 的坐标为(),1A e .17. 若函数()2ln f x ax x x=+有两个极值点,则实数a 的取值范围是__________.〖答 案〗12a -<<〖解 析〗2012f x xlnx ax x f x lnx ax =+'=++()(>),(). 令12g x lnx ax =++(),由于函数函数()2ln f x ax x x=+有两个极值点0g x ⇔=()在区间∞(0,+)上有两个实数根.1122axg x a x x +'=+=(),当0a ≥ 时,0g x '()> ,则函数g x () 在区间∞(0,+)单调递增,因此0g x =() 在区间∞(0,+)上不可能有两个实数根,应舍去. 当0a < 时,令0gx '=() ,解得12x a =-,令0gx '()> ,解得102x a <<-,此时函数g x ()单调递增;令0gx '()< ,解得12x a >-,此时函数g x ()单调递减.∴当12x a =-时,函数g x ()取得极大值.要使0g x =()在区间∞(0,+)上有两个实数根,则11022g ln a a ()>,⎛⎫-=- ⎪⎝⎭,解得102a -<<.∴实数a 的取值范围是(12a -<<.三.解答题(共5小题,满分65分) 18. 设i 为虚数单位,∈a R ,复数12iz a =+,243iz =-.(1)若12z z ⋅是实数,求a 的值;(2)若12z z 是纯虚数,求1z .解:(1)()()()()122i 43i 3846iz z a a a ⋅=+-=++-,因为12z z ⋅是实数,则460a -=,解得32a =.(2)()()()()122i 43i 2i 8346i 43i 43i 43i 2525a z a a a z +++-+===+--+,因为12z z 为纯虚数,则830460a a -=⎧⎨+≠⎩,解得83a =.所以1103z ==.19.>.>只要证22>,只要证1313+>+>,只要证4240>显然成立,故原结论成立.20. 数列{}n a 满足26a =,()*1111+--=∈+n n a n n a n N .(1)试求出1a ,3a ,4a ;(2)猜想数列{}n a 的通项公式并用数学归纳法证明.解:(1)26a =,()*1111+--=∈+n n a n n a n N 当1n =时,1211111a a --=+,11a ∴=,当2n =时,3212121a a --=+,315a ∴=,当3n =时,3413131a a --=+,428a ∴=,所以11a =,315a =,428a =.(2)猜想(21)n a n n =-下面用数学归纳法证明:假设n k =时,有(21)k a k k =-成立,则当1n k =+时,有()1211111112k k k a k a k k +++--+-==+++,()()()122111k k k a k a +++-=+-⎡⎤⎣⎦()()11211k a k k +∴=++-⎡⎤⎣⎦故对*,(21)=∈-n n a n n N 成立.21. 已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 解:(Ⅰ)因为()e cos x f x x x=-,所以()()()e cos sin 1,00x f x x x f -''=-=.又因为()01f =,所以曲线()y f x =在点()()0,0f 处的切线方程为1y =.(Ⅱ)设()()e cos sin 1x h x x x =--,则()()e cos sin sin cos 2e sin x x h x x x x x x=--=-'-.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减. 所以对任意π0,2x ⎛⎤∈ ⎥⎝⎦有()()00h x h <=,即()0f x '<. 所以函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为()01f =,最小值为22f ππ⎛⎫=-⎪⎝⎭. 22. 设函数()f x ()20x ax x aa e ++=>,e 为自然对数的底数.(1)求f (x )的单调区间:(2)若ax 2+x +a ﹣e x x +e x ln x ≤0成立,求正实数a 的取值范围.解:(1)函数()()20xax x af x a e ++=>,e 为自然对数的底数,则()()11xaa x xaf xe-⎛⎫---⎪⎝⎭'=,令()0f x'=可得11x=,21111axa a-==-<,∴当1,axa-⎛⎫∈-∞⎪⎝⎭,()1,+∞时,()0f x'<,()f x单调递减;当1,1axa-⎛⎫∈ ⎪⎝⎭时,()0f x'>,()f x单调递增;∴()f x的单调增区间为1,1axa-⎛⎫∈ ⎪⎝⎭,单调减区间为1,aa-⎛⎫-∞⎪⎝⎭,()1,+∞;(2)ax2+x+a﹣e x x+e x ln x≤0成立⇔2xax x ae++≤x﹣ln x,x∈(0,+∞),由(1)可得当x=1函数y2xax x ae++=取得极大值21ae+,令g(x)= x﹣ln x,(x>0),g′(x)= 11x -,可得x=1时,函数g(x)取得极小值即最小值.∴x﹣ln x≥g(1)=1,当(]0,1a∈时,21ae+即为函数y2xax x ae++=的最大值,∴2xax x ae++≤x﹣ln x成立⇔21ae+≤1,解得a12e-≤;当()1,a∈+∞时,211ae+>,不合题意;综上所述,0<a12e-≤.甘肃省兰州市第一中学2021-2022学年高二下学期期中考试数学理科试题说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.〖答 案〗写在答题卡上.交卷时只交答题卡. 一.选择题(共12小题,满分60分,每小题5分) 1. 复数2i z =-(i 为虚数单位)的共轭复数的虚部为( ) A. -1 B. 1C.i -D. i〖答 案〗B〖解 析〗由题意知:2i z=+,则虚部为1.故选:B.2. 在用反证法证明“已知x ,y ∈R ,且0x y +<,则x ,y 中至多有一个大于0”时,假设应为( ) A. x ,y 都小于0 B. x ,y 至少有一个大于0 C. x ,y 都大于0D. x ,y 至少有一个小于0〖答 案〗C〖解 析〗“至多有一个大于0”包括“都不大于0和有且仅有一个大于0”,故其对立面为“x ,y 都大于0”.故选:C.3. 函数y =x 2cos 2x 的导数为( ) A. y ′=2x cos 2x -x 2sin 2x B. y ′=2x cos 2x -2x 2sin 2x C. y ′=x 2cos 2x -2x sin 2xD. y ′=2x cos 2x +2x 2sin 2x〖答 案〗B〖解 析〗y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x . 故选:B.4. 函数21ln 2y x x =-的单调递减区间为( )A.()1,1- B.()1,+∞C.()0,1D.()0,∞+〖答 案〗C〖解 析〗函数21ln 2y x x=-的定义域为()0,∞+, ()()21111x x x y x x x x +--=-==′,()()1100x x x x ⎧+-<⎪⎨⎪>⎩,解得01x <<,所以函数21ln 2y x x=-的单调递减区间为()0,1. 故选:C.5. 用S 表示图中阴影部分的面积,则S 的值是( )A. ()d ca f x x⎰B. ()d caf x x⎰C.()d ()d bc abf x x f x x +⎰⎰D.()d ()d cb baf x x f x x-⎰⎰〖答 案〗D〖解 析〗由定积分的几何意义知区域内的曲线与x 轴的面积代数和. 即()d ()d cbbaf x x f x x-⎰⎰,选项D 正确.故选D .6. 把3封信投到4个信箱中,所有可能的投法共有( ) A. 7种 B. 12种C. 43种D. 34种〖答 案〗D〖解 析〗由题意可得,第1封信投到信箱中有4种投法,第2封信投到信箱中有4种投法,第3封信投到信箱中有4种投法,所以由分步乘法计数原理可得共有34444⨯⨯=种投法, 故选:D.7. 设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是( )A. B.C.D.〖答 案〗A 〖解 析〗根据()f x 的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从左到右,是:正、负、正、负.结合选项可知,只有A 选项符合,故本题选A. 8. 已知函数()33f x x x m=-+只有一个零点,则实数m 的取值范围是( )A.[]22-, B.()(),22,-∞-+∞C.()2,2-D.(][),22,-∞-+∞〖答 案〗B 〖解 析〗由函数()33f x x x m=-+只有一个零点,等价于函数33y x x =-+的图像与y m =的图像只有一个交点, 33y x x =-+,求导233y x '=-+,令0y '=,得1x =±当1x <-时,0y '<,函数在(),1-∞-上单调递减; 当11x -<<时,0y '>,函数在()1,1-上单调递增;当1x >时,0y '<,函数在()1,+∞上单调递减;故当1x =-时,函数取得极小值2y =-;当1x =时,函数取得极大值2y =; 作出函数图像,如图所示,由图可知,实数m 的取值范围是()(),22,-∞-+∞.故选:B.9. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A. 120种 B. 240种 C. 360种 D. 480种〖答 案〗B〖解 析〗先将5名志愿者分为4组,有25C 种分法, 然后再将4组分到4个项目,有44A 种分法,再根据分步乘法原理可得不同的分配方案共有2454C A 240⋅=种.故选:B. 10. (1+2x 2 )(1+x )4的展开式中x 3的系数为( ) A. 12B. 16C. 20D. 24〖答 案〗A〖解 析〗由题意得x 3的系数为3144C 2C 4812+=+=,故选A . 11. 下列说法正确的是( )①设函数()y f x =可导,则()()()11lim13x f x f f x →+-'=△△△;②过曲线()y f x =外一定点做该曲线的切线有且只有一条;③已知做匀加速运动的物体的运动方程是()2s t t t=+米,则该物体在时刻2t =秒的瞬时速度是5米/秒;④一物体以速度232v t t =+(米/秒)做直线运动,则它在0=t 到2t =秒时间段内的位移为12米;⑤已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充要条件. A. ①③ B. ③④C. ②③⑤D. ③⑤〖答 案〗B〖解 析〗对于选项①,设函数()f x ,则()()()()001(1)1111limlim 1333x x f x f f x f f xx →→+-+-==',故①错.对于选项②,过曲线()y f x =外一定点做该曲线的切线可以有多条,故②错.对于选项③,已知做匀速运动的物体的运动方程为()2S t t t=+,则()21S t t '=+,所以()25S '=,故③正确.对于选项④,一物体以速度232v t t =+做直线运动,则它在0=t 到2t =时间段内的位移为()223220032d (| 2)1tt t t t +=+=⎰,故④正确.对于选项⑤,已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充分不必要条件,例如()3,'()0f x x f x =≥,故⑤错.故选B . 12. 已知()2cos f x x x=+,x ∈R ,若()()1120f t f t ---≥成立,则实数t 的取值范围是( )A. 20,3⎛⎫ ⎪⎝⎭B. 20,3⎡⎤⎢⎥⎣⎦C.()2,0,3∞∞⎛⎫-⋃+⎪⎝⎭D. 23⎛⎤-∞ ⎥⎝⎦,〖答 案〗B 〖解 析〗函数()y f x =的定义域为R ,关于原点对称,()()()2cos 2cos f x x x x x f x -=-+-=+=,∴函数()y f x =为偶函数,当0x ≥时,()2cos f x x x=+,()2sin 0f x x '=->,则函数()y f x =在[)0,∞+上为增函数,由()()1120f t f t ---≥得()()112f t f t -≥-,由偶函数的性质得()()112f t f t -≥-,由于函数()y f x =在[)0,∞+上为增函数,则112t t-≥-,即()()22112t t -≥-,整理得2320t t -≤,解得203t ≤≤,因此,实数t 的取值范围是20,3⎡⎤⎢⎥⎣⎦. 故选:B.二.填空题(共5小题,满分25分,每小题5分)13.10d ⎤=⎦⎰x x ___________.〖答 案〗142π-〖解析〗11]d d =-⎰⎰⎰x x x x x ,根据定积分的几何意义可知,⎰x 表示以()1,0为圆心,1为半径的圆的四分之一面积,所以201144ππ=⋅⋅=⎰x ,而1210011d |22⎛⎫=+= ⎪⎝⎭⎰x x x c ,所以101]d 42π=-⎰x x .故〖答 案〗为:142π-.14. 在二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为______. 〖答 案〗243〖解 析〗因为二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32, 所以232n=,故5n =,取1x =可得二项式5214x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为53,即243.故〖答 案〗为:243.15. 若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.〖答案〗〖解析〗由题设知:1(sin sin sin )sin()sin 3332A B C A B C π++++≤==,∴sin sin sin 2A B C ++≤,当且仅当3A B C π===时等号成立.故〖答案〗为:2.16. 在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 〖答 案〗(e, 1).〖解 析〗设点()00,A x y ,则00ln y x =.又1y x '=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,代入点(),1e --,得001ln 1ex x ---=-,即00ln x x e =,考查函数()ln H x x x=,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,>H x H x 单调递增,注意到()H e e=,故00ln x x e=存在唯一的实数根0x e=,此时01y =,故点A 的坐标为(),1A e .17. 若函数()2ln f x ax x x=+有两个极值点,则实数a 的取值范围是__________.〖答 案〗12a -<<〖解 析〗2012f x xlnx ax x f x lnx ax =+'=++()(>),(). 令12g x lnx ax =++(),由于函数函数()2ln f x ax x x=+有两个极值点0g x ⇔=()在区间∞(0,+)上有两个实数根.1122axg x a x x +'=+=(),当0a ≥ 时,0g x '()> ,则函数g x () 在区间∞(0,+)单调递增,因此0g x =() 在区间∞(0,+)上不可能有两个实数根,应舍去. 当0a < 时,令0gx '=() ,解得12x a =-,令0gx '()> ,解得102x a <<-,此时函数g x ()单调递增;令0gx '()< ,解得12x a >-,此时函数g x ()单调递减.∴当12x a =-时,函数g x ()取得极大值.要使0g x =()在区间∞(0,+)上有两个实数根,则11022g ln a a ()>,⎛⎫-=- ⎪⎝⎭,解得102a -<<.∴实数a 的取值范围是(12a -<<.三.解答题(共5小题,满分65分) 18. 设i 为虚数单位,∈a R ,复数12iz a =+,243iz =-.(1)若12z z ⋅是实数,求a 的值;(2)若12z z 是纯虚数,求1z .解:(1)()()()()122i 43i 3846iz z a a a ⋅=+-=++-,因为12z z ⋅是实数,则460a -=,解得32a =.(2)()()()()122i 43i 2i 8346i 43i 43i 43i 2525a z a a a z +++-+===+--+,因为12z z 为纯虚数,则830460a a -=⎧⎨+≠⎩,解得83a =.所以1103z ==.19.>.>只要证22>,只要证1313+>+>,只要证4240>显然成立,故原结论成立.20. 数列{}n a 满足26a =,()*1111+--=∈+n n a n n a n N .(1)试求出1a ,3a ,4a ;(2)猜想数列{}n a 的通项公式并用数学归纳法证明.解:(1)26a =,()*1111+--=∈+n n a n n a n N 当1n =时,1211111a a --=+,11a ∴=,当2n =时,3212121a a --=+,315a ∴=,当3n =时,3413131a a --=+,428a ∴=,所以11a =,315a =,428a =.(2)猜想(21)n a n n =-下面用数学归纳法证明:假设n k =时,有(21)k a k k =-成立,则当1n k =+时,有()1211111112k k k a k a k k +++--+-==+++, ()()()122111k k k a k a +++-=+-⎡⎤⎣⎦()()11211k a k k +∴=++-⎡⎤⎣⎦故对*,(21)=∈-n n a n n N 成立.21. 已知函数()e cos x f x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 解:(Ⅰ)因为()e cos x f x x x =-,所以()()()e cos sin 1,00x f x x x f -''=-=. 又因为()01f =,所以曲线()y f x =在点()()0,0f 处的切线方程为1y =.(Ⅱ)设()()e cos sin 1x h x x x =--,则()()e cos sin sin cos 2e sin x x h x x x x x x=--=-'-. 当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减. 所以对任意π0,2x ⎛⎤∈ ⎥⎝⎦有()()00h x h <=,即()0f x '<. 所以函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为()01f =,最小值为22f ππ⎛⎫=- ⎪⎝⎭. 22. 设函数()f x ()20x ax x a a e ++=>,e 为自然对数的底数.(1)求f (x )的单调区间:(2)若ax 2+x +a ﹣e x x +e x ln x ≤0成立,求正实数a 的取值范围.解:(1)函数()()20x ax x a f x a e ++=>,e 为自然对数的底数,则()()11xaa x xaf xe-⎛⎫---⎪⎝⎭'=,令()0f x'=可得11x=,21111axa a-==-<,∴当1,axa-⎛⎫∈-∞⎪⎝⎭,()1,+∞时,()0f x'<,()f x单调递减;当1,1axa-⎛⎫∈ ⎪⎝⎭时,()0f x'>,()f x单调递增;∴()f x的单调增区间为1,1axa-⎛⎫∈ ⎪⎝⎭,单调减区间为1,aa-⎛⎫-∞⎪⎝⎭,()1,+∞;(2)ax2+x+a﹣e x x+e x ln x≤0成立⇔2xax x ae++≤x﹣ln x,x∈(0,+∞),由(1)可得当x=1函数y2xax x ae++=取得极大值21ae+,令g(x)= x﹣ln x,(x>0),g′(x)= 11x -,可得x=1时,函数g(x)取得极小值即最小值.∴x﹣ln x≥g(1)=1,当(]0,1a∈时,21ae+即为函数y2xax x ae++=的最大值,∴2xax x ae++≤x﹣ln x成立⇔21ae+≤1,解得a12e-≤;当()1,a∈+∞时,211ae+>,不合题意;综上所述,0<a12e-≤.。
2022年5月绵阳南山中学2022年春季高2020级半期考试数学(理科)试题本试卷分为试题卷和答题卷两部分,其中试题卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)组成,共4页;答题卷共6页.满分150分.第Ⅰ卷(选择题,共60分)注意事项:每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1. 已知x R ∈,命题“若20x >,则0x >”的逆命题,否命题和逆否命题中,真命题的个数是 (A )0 (B )1 (C )2 (D )3 2. 设复数11i aiz ++=(i 为虚数单位)为纯虚数,则实数a =(A )1 (B )1- (C )2(D )2-3. 已知,,,O A B C 为空间四点,且向量,,OA OB OC 不能构成空间的一个基底,则一定有 (A ),,OA OB OC 共线 (B ),,,O A B C 中至少有三点共线 (C )OA OB +与OC 共线 (D ),,,O A B C 四点共面4. 一个关于自然数n 的命题,已经验证知1n =时命题成立,并在假设(n k k =为正整数)时命题成立的基础上,证明了当2n k =+时命题成立,那么综上可知,该命题对于 (A )一切自然数成立 (B )一切正整数成立 (C )一切正奇数成立 (D )一切正偶数成立5. 4名运动员同时参与到三项比赛冠军的争夺,则最终获奖结果种数为(A )34A (B )34C (C )34 (D )436.如图,OABC 是四面体,G 是ABC ∆的重心,1G 是OG 上一点,且13OG OG =,则(A )1OG OA OB OC =++ (B )1111333OG OA OB OC =++(C )1111444OG OA OB OC =++ (D )1111999OG OA OB OC =++7.0a b <<是11a b b a+<+的 (A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件8. 若函数()sin cos f x a x x =+在[,]34ππ-上为增函数,则实数a 的取值范围是(A )[1,)+∞(B )(,-∞(C )[(D )(,[1,)-∞+∞9.中国空间站的主体结构包括天和核心舱,问天实验舱和梦天实验舱.假设中国空间站要 安排甲乙丙等5名航天员开展实验,其中天和核心舱安排3人,其余两个实验舱各安排1人,若甲乙两人不能同时在一个舱内做实验,则不同的安排方案有(A )8种 (B )14种 (C )20种(D )116种10.已知a ,b 是异面直线,,A B 是a 上的点,,C D 是b 上的点,2,1AB CD ==,且AC b ⊥, BD b ⊥,则a 与b 所成角为(A )30︒ (B )45︒ (C )60︒ (D )90︒11.已知t 和3t +是函数32()f x x ax bx c =+++的零点,且3t +也是函数()f x 的极小值点, 则()f x 的极大值为 (A )1 (B )4 (C )43 (D )4912. 设0.0110099,,a b e c ===则(A )a b c >> (B )a c b >> (C )b a c >> (D )c a b >>第Ⅱ卷(非选择题,共90分)注意事项:用钢笔将答案直接写在答题卷上.二、填空题:本大题共4小题,每小题5分,共20分.把答案直接填在答题卷中的横线上.13.已知函数2()2'(2)3f x x f x =++,则'(2)f 的值为__________. 14.某单位拟从,,,,,A B C D E F 六名员工中选派三人外出学习,要求: (1),A C 二人中至少选一人; (2),B E 二人中至少选一人; (3),B C 二人中至多选一人; (4),A D 二人中至多选一人.由于E 因病无法外出,则该单位最终选派的三位员工为:__________.15.将,,,A B C D 四份不同的文件放入编号依次为15-的五个抽屉,每个抽屉只能放一份文件,要求文件,A B 必须放入相邻的抽屉,文件,C D 不能放入相邻的抽屉,则满足要求的放置方法共有__________种.16.双曲正弦函数sinh()2x x e e x --=和双曲余弦函数cosh()2x xe e x -+=在工程学中有广泛的应用,也具有许多迷人的数学性质.若直线x m =与双曲余弦函数1C 和双曲正弦函数2C 的图象分别相交于点,A B ,曲线1C 在A 处切线与曲线2C 在B 处切线相交于点P ,则如下命题中为真命题的有__________(填上所有真命题的序号).①(sinh())'cosh()x x =,(cosh())'sinh()x x =; ②22sinh ()cosh ()1x x +=; ③点P 必在曲线x y e =上;④PAB ∆的面积随m 的增大而减小.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)(1)请将下列真值表补充完整;(空格处填上“真”或“假”)(2) 给定命题:p 对任意实数x 都有210ax ax ++>成立;命题:q 关于x 的方程2x x a -+有实根.已知命题()p q ⌝∨和命题()p q ∨⌝都是真命题,求实数a 的取值范围.18.(本题满分12分)如图,在直三棱柱111ABC A B C -中,90,2,1,ABC CA CB M ∠=︒==是1CC 的中点, 且1AM BA ⊥.(1)求1AA 的长;(2)求直线1AC 与平面11ABB A 所成角的正弦值.19.(本题满分12分)某市环保局对该市某处的环境状况进行实地调研发现,该处的污染指数与附近污染源的 强度成正比,与到污染源的距离成反比,总比例常数为(0)k k >.现已知相距10km 的A ,B 两家化工厂(污染源),A 化工厂的污染强度未知,暂记为(0)a a >,B 化工厂的污染强度为4,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和, 设()AC x km =.(1)试将y 表示为关于,,x k a 的等式;(2)调研表明y 在2x =处取得最小值,据此请推断出A 化工厂的污染强度. 20.(本题满分12分)在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.如图,在“阳马”P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,棱PC 的中点为E ,3PF FB =,连接,,DE DF EF .(1) 若平面DEF 与平面ABCD 所成二面角的大小为3π,求CBCD的值. (2) 设棱PA 与平面DEF 相交于点G ,且PG PA λ=,求λ的值;21.(本题满分12分)已知函数2()ln (0)f x x ax a =->.(1)若()f x 恰有一个零点,求a 的值;(2)若0x 是()f x 的零点,且2y x =在点200(,)x x 处的切线恰与ln y x =相切,求a 的值.22.(本题满分12分)已知函数()ln 1()f x x ax a R =++∈,'()f x 为()f x 的导函数. (1)讨论()f x 的单调性;(2)若210x x >>,证明:对任意a R ∈,存在唯一的012(,)x x x ∈,使得12012()()'()f x f x f x x x -=-成立.绵阳南山中学2022年春季高2020级半期考试数学(理科)答案Ă.˞Պʚ123456789101112CBDCCDAABC BA12.由我们熟知的不等式e x ⩾x +1有e 0.02>1+0.02⇒e 0.01>√1.02,∴b >c又e −x >1−x,当x <1时,有1e x >1−x ⇒e x<11−x∴e 0.01<11−0.01=10099,∴a >bȕ.ฒ˭ʚ13.−414.A,B,F15.2416.1416.显然1正确;事实上,双曲函数满足cosh 2(x )−sin 2h (x )=1,这也是它名称的由来,2错误;C 1在A 处切线:y =cosh (m )(x −m )+sinh (m ),C 2在B 处切线:y =sinh (m )(x −m )+cosh (m ),由此求得两切线的公共点坐标为P (m +1,e m ),故P 在曲线y =e x −1上,3错误;|AB |=e −m ,由前面分析知P 到AB 距离为1,∴S △P AB =12e m,随m 增大而减小,4正确.Ɓ.̛٫ʚ17.(1)从上至下依次为“真”,“假”,“真”,“真”;(2)若命题p 为真命题,则a =0或a >0∆<0,解得a ∈[0,4),若命题q 为真命题,由∆⩾0,解得a ⩽14,要使(¬p )∨q 和p ∨(¬q )都是真命题,则需p,q 同真同假,若p,q 同真,则有a ∈[0,14],若p,q 同假,则有a ⩾4,综上可知,a 的取值范围为[0,14]∪[4,+∞).18.以B 为坐标原点,# »BC,# »BA,# »BB 1方向为x,y,z 轴正方向,建立空间直角坐标系B −xyz ,并设AA 1=h ,则相关各点坐标分别为:A (0,√3,0),A 1(0,√3,h ),B (0,0,0),B 1(0,0,h ),C (1,0,0),C 1(1,0,h ),M (1,0,h2)(1)∵# »AM =(1,−√3,h 2),# »BA 1=(0,√3,h ),且AM ⊥BA 1∴# »AM ·# »BA 1=0⇒h =√6,所以,AA 1=√6;(2)∵# »AC 1=(1,−√3,√6),而平面ABB 1A 1的法向量为#»n=(1,0,0),∴cos <# »AC 1,#»n >=1√10=√1010,所以,所求线面角的正弦值为√1010.19.(1)y =k (ax +410−x),x ∈(0,10);(2)y ′=k (4(10−x )2+a x 2)=k (4x 2−a (10−x )2(x (10−x ))2),由题意,y ′|x =2=0⇒16−64a =0⇒a =14,经检验知,当a =14时,y 在(0,2)上单减,在(2,10)上单增,满足题意.所以,A 化工厂的污染强度为14.20.以D 为坐标原点,# »DA,# »DB,# »DP 方向为x,y,z 轴正方向,建立空间直角坐标系D −xyz ,并设CD =2,CB =m ,则相关点坐标为:D (0,0,0),A (m,0,0),B (m,2,0),C (0,2,0),P (0,0,2),于是E (0,1,1),又3# »P F =# »F B ⇒# »DF =34# »DP +14# »DB ,所以# »DF =(m 4,12,32)由# »DF =(m 4,12,32)# »DE =(0,1,1)解得平面DEF 的法向量#»n 1=(−4,−m,m ),(1)易知平面ABCD 的法向量#»n 2=(0,0,1),∴cos <#»n 1,#»n 2>=m √2m 2+16由题意知,m √2m 2+16=12,由此解得m =2√2,∴CB CD =m 2=√2;(2)∵# »P G =λ# »P A,∴# »DG =# »DP +λ# »P A =(λm,0,2−2λ),由题意,∵G 是平面DEF 上一点,∴# »DG ⊥#»n 1⇒−4λm +m (2−2λ)=0由此解得:λ=13.21.(1)∵f ′(x )=2x −1x ,在(0,√22),f ′(x )<0,在(√22,+∞),f ′(x )>0,∴f (x )在(0,√22)单调递减,在(√22,+∞)单调递增,且当x →0时,f (x )→+∞,当x →+∞时,f (x )→+∞,∴由题意可知,x =√22是f (x )的唯一零点,由f (√22)=0,解得:a =√2e ;(2)y =x 2在(x 0,x 20)处切线l :y =2x 0(x −x 0)+x 20,整理得:l :y =2x 0x −x 20,设该切线与y =ln x 相切于(t,ln t ),则l :y =1t(x −t )+ln t,整理得:l :y =1t x +ln t −1,∴2x 0=1t x 20=1−ln t ⇒ln t =−ln 2x 0,∴x 20=1+ln 2x 0又由题知:x 20=ln ax 0,∴ln ax 0=1+ln 2x 0=ln 2ex 0∴a =2e 即为所求.22.(1)f ′(x )=1x+a (x >0)1当a ⩾0时,f ′(x )>0,∴f (x )在(0,+∞)单调递增;2当a <0时,在(0,−1a ),f ′(x )>0,在(−1a,+∞),f ′(x )<0∴f (x )在(0,−1a )单调递增,在(−1a,+∞)单调递减;(2)设F (x )=f ′(x )−f (x 1)−f (x 2)x 1−x 2=1x −f (x 1)−f (x 2)x 1−x 2,x ∈(x 1,x 2),显然F (x )在定义域内单调递减,F (x 1)=1x 1−f (x 1)−f (x 2)x 1−x 2=1x 1−x 2(1−x 2x 1−ln x 1x 2)令x 1x 2=t ∈(0,1),G (t )=(1−1t−ln t ),则F (x 1)=(x 1−x 2)G (t )∵G ′(t )=1−tt2,∴在(0,1),G ′(t )>0⇒G (t )在(0,1)单调递增,∴G (t )>G (1)=0,故F (x 1)=1x 1−x 2G (t )>0,同理:F (x 2)=1x 2−f (x 1)−f (x 2)x 1−x 2=1x 1−x 2(x 1x 2−1−ln x 1x 2)令x 1x 2=t ∈(0,1),H (t )=t −1−ln t,则F (x 2)=1x 1−x 2H (t )∵H ′(t )=1−1t,∴在(0,1),H ′(t )<0⇒H (t )在(0,1)单调递减,∴H (t )>H (1)=0,故F (x 2)=1x 1−x 2H (t )<0,综上可知,F (x )在(x 1,x 2)单调递减,且F (x 1)>0,F (x 2)<0,∴F (x )在(x 1,x 2)存在唯一零点x 0,使得f ′(x 0)=f (x 1)−f (x 2)x 1−x 2,命题得证.。
高2021级数学 第1 页 共 4 页 高2021级数学 第 2页 共 4 页高2021级高二下学期期中质量检测 2023.04.25理科数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、考号填写在答题卷规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卷上对应题号的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卷规定的位置上.4.考试结束后,将答题卷交回.第一部分(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数−=+z 1i2i,则=z ( ) A .1BCD2.数学必修一、二和政治必修一、二共四本书中任取两本书,那么互斥而不对立的两个事件是( )A .至少有一本政治与都是数学B .至少有一本政治与都是政治C .至少有一本政治与至少有一本数学D .恰有1本政治与恰有2本政治 3.已知复数=+∈∈z a b a b i R,R )(,且+=−z 12i 1i )(,则−=a b ( )A .52B .51C .−52D .−514.从甲、乙等6名专家中任选2人前往某地进行考察,则甲、乙2人中至少有1人被选中的概率为( ) A .54B .32C .52D .535.命题p :“∀∈−+>x x mx R,102”,命题q :“<m 2”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 6.命题“∃∈+∞a 0,)[,>a a sin ”的否定形式是( )A .∈+∞∀a 0,)[,≤a a sinB .∃∈+∞a 0,)[,≤a a sinC .∀∈−∞a ,0)(,≤a a sinD .∃∈−∞a ,0)(,>a a sin7.)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列a n }{称为“斐波那契数列”,则=a 7( ) A .8B .13C .18D .23. B . C . .9.地铁让市民不再为公交车的拥挤而烦恼,地下交通的容量大、速度快、准点率高等特点弥补了 单一地面交通的不足.成都地铁9号线每5分钟一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是( )A .0.6B .0.8C .0.4D .0.210.已知命题∀∈p x :R ,>−x sin 1;命题∃∈+=+q x y x y x y :,R,sin sin sin )(,则下列命题是真命题的是( ) A .∧p q B .∧⌝p q )( C .∨⌝p q )( D .⌝∧p q )(11.已知−=x a x 012在∈+∞x 0,)(上有两个不相等的实数根,则实数a 的取值范围是( )A .⎝⎦⎥ ⎛⎤e 20,1B .⎝⎭⎪⎛⎫2e 0,1C .⎝⎦⎥ ⎛⎤1,e 2e 1D .⎝⎭⎪⎛⎫1,e 2e 112.函数=f x x ln 2)(的图象与函数=−+−−xg x x x x 2e e 1)(的图象交点的横坐标x 0,则e x xln 200= ( ) A .−ln 2B .-21C .21D .ln 2高2021级数学 第3 页 共 4 页 高2021级数学 第4页 共 4 页第二部分(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分。
2022-2023学年度第二学期期中质量检测高二数学(理科)模拟试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.z 为复数,若216i z z -=+成立,则z 的虚部为( ) A .6- B .6i - C .2D .2i2.反证法证明命题“若a R ∈,则函数3y x ax b =++至少有一个零点”时,正确的反设为( )A .若a R ∈,则函数3y x ax b =++恰好有一个零点 B .若a R ∈,则函数3y x ax b =++至多有一个零点 C .若a R ∈,则函数3y x ax b =++至多有两个零点 D .若a R ∈,则函数3y x ax b =++没有零点3.已知函数()i f x 的导函数为()(1,2,3)i f x i '=,若123()()()f x f x f x 、、的图象如图所示,则( )A .123()()()f a f a f a '''>>B .132()()()f a f a f a '''>>C .213()()()f a f a f a '''>>D .312()()()f a f a f a '''>>4.若()y f x =是奇函数,则11()f x dx -=⎰( )A .1B .0C .012()f x dx -⎰D .102()f x dx ⎰5.下列计算不正确...的是( )A .()xxee--'= B .2(ln(21))21x x +=+' C .(cos )sin x x '=- D .1()2x x'=6.用数学归纳法证明“()22,4n nn N n *≥∈≥”时,第二步应假设( )A .当(),2n k k N k *=∈≥时,22kk ≥成立 B .当(),3n k k N k *=∈≥时,22k k ≥成立 C .当(),4n k k N k *=∈≥时,22k k ≥成立 D .当(),5n k k N k *=∈≥时,22k k ≥成立 7.若函数()y f x =的导函数()()y x f x ϕ=='图象如图所示,则( )A .3-是函数()f x 的极小值点B .1-是函数()y f x =的极小值点C .函数()f x 的单调递减区间为(2,1)-D .()0x ϕ'<的解集为(,3)-∞- 8.函数()2ln f x x x =-的单调递减区间是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2)D .(,0)-∞和(0,2)9.函数()2()2xf x x x e =-的图象大致是( )A .B .C .D .10.函数()cos (1)sin 1,[0,2]f x x x x x π=+++∈在点x =( )处取得最小值. A .32π B .22π+ C .2 D .32π-11.已知函数()ln ()f x a x x a R =-∈在区间(,)e +∞内有最值,则实数a 的取值范围是( ) A .(,)e +∞ B .,2e ⎛⎫+∞ ⎪⎝⎭C .(,]e -∞D .(,)e -∞- 12.设2ln 21ln6,,412a b c e ===,则( ) A .a c b << B .a b c << C .b c a <<D .c a b <<第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,满分20分)13.已知0x >,观察下列不等式:①12x x +≥,②243x x +≥,③3274,x x+≥⋅⋅⋅,则第n 个不等式为_________.14.一个小球作简谐振动,其运动方程为()2sin 3x t t ππ⎛⎫=+⎪⎝⎭,其中()x t (单位:cm )是小球相对于平衡点的位移,t (单位:s )为运动时间,则小球在2t =时的瞬时速度为_________cm/s .15.设i 是虚数单位,复数z 的共轭复数为z ,下列关于复数的命题正确的有_________ ①z z =②若z 是非零复数,0z z +=,则||zi z = ③若12z z =,则2212z z =④若复数z 为纯虚数,则z i ⋅为实数16.如图:在平面直角坐标系xOy 中,将直线2xy =与直线1x =及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,圆锥的体积21130021212x V dx x πππ⎛⎫=== ⎪⎝⎭⎰圆锥. 据此类比:将曲线2y x =与直线2y =及y 轴所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V =_________.三、解答题(本大题共6小题,满分70分,解答应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知复数i z b =(b R ∈,i 是虚数单位),31iz +-是实数. (1)求b 的值;(2)若复数2()8m z m --在复平面内对应点在第二象限,求实数m 的取值范围. 18.(本小题满分12分)(1)已知b 克糖水中含有a 克糖,再添加m 克糖(0)m >(假设全部溶解),则糖水变甜了.将这一事实表示为不等式:当0,0b a m >>>时,有a a mb b m+<+,请证明这个不等式. (2)设ABC △的三边长分别为a ,b ,c ,请利用第(1)问已证不等式,证明:2c a b a b b c c a++<+++. 19.(本小题满分12分)已知函数432()8181f x x x x =-+-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求函数()f x 的极值. 20.(本小题满分12分)已知函数()sin x f x e a x =-(其中 2.71828e =⋅⋅⋅为自然对数的底数),0为()f x 的一个极值点. (1)求a 的值;(2)证明:()f x x >恒成立. 21.(本小题满分12分)如图,在区间[0,1]上给定曲线2y x =,左边阴影部分的面积为1S ,右边阴影部分的面积记为2S .(1)当12t =时,求1S 的值; (2)当01t ≤≤时,求12S S +的最小值. 22.(本小题满分12分) 已知函数21()ln ()2f x x x mx x m R =--∈. (1)若0m =时,求函数()f x 的单调区间;(2)若函数()f x 在(0,)+∞上是减函数,求实数m 的取值范围.2022-2023学年度第二学期期中质量检测 高二数学(理科)模拟试题参考答案一、选择题(共12小题,每小题5分,共60分.)二、填空题(共4小题,每小题5分,共20分.)13.当0x >时,()1n n n x n n N x*+≥+∈成立 14.π 15.①④ 16.2π三、解答题(共6小题,第17题满分10分,其余满分均为12分.)17.(本小题满分10分) 解:(1) 解法1:∵i z b = ∴33i (3i)(1i)(3)(3)i1i 1i (1i)(1i)2z b b b b ++++-++===---+ 因为31iz +-是实数,所以解集为30b +=,解得3b =- 解法2:因为31iz +-是实数,则令3()1i z k k R +=∈- 则有3i i b k k +=-由复数相等的概念得3k b k=⎧⎨=-⎩,解得3b =-(2)由(1)可知3i z =-∴()222()8(3i)8896i m z m m m m m m --=+-=--+ ∵复数2()8m z m --在复平面内对应点在第二象限∴289060m m m ⎧--<⎨>⎩,解得09m << 所以实数m 的取值范围为(0,9) 18.(本小题满分12分) 解:(1)()()()()()a a m ab m b a m m a b b b m b b m b b m ++-+--==+++ 由00b a a b >>⇒-< 又∵0,0m b >>∴()0()m a b b b m -<+,即a a m b b m+<+得证.(2)ABC △的三边长分别为a ,b ,c根据三边关系有a b c +>由(1)已证不等式可得:c c ca b a b c+<+++ 同理可得,a a a b b b b c b c a c a c a b++<<++++++也成立 将以上不等式左右两边分别相加可得:2()2c a b a b c a b b c c a a b c++++<=+++++成立. 即命题得证.19.(本小题满分12分)解:(1)()3222()424364694(3)f x x x x x x x x x =-+=-+=-' 切点为(0,1)-,切线的斜率为(0)0k f ='=切所以曲线()y f x =在点(0,(0))f 处的切线方程为10y += (2)令()0f x '=,解得0x =,或3x =当0x =时,函数()f x 取得极小值()01f =- 20.(本小题满分12分)解:(1)函数()f x 的导函数为()cos xf x e a x '=-0为()f x 的一个极值点,则有0(0)cos00f e a =-=' 解得1a =(2)要证()f x x >,即证sin xe x x >+ 因为sin 1x ≤ 下面先证1xe x ≥+ 构造函数()1xg x e x =--()10x g x e -'==解得0x =当(,0)x ∈-∞时,有()0g x '<,则()g x 在(,0)-∞上单调递减 当(0,)x ∈+∞时,有()0g x '>,则()g x 在(0,)+∞上单调递增 所以当0x =时,()g x 取得最小值(0)0g = 即1xe x ≥+成立(当且仅当0x =时等号成立) 又因为1sin x ≥(当且仅当2()2x k k Z ππ=+∈时等号成立)由于等号不具有传递性,所以有sin xe x x >+成立. 21.(本小题满分12分)解:(1)当12t =时,1221014S x dx ⎛⎫=- ⎪⎝⎭⎰12301143x x ⎛⎫=- ⎪⎝⎭111183812=-⨯= (2)1S 面积等于边长分别为t 与2t 的矩形面积减去曲线2y x =与x 轴、直线x t =所围成的面积,即2231023tS t t x dx t =⨯-=⎰ 2S 面积等于曲线2y x =与x 轴、直线1x t x ==、所围成的面积减去矩形边长分别为1t -与2t 的矩形面积,即12232221(1)33t S x dx t t t t =--=-+⎰所以阴影部分的面积321241()(01)33S t S S t t t =+=-+≤≤令2()422(21)0S t t t t t =-'=-= 解得0t =,或12t =解不等式()0S t '>得112t <<即()S t 在1,12⎛⎫⎪⎝⎭上单调递增 解不等式()0S t '<得102t <<即()S t 在10,2⎛⎫⎪⎝⎭上单调递减所以当12t =时,()S t 取得极小值,也是最小值为1422.(本小题满分12分)解:(1)当0m =时,()ln ,(0,)f x x x x x =-∈+∞()ln 0f x x =='解得1x =解()0f x '>得1x >,即函数()f x 的单调递增区间为()1,+∞ 解()0f x '<得01x <<,即函数()f x 的单调递减区间为(0,1) (2)由函数()f x 在(0,)+∞上是减函数,可知()ln 0f x x mx =-≤'对任意(0,)x ∈+∞恒成立 即对任意0x >,都有ln xm x≥恒成立 构造函数ln (),0xg x x x => 由21ln ()0xg x x-'==解得x e = 解()0g x '>得0x e <<,即函数()f x 的单调递增区间为(0,)e 解()0g x '<得x e >,即函数()f x 的单调递减区间为(,)e +∞ 所以max ln 1()e g x e e== 所以1m e≥.。
2022-2023学年四川省成都市高二下学期期中考试数学(理)试题一、单选题1.已知i 为虚数单位,复数1iiz -=,则z =()A .1B .2C .3D .2【答案】B【分析】由复数的四则运算可得1i z =--,再由复数模的计算公式求解即可.【详解】解:因为21i (1i)i(i i )1i i i iz --⋅===--=--⋅,所以22(1)(1)2z =-+-=.故选:B.2.如图茎叶图记录了甲乙两位射箭运动员的5次比赛成绩(单位:环),若两位运动员平均成绩相同,则运动员乙成绩的方差为()A .2B .3C .9D .16【答案】A【分析】根据甲、乙二人的平均成绩相同求出x 的值,再根据方差公式求出乙的方差即可.【详解】因为甲乙二人的平均成绩相同,所以8789909193888990919055x+++++++++=,解得2x =,故乙的平均成绩8889909192905++++=,则乙成绩的方差222222[(8890)(8990)(9090)(9190)(9290)]25s -+-+-+-+-==.故选:A.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线方程为20x y -=,则双曲线C 的离心率为()A .2B .2C .3D .5【答案】D 【分析】先求得ba,进而求得双曲线的离心率.【详解】依题意,双曲线的一条渐近线方程为20,2x y y x -==,所以2222222,15b c c a b b e a a a a a +⎛⎫=====+= ⎪⎝⎭.故选:D4.已知m ,n 表示两条不同的直线,α表示平面.下列说法正确的是()A .若m α ,n α∥,则m n ∥B .若m α⊥,n α⊥,则m n ∥C .若m α⊥,m n ⊥,则n α∥D .若m α ,m n ⊥,则n α⊥【答案】B【分析】根据空间直线与平面间的位置关系判断.【详解】对于A ,若m α ,n α∥,则m 与n 相交、平行或异面,故A 错误;对于B ,若m α⊥,n α⊥,由线面垂直的性质定理得m n ∥,故B 正确;对于C ,若m α⊥,m n ⊥,则n α∥或n ⊂α,故C 错误;对于D ,若m α ,m n ⊥,则n 与α相交、平行或n ⊂α,故D 错误.故选:B .5.“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【分析】由直线()34420m x y -+-=与直线220mx y +-=平行可求得m 的值,集合充分条件、必要条件的定义判断可得出结论.【详解】若直线()34420m x y -+-=与直线220mx y +-=平行,则()()23442342m mm m ⎧-=⎪⎨--≠-⎪⎩,解得4m =.因此,“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的充要条件.故选:C.6.执行该程序框图,若输入的a 、b 分别为35、28,则输出的=a ()A .1B .7C .14D .28【答案】B【分析】根据程序框图列举出循环的每一步,即可得出输出结果.【详解】第一次循环,35a =,28b =,a b ¹成立,a b >成立,则35287a =-=;第二次循环,7a =,28b =,a b ¹成立,a b >不成立,则28721b =-=;第三次循环,7a =,21b =,a b ¹成立,a b >不成立,则21714b =-=;第四次循环,7a =,14b =,a b ¹成立,a b >不成立,则1477b =-=.7a b ==,则a b ¹不成立,跳出循环体,输出a 的值为7.故选:B.7.函数()()22e xf x x x =-的图像大致是()A .B .C .D .【答案】B【分析】由函数()f x 有两个零点排除选项A ,C ;再借助导数探讨函数()f x 的单调性与极值情况即可判断作答.【详解】由()0f x =得,0x =或2x =,选项A ,C 不满足,即可排除A ,C由()()22e x f x x x =-求导得()()22e xx x f '=-,当2x <-或2x >时,()0f x ¢>,当22x -<<时,()0f x '<,于是得()f x 在(),2-∞-和()2,+∞上都单调递增,在()2,2-上单调递减,所以()f x 在2x =-处取极大值,在2x =处取极小值,D 不满足,B 满足.故选:B8.已知曲线1cos :sin x C y θθ=+⎧⎨=⎩(θ为参数).若直线323x y +=与曲线C 相交于不同的两点,A B ,则AB 的值为A .12B .32C .1D .3【答案】C【详解】分析:消参求出曲线C 的普通方程:22(1)1x y -+=,再求出圆心(1,0)到直线的距离d ,则弦长222AB r d =-.详解:根据22cos sin 1θθ+=,求出曲线C 的普通方程为22(1)1x y -+=,圆心(1,0)到直线的距离3233231d -==+,所以弦长222AB r d =-321=14=-,选C.点睛:本题主要考查将参数方程化为普通方程,直线与圆相交时,弦长的计算,属于中档题.9.过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【答案】A【分析】由l 与x 轴交点横坐标可得半焦距c ,设出点A ,B 坐标,利用点差法求出22,a b 的关系即可计算作答.【详解】依题意,焦点(2,0)F ,即椭圆C 的半焦距2c =,设1122(,),(,)A x y B x y ,00(,)P x y ,则有2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩,两式相减得:2212121212()()a ()()0b x x x x y y y y +-++-=,而1201202,2x x x y y y +=+=,且0012y x =-,即有2212122()()0b x x a y y --+-=,又直线l 的斜率12121y y x x -=-,因此有222a b =,而2224a b c -==,解得228,4a b ==,经验证符合题意,所以椭圆C 的方程为22184x y +=.故选:A10.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是A .413B .21313C .926D .31326【答案】A【分析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在ABD ∆中,3AD =,1BD =,120ADB ∠=︒,由余弦定理,得222cos12013AB AD BD AD BD =+-⋅︒=,所以213DF AB =.所以所求概率为224=1313DEF ABC S S ∆∆⎛⎫= ⎪⎝⎭.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.11.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,2PA AB ==,4=AD ,E 为PC 的中点,则面PCD 与直线BE 所成角的余弦值为()A .35B .23015C .2515D .10515【答案】D【分析】以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法结合同角三角函数的基本关系可求得面PCD 与直线BE 所成角的余弦值.【详解】因为PA ⊥平面ABCD ,四边形ABCD 为矩形,以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z轴建立如下图所示的空间直角坐标系,则()2,0,0B 、()2,4,0C 、()0,4,0D 、()002P ,,、()1,2,1E ,设平面PCD 的法向量为(),,n x y z = ,()2,0,0DC =uuu r,()0,4,2DP =-uuu r ,则20420n DC x n DP y z ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,取1y =,可得()0,1,2n = ,()1,2,1BE =- ,所以,4230cos ,1565BE n BE n BE n⋅===⨯⋅,所以,22230105sin ,1cos ,11515BE n BE n ⎛⎫=-=-= ⎪ ⎪⎝⎭,因此,面PCD 与直线BE 所成角的余弦值为10515.故选:D.12.已知函数()ln 1f x x ax =+-有两个零点1x 、2x ,且12x x <,则下列命题正确的个数是()①01a <<;②122x x a +<;③121x x ⋅>;④2111x x a->-;A .1个B .2个C .3个D .4个【答案】C【分析】由()0f x =可得1ln xa x+=,设()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,利用导数分析函数()g x 的单调性与极值,数形结合可判断①;构造函数()()2h x f x f x a ⎛⎫=-- ⎪⎝⎭,其中10x a <<,分析函数()h x 的单调性,可判断②③;分析出1211e x x <<<、1210x x a<<<,利用不等式的基本性质可判断④.【详解】由()0f x =可得ln 1x a x+=,令()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,()2ln xg x x '=-,由()0g x '>可得01x <<,即函数()g x 的单调递增区间为()0,1,由()0g x '<可得1x >,即函数()g x 的单调递减区间为()1,+∞,且当10e x <<时,()ln 10x g x x+=<,当1e x >时,()ln 10x g x x +=>,如下图所示:由图可知,当01a <<时,直线y a =与函数()g x 的图象有两个交点,①对;对于②,由图可知,1211ex x <<<,因为()11ax f x a x x -'=-=,由()0f x ¢>可得10x a<<,由()0f x '<可得1x a >,所以,函数()f x 的增区间为10,a ⎛⎫⎪⎝⎭,减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则必有1210x x a <<<,所以,110x a <<,则121x a a->,令()()222ln ln h x f x f x x a x x ax a a a ⎛⎫⎛⎫⎛⎫=--=----+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中10x a <<,则()212112022a x a h x a x x x x a a ⎛⎫- ⎪⎝⎭'=-+=<⎛⎫-- ⎪⎝⎭,则函数()h x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,所以,()110h x h a ⎛⎫>= ⎪⎝⎭,即()1120f x f x a ⎛⎫--> ⎪⎝⎭,即()112f x f x a ⎛⎫<- ⎪⎝⎭,又()20f x =,可得()212f x f x a ⎛⎫<- ⎪⎝⎭,因为函数()f x 的单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则212x x a >-,即122x x a +>,②错;对于③,由1122ln 1ln 1ax x ax x =+⎧⎨=+⎩,两式相加整理可得()1212ln 22x x x x a a ++=>,所以,()12ln 0x x >,可得121x x >,③对;对于④,由图可知1211ex x <<<,则11x ->-,又因为21x a >,所以,2111x x a->-,④对.故选;C.【点睛】证明极值点偏移的相关问题,一般有以下几种方法:(1)证明122x x a +<(或122x x a +>):①首先构造函数()()()2g x f x f a x =--,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()()()1112122g x f x f a x f x f a x =--=--与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与12a x -的大小,从而证明相应问题;(2)证明212x x a <(或212x x a >)(1x 、2x 都为正数):①首先构造函数()()2a g x f x f x ⎛⎫=- ⎪⎝⎭,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()2211211a a g x f x f f x f x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与21a x 的大小,从而证明相应问题;(3)应用对数平均不等式12121212ln ln 2x x x xx x x x -+<<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.二、填空题13.已知函数()sin cos f x x x =+,则π4f ⎛⎫'= ⎪⎝⎭______.【答案】0【分析】求出()f x ',代值计算可得出π4f ⎛⎫' ⎪⎝⎭的值.【详解】因为()sin cos f x x x =+,则()cos sin f x x x '=-,故πππcos sin 0444f ⎛⎫'=-= ⎪⎝⎭.故答案为:0.14.天府绿道是成都人民朋友圈的热门打卡地,经统计,天府绿道旅游人数x (单位:万人)与天府绿道周边商家经济收入y (单位:万元)之间具有线性相关关系,且满足回归直线方程为ˆ12.60.6yx =+,对近五个月天府绿道旅游人数和周边商家经济收入统计如下表:x23 3.5 4.57y26384360a则表中a 的值为___________.【答案】88【分析】根据样本平均值满足回归直线方程求解.【详解】样本平均值满足回归直线方程,x 的平均值为23 3.5 4.5745++++=,则y 的平均值2638436012.640.65a++++=⨯+,解得88a =,故答案为:88.15.已知函数f (x )=e x +ax ﹣3(a ∈R ),若对于任意的x 1,x 2∈[1,+∞)且x 1<x 2,都有()()()211212x f x x f x a x x -<-成立,则a 的取值范围是__.【答案】(﹣∞,3]【分析】原不等式等价于()()1212f x a f x a x x ++<,构造()()f x ah x x+=,由函数单调性的定义可知,h (x )在[1,+∞)上单调递增,即有h '(x )≥0在[1,+∞)上恒成立,亦即a ﹣3≤xe x ﹣e x 在[1,+∞)上恒成立,构造g (x )=x e x ﹣e x ,由导数求解函数g (x )的最小值,即可得到a 的取值范围.【详解】原不等式等价于()()1212f x a f x a x x ++<,令()()f x ah x x+=,则不等式等价于h (x 1)<h (x 2)对于任意的x 1,x 2∈[1,+∞)且x 1<x 2都成立,故函数h (x )在[1,+∞)上单调递增,又函数f (x )=e x +ax ﹣3,则()e 3x ax a h x x +-+=,所以h '(x )2e e 30x x x ax -+-=≥在[1,+∞)上恒成立,即x e x﹣e x +3﹣a ≥0在[1,+∞)上恒成立,即a ﹣3≤x e x ﹣e x 在[1,+∞)上恒成立,令g (x )=x e x ﹣e x ,因为g '(x )=x e x >0在[1,+∞)上恒成立,所以g (x )在[1,+∞)上单调递增,则g (x )≥g (1)=0,所以a ﹣3≤0,解得a ≤3,所以实数a 的取值范围是(﹣∞,3].故答案为:(﹣∞,3].16.已知点F 为抛物线28y x =的焦点,()2,0M -,点N 为抛物线上一动点,当NFNM最小时,点N 恰好在以M 、F 为焦点的双曲线上,则该双曲线的渐近线的斜率的平方为______.【答案】222+【分析】作出图形,分析可知MN 与抛物线28y x =相切时,NFNM取最小值,设直线MN 的方程为2x my =-,将该直线的方程与抛物线的方程联立,求出m 的值,进而可求出点N 的坐标,利用双曲线的定义求出a 的值,结合c 的值可得出22221b ca a=-,即为所求.【详解】抛物线28y x =的焦点为()2,0F ,其准线为:2l x =-,如下图所示:过点N 作NE l ⊥,垂足为点E ,由抛物线的定义可得NF NE =,易知//EN x 轴,则NMF MNE ∠=∠,所以,cos cos NF NE MNE NMF MNMN==∠=∠,当NFNM取最小值时,NMF ∠取最大值,此时,MN 与抛物线28y x =相切,设直线MN 的方程为2x my =-,联立228x my y x=-⎧⎨=⎩可得28160y my -+=,则264640m ∆=-=,解得1m =±,由对称性,取1m =,代入28160y my -+=可得28160y y -+=,解得4y =,代入直线MN 的方程2x y =-可得2x =,即点()2,4N ,则224NF =+=,()2222442MN =++=,设双曲线的标准方程为()222210,0x y a b a b -=>>,由双曲线的定义可得2424a MN NF =-=-,所以,()221a =-,又因为2c =,则()221221c a ==+-,所以,()222221211222b c a a =-=+-=+.故答案为:222+.三、解答题17.在直角坐标系xOy 中,直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)已知直线l 与曲线C 交于A ,B 两点,设()2,0M ,求MA MB 的值.【答案】(1)3230x y --=,24y x=(2)323【分析】(1)根据直线参数方程消掉参数t 即可得到直线的普通方程;(2)由直线参数方程中t 的几何意义即可求解.【详解】(1)∵直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),∴消去t 可得直线l 的普通方程为:3230x y --=.∵曲线C 的极坐标方程为2sin 4cos 0ρθθ-=,即22sin 4cos 0ρθ-ρθ=,又∵cos x ρθ=,sin y ρθ=,∴曲线C 的直角坐标方程为24y x =.(2)将12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)代入24y x =,得238320t t --=,显然0∆>,即方程有两个不相等的实根,设点A ,B 在直线l 的参数方程中对应的参数分别是1t ,2t ,则1283t t +=,12323t t =-,∴12323MA MB t t ==.18.已知函数()32f x x x ax b =-++,若曲线()y f x =在()()0,0f 处的切线方程为1y x =-+.(1)求a ,b 的值;(2)求函数()y f x =在[]22-,上的最小值.【答案】(1)1a =-;1b =(2)9-【分析】(1)根据函数的切线方程即可求得参数值;(2)判断函数在[]22-,上单调性,进而可得最值.【详解】(1)由已知可得()01f b ==.又()232f x x x a '=-+,所以()01f a '==-.(2)由(1)可知()321f x x x x =--+,()2321f x x x '=--,令()0f x ¢>,解得13x <-或1x >,所以()f x 在12,3⎡⎫--⎪⎢⎣⎭和[]1,2上单调递增,在1,13⎡⎫⎪⎢⎣⎭上单调递减.又()29f -=-,()10f =,所以函数()y f x =在[]22-,上的最小值为9-.19.某校组织全体学生参加“数学以我为傲”知识竞赛,现从中随机抽取了100名学生的成绩组成样本,并将得分分成以下6组:[40,50),[50,60),[60,70),……,[90,100],统计结果如图所示:(1)试估计这100名学生得分的平均数(同一组中的数据用该组区间中点值代表);(2)现在按分层抽样的方法在[80,90)和[90,100]两组中抽取5人,再从这5人中随机抽取2人参加这次竞赛的交流会,求两人都在[90,100]的概率.【答案】(1)70.5(2)110【分析】(1)根据频率分布直方图直接代入平均数的计算公式即可求解;(2)根据分层抽样在[)80,90分组中抽取的人数为15531015⨯=+人,在[]90,100分组中抽取的人数为2人,利用古典概型的概率计算公式即可求解.【详解】(1)由频率分布直方图的数据,可得这100名学生得分的平均数:()450.01550.015650.02750.03850.015950.011070.5x =⨯+⨯+⨯+⨯+⨯+⨯⨯=分.(2)在[)80,90和[]90,100两组中的人数分别为:100×(0.015×10)=15人和100×(0.01×10)=10人,所以在[)80,90分组中抽取的人数为15531015⨯=+人,记为a ,b ,c ,在[]90,100分组中抽取的人数为2人,记为1,2,所以这5人中随机抽取2人的情况有:()()()()()()()()()(){},,,1,2,1,2,1,2,12ab ac bc a a b b c c Ω=,共10种取法,其中两人得分都在[]90,100的情况只有(){}12,共有1种,所以两人得分都在[]90,100的概率为110P =.20.在如图所示的几何体中,四边形ABCD 是边长为2的正方形,四边形ADPQ 是梯形,PD //QA ,PD ⊥平面ABCD ,且22PD QA ==.(1)求证:BC ⊥平面QAB ;(2)求平面PBQ 与平面PCD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)66【分析】(1)由PD ⊥平面ABCD ,PD //QA ,可得QA ⊥平面ABCD ,进而得到QA BC ⊥,结合BC AB ⊥,进而得证;(2)以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点建立空间直角坐标系,找出平面PBQ 与平面PCD 的法向量,根据两面的法向量即可求解.【详解】(1)证明:∵PD ⊥平面ABCD ,PD //QA ,∴QA ⊥平面ABCD .∵BC ⊂平面ABCD ,∴QA BC ⊥.在正方形ABCD 中,BC AB ⊥,又AB QA A ⋂=,AB ,QA ⊂平面QAB ,∴BC ⊥平面QAB .(2)建立空间直角坐标系如图:以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点,则有()2,2,0B ,()002P ,,,()2,0,1Q ,()0,2,1QB =- ,()2,0,1PQ =- ,设平面PBQ 的一个法向量为(),,m x y z = ,则有00m QB m PQ ⎧⋅=⎪⎨⋅=⎪⎩ ,得2020y z x z -=⎧⎨-=⎩,令2z =,则1x =,1y =,()1,1,2m = ,易知平面PCD 的一个法向量为()1,0,0n =r ,设平面PBQ 与平面PCD 所成二面角的平面角为α,则16cos 616m n m n α⋅===⨯⋅ ,即平面PBQ 与平面PCD 所成锐二面角的余弦值66.21.已知椭圆()2222:10x y C a b a b +=>>的离心率为32,左、右焦点分别为1F 、2F ,P 为C 的上顶点,且12PF F △的周长为423+.(1)求椭圆C 的方程;(2)设过定点()0,2M 的直线l 与椭圆C 交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)2214x y +=(2)332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【分析】(1)由椭圆的定义以及离心率可得出a 、c 的值,进而可求得b 的值,由此可得出椭圆C 的方程;(2)分析可知直线l 的斜率存在,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由0∆>结合0OA OB ⋅> 可求得k 的取值范围.【详解】(1)设椭圆C 的半焦距为c .因为12PF F △的周长为121222423PF PF F F a c ++=+=+,①因为椭圆C 的离心率为32,所以32c a =,②由①②解得2a =,3c =.则221b a c =-=,所以椭圆C 的方程为2214x y +=.(2)若直线l x ⊥轴,此时,直线l 为y 轴,则A 、O 、B 三点共线,不合乎题意,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,联立()22221141612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,()()()222Δ164411216430k k k =-+⨯=->,解得234k >,由韦达定理可得1221641k x x k +=-+,1221241x x k =+,则()()()2121212122224y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,A 、O 、B 不共线,则cos 0AOB ∠>,即()()()22221212121221213216412441k k k OA OB x x y y k x x k x x k +-++⋅=+=++++=+ 22164041k k -=>+,解得204k <<,所以,2344k <<,解得322k -<<-或322k <<,所以实数k 的取值范围为332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.22.已知函数()2ln f x x x ax a =-+.(1)若()f x a ≤,求a 的取值范围;(2)若()f x 存在唯一的极小值点0x ,求a 的取值范围,并证明()0210a f x -<<.【答案】(1)1[,)e +∞(2)12a <;证明见解析;【分析】(1)可利用分离参数法,将问题转化为ln x a x ≥恒成立,然后研究ln ()x g x x=的单调性,求出最大值;(2)通过研究()f x '在()0,∞+内的变号零点,单调性情况确定唯一极小值点;若不能直接确定()f x '的零点范围及单调性,可以通过研究()g x '的零点、符号来确定()f x '的单调性,和特殊点(主要是能确定()f x '符号的点)处的函数值符号,从而确定()f x 的极值点的存在性和唯一性.【详解】(1)()f x 的定义域为()0,∞+.由()f x a ≤,得ln x a x ≥在()0,x ∈+∞恒成立,转化为max ln ()x a x ≥令ln ()x g x x =,则21ln ()x g x x -'=,∴ln ()x g x x=在()0,e 单调递增,在(),e +∞单调递减,∴()g x 的最大值为1(e)g e=,∴1a e ≥.∴a 的取值范围是1[,)e+∞.(2)设()()g x f x '=,则()ln 12g x x ax =+-,1()2g x a x'=-,0x >.①当a<0时,()0g x '>恒成立,()g x 在()0,∞+单调递增,又()1120g a =->,212121()21122(1)0a a a g e a ae a e ---=-+-=-<所以()g x 存在唯一零点()10,1x ∈.当()10,x x ∈时,()()0f x g x '=<,当()1,1x x ∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x x =.②当0a =时,()ln 1g x x =+,()g x 在()0,∞+单调递增,1()0g e =,所以()g x 在()0,∞+有唯一零点1e.当1(0,)∈x e时,()()0f x g x '=<,当1(,1)x e∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x e =.③当0a >时,令()0g x '>,得1(0,)2x a ∈;令()0g x '<,得1(,)2x a ∈+∞,∴()g x 在1(0,)2a 单调递增,在1(,)2a+∞单调递减,所以()g x 的最大值为1()ln(2)2g a a =-④当102a <<时,1()0g e<,()1120g a =->,1()02g a >,21212()212(1)10l 1n g a a aa a =-+-<--+-=-<(或用11111()20a a g eae a --=-<)由函数零点存在定理知:()g x 在区间()0,1,()1,+∞分别有一个零点2x ,3x 当()20,x x ∈时,()()0f x g x '=<;当()23,x x x ∈时,()()0f x g x '=>;所以()f x 存在唯一的极小值点02x x =,极大值点3x .⑤当12a ≥时,102g a ⎛⎫≤ ⎪⎝⎭,()()0f x g x '=≤所以()f x 在()0,∞+单调递减,无极值点.由①②④可知,a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭,当()00,x x ∈时,()0f x '<;所以()f x 在()00,x 单调递减,()0,1x 单调递增.所以()0(1)0f x f <=.由()000ln 120f x x ax '=+-=,得00ln 21x ax =-.所以20000ln ()f x x ax ax =-+2000(21)x ax ax a=--+200ax a x =+-2000()(21)1f x a ax a x --=--+[]00(1)(1)1x a x =-+-,因为0(0,1)x ∈,1,2a ⎛⎫∈-∞ ⎪⎝⎭,所以010x -<,()01112102a x +-<⨯-=所以()0(21)0f x a -->,即()021f x a >-;所以()0210a f x -<<.【点睛】本题通过导数研究函数的零点、极值点的情况,一般是先研究导函数的零点、单调性,从而确定原函数的极值点存在性和个数.同时考查学生运用函数思想、转化思想解决问题的能力和逻辑推理、数学运算等数学素养.。
2023-2024学年第二学期期中质量检测高二数学试卷(答案在最后)(满分:150分;考试时间:120分钟)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:选择性必修第二册第五章、选择性必修第三册第六章、第七章第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.计算52752+C A 的值是()A.62B.102C.152D.5402.下列导数运算正确的是()A.cos sin x x x '⎛⎫=- ⎪⎝⎭B.()21log ln 2x x '=C.()22xx'= D.()32e 3exxx x '=3.若9290129(2)x a a x a x a x -=++++L ,则129a a a +++ 的值为()A.1- B.1 C.511- D.5124.若2()f x x bx c =++的图象的顶点在第二象限,则函数()f x '的图象是()A. B.C. D.5.曲线()(22e 21xf x x x =--+-在0x =处的切线的倾斜角是()A.2π3B.5π6C.3π4 D.π46.现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球,则摸出的球是黑球的概率是()A.1115B.1130C.115D.2157.有7种不同的颜色给下图中的4个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不能相同,若最多使用3种颜色,则不同的涂色方法种数为()A.462B.630C.672D.8828.已知函数()e 2xx k f x =-,若0x ∃∈R ,()00f x ≤,则实数k 的最大值是().A.1eB.2eC.12eD.e e二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1)nx+*(N )n ∈展开式中常数项是2C n ,则n 的值为().A.3B.4C.5D.610.高中学生要从必选科目(物理和历史)中选一门,再在化学、生物、政治、地理这4个科目中,依照个人兴趣、未来职业规划等要素,任选2个科目构成“1+2选考科目组合”参加高考.已知某班48名学生关于选考科目的结果统计如下:选考科目名称物理化学生物历史地理政治选考该科人数36392412a b下面给出关于该班学生选考科目的四个结论中,正确的是()A.33a b +=B.选考科目组合为“历史+地理+政治”的学生可能超过9人C.在选考化学的所有学生中,最多出现6种不同的选考科目组合D.选考科目组合为“历史+生物+地理”的学生人数一定是所有选考科目组合中人数最少的11.若不等式e ln 0x ax a -<在[)2,x ∞∈+时恒成立,则实数a 的值可以为()A.3eB.2eC.eD.2第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =___________.13.某校一次高三数学统计,经过抽样分析,成绩X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为________.14.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15.已知函数3()ln (R)f x x ax a =+∈,且(1)4f '=.(1)求a 的值;(2)设()()ln g x f x x x =--,求()y gx =过点(1,0)的切线方程.16.已知n⎛⎝在的展开式中,第6项为常数项.(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.17.如图,有三个外形相同的箱子,分别编号为1,2,3,其中1号箱装有1个黑球和3个白球,2号箱装有2个黑球和2个白球,3号箱装有3个黑球,这些球除颜色外完全相同.小明先从三个箱子中任取一箱,再从取出的箱中任意摸出一球,记事件i A (123i =,,)表示“球取自第i 号箱”,事件B 表示“取得黑球”.(1)求()P B 的值:(2)若小明取出的球是黑球,判断该黑球来自几号箱的概率最大?请说明理由.18.为普及空间站相关知识,某部门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X 的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.19.已知曲线()31:3C y f x x ax ==-.(1)求函数()313f x x ax =-()0a ≠的单调递增区间;(2)若曲线C 在点()()3,3f 处的切线与两坐标轴围成的三角形的面积大于18,求实数a 的取值范围.2023-2024学年第二学期期中质量检测高二数学试卷(满分:150分;考试时间:120分钟)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:选择性必修第二册第五章、选择性必修第三册第六章、第七章第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.计算52752+C A 的值是()A.62 B.102C.152D.540【答案】A 【解析】【分析】利用组合和排列数公式计算【详解】5275762254622C A =+´+创=故选:A2.下列导数运算正确的是()A.cos sin x x x '⎛⎫=- ⎪⎝⎭B.()21log ln 2x x '=C.()22xx'= D.()32e 3exxx x '=【答案】B 【解析】【分析】利用常见函数的导数可以判断B 、C 的真假,利用积的导数的运算法则判断D 的真假,利用商的导数的运算法则判断A 的真假.【详解】∵()22cos cos cos sin cos x x x x x x x x x x x ''⋅-⋅--⎛⎫== ⎪⎝'⎭,故A 错误;∵()21log ln 2x x '=,故B 正确;∵()22ln 2x x '=,故C 错误;∵()()()33323e e e 3e e x x x x x x x x x x ⋅'''=⋅+=+,故D 错误.故选:B.3.若9290129(2)x a a x a x a x -=++++L ,则129a a a +++ 的值为()A.1- B.1 C.511- D.512【答案】C 【解析】【分析】根据题意,分别令1x =与0x =代入计算,即可得到结果.【详解】当1x =时,20911a a a a ++++=L ;当0x =时,0512a =所以,1211511a a a +++=-L 故选:C4.若2()f x x bx c =++的图象的顶点在第二象限,则函数()f x '的图象是()A.B.C.D.【答案】C 【解析】【分析】求导后得到斜率为2,再由极值点是导数为零的点小于零,综合直线的特征可得正确答案.【详解】因为()2f x x b '=+,所以函数()f x '的图象是直线,斜率20k =>;又因为函数()f x 的顶点在第二象限,所以极值点小于零,所以()f x '的零点小于零,结合直线的特征可得C 符合.故选:C5.曲线()(22e 21xf x x x =--+-在0x =处的切线的倾斜角是()A.2π3B.5π6C.3π4 D.π4【答案】A 【解析】【分析】利用导数的几何意义求得切线斜率,即可求得切线的倾斜角.【详解】()()2e 22,0xf x x f =--∴'-'= ,设切线的倾斜角为[),0,πθθ∈,则tan θ=,即2π3θ=,故选:A .6.现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球,则摸出的球是黑球的概率是()A.1115B.1130C.115D.215【答案】B 【解析】【分析】根据条件概率的定义,结合全概率公式,可得答案.【详解】记事件A 表示“球取自甲箱”,事件A 表示“球取自乙箱”,事件B 表示“取得黑球”,则()()()()1212,,2635P A P A P B A P B A =====,由全概率公式得()()()()111211232530P A P B A P A P B A +=⨯+⨯=.故选:B .7.有7种不同的颜色给下图中的4个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不能相同,若最多使用3种颜色,则不同的涂色方法种数为()A.462B.630C.672D.882【答案】C 【解析】【分析】根据题意,按使用颜色的数目分两种情况讨论,由加法原理计算可得答案.【详解】根据题意,分两种情况讨论:若用两种颜色涂色,有27C 242⨯=种涂色方法;若用三种颜色涂色,有()37C 3221630⨯⨯⨯+=种涂色方法;所以有42630672+=种不同的涂色方法.故选:C.8.已知函数()e 2xx k f x =-,若0x ∃∈R ,()00f x ≤,则实数k 的最大值是().A.1eB.2eC.12eD.e e【答案】B 【解析】【分析】将问题转化为002e x x k ≤在0x ∈R 上能成立,利用导数求2()exxg x =的最大值,求k 的范围,即知参数的最大值.【详解】由题设,0x ∃∈R 使02e x x k ≤成立,令2()exxg x =,则()21e x g x x ⋅-'=,∴当1x <时()0g x '>,则()g x 递增;当1x >时()0g x '<,则()g x 递减;∴2()(1)e g x g ≤=,故2e k ≤即可,所以k 的最大值为2e.故选:B.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1)nx+*(N )n ∈展开式中常数项是2C n ,则n 的值为().A.3B.4C.5D.6【答案】AD 【解析】【分析】根据二项式展开式得到321C n r r r nT x-+=,再令302n r-=,则得到123C C n n n =,解出即可.【详解】展开式的通项为131221C ()()C n r r n rr rr nnT x x x---+==,若要其表示常数项,须有302n r-=,即13r n =,又由题设知123C C n n =,123n \=或123n n -=,6n ∴=或3n =.故选:A D .10.高中学生要从必选科目(物理和历史)中选一门,再在化学、生物、政治、地理这4个科目中,依照个人兴趣、未来职业规划等要素,任选2个科目构成“1+2选考科目组合”参加高考.已知某班48名学生关于选考科目的结果统计如下:选考科目名称物理化学生物历史地理政治选考该科人数36392412ab下面给出关于该班学生选考科目的四个结论中,正确的是()A.33a b +=B.选考科目组合为“历史+地理+政治”的学生可能超过9人C.在选考化学的所有学生中,最多出现6种不同的选考科目组合D.选考科目组合为“历史+生物+地理”的学生人数一定是所有选考科目组合中人数最少的【答案】AC 【解析】【分析】结合统计结果对选项逐一分析即可得.【详解】对A :由3924482a b +++=⨯,则33a b +=,故A 正确;对B :由选择化学的有39人,选择物理的有36人,故至少有三人选择化学并选择了历史,故选考科目组合为“历史+地理+政治”的学生最多有9人,故B 错误;对C :确定选择化学后,还需在物理、历史中二选一,在生物、地理、政治中三选一,故共有236⨯=种不同的选考科目组合,故C 正确;对D :由于地理与政治选考该科人数不确定,故该说法不正确,故D 错误.故选:AC.11.若不等式e ln 0x ax a -<在[)2,x ∞∈+时恒成立,则实数a 的值可以为()A.3eB.2eC.eD.2【答案】BCD 【解析】【分析】构造函数()ex xf x =,将e ln 0x ax a -<恒成立问题转化为()()ln f x f a <恒成立问题,求导,研究()e xxf x =单调性,画出其图象,根据图象逐一验证选项即可.【详解】由e ln 0x ax a -<得ln ln ln e ex a x a aa <=,设()e x x f x =,则()1ex xf x ='-,当1x <时,()0f x '>,()f x 单调递增,当1x >时,()0f x '<,()f x 单调递减,又()00f =,()11e f =,当0x >时,()0ex xf x =>恒成立,所以()ex xf x =的图象如下:,ln ln e ex a x a<,即()()ln f x f a <,2x ≥,对于A :当3e a =时,ln ln 31>2a =+,根据图象可得()()ln f x f a <不恒成立,A 错误;对于B :当2e a =时,()ln ln 211,2a =+∈,根据图象可得()()ln f x f a <恒成立,B 正确;对于C :当e a =时,ln 1a =,根据图象可得()()ln f x f a <恒成立,C 正确;对于D :当2a =时,ln ln 2a =,又()()ln 22ln 212ln 2ln 2,2e 2ef f ===,因为221263ln 23ln 2e e ⨯-⨯=,且2e,e 6>>,即26ln 1,1e ><,所以221263ln 23ln 02e e⨯-⨯=->,即()()ln 22f f >,根据图象可得()()ln f x f a <恒成立,D 正确;故选:BCD.【点睛】关键点点睛:本题的关键将条件变形为ln ln e e x ax a <,通过整体结构相同从而构造函数()e x x f x =来解决问题.第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =___________.【答案】38【解析】【分析】利用条件概率的概率公式()()()P AB P B A P A =即可求解.【详解】由题意可得:()415P A =,()215P B =,()110P AB =,由条件概率公式可得()()()13104815P AB P B A P A ===,故答案为:38.13.某校一次高三数学统计,经过抽样分析,成绩X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为________.【答案】200【解析】【分析】根据X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,求得(130)p X ≥即可.【详解】因为X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,所以()()113012901300.22P X P X ⎡⎤≥=-≤≤=⎣⎦,又该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为10000.2200⨯=人.故答案为:200.14.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)【答案】36【解析】【分析】先将4人分成2、1、1三组,再安排给3个不同的场馆,由分步乘法计数原理可得.【详解】将4人分到3个不同的体育场馆,要求每个场馆至少分配1人,则必须且只能有1个场馆分得2人,其余的2个场馆各1人,可先将4人分为2、1、1的三组,有211421226C C C A =种分组方法,再将分好的3组对应3个场馆,有336A =种方法,则共有6636⨯=种分配方案.故答案为:36四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15.已知函数3()ln (R)f x x ax a =+∈,且(1)4f '=.(1)求a 的值;(2)设()()ln g x f x x x =--,求()y g x =过点(1,0)的切线方程.【答案】(1)1(2)22y x =-【解析】【分析】(1)利用导数求解参数即可.(2)先设切点,利用导数表示斜率,建立方程求出参数,再写切线方程即可.【小问1详解】定义域为,()0x ∈+∞,21()3f x ax x'=+,而(1)13f a '=+,而已知(1)4f '=,可得134a +=,解得1a =,故a 的值为1,【小问2详解】3()()ln g x f x x x x x =--=-,设切点为0003(,)x x x -,设切线斜率为k ,而2()31g x x '=-,故切线方程为300200()(31)()y x x x x x --=--,将(1,0)代入方程中,可得3200000()(31)(1)x x x x --=--,解得01x =(负根舍去),故切线方程为22y x =-,16.已知n ⎛ ⎝在的展开式中,第6项为常数项.(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.【答案】(1)10n =;(2)454;(3)2454x ,638-,245256x.【解析】【分析】(1)求出n⎛ ⎝的展开式的通项为1r T +,当=5r 时,指数为零,可得n ;(2)将10n =代入通项公式,令指数为2,可得含2x 的项的系数;(3)根据通项公式与题意得1023010r Zr r Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,求出r 的值,代入通项公式并化简,可得展开式中所有的有理项.【详解】(1)n ⎛ ⎝的展开式的通项为233311122r rn r r n r r r r n n T C x x C x ----+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,因为第6项为常数项,所以=5r 时,有203n r -=,解得10n =.(2)令223n r -=,得()()116106222r n =-=⨯-=,所以含2x 的项的系数为221014524C ⎛⎫-= ⎪⎝⎭.(3)根据通项公式与题意得1023010r Zr r Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,令()1023r k k Z -=∈,则1023r k -=,即352r k =-.r Z ∈,∴k 应为偶数.又010r ≤≤,∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项与第9项为有理项,它们分别为2221012C x ⎛⎫- ⎪⎝⎭,551012C ⎛⎫- ⎪⎝⎭,8821012C x -⎛⎫- ⎪⎝⎭,即2454x ,638-,245256x .【点睛】关键点点睛:本题考查二项式展开式的应用,考查二项式展开式的通项公式以及某些特定的项,解决本题的关键点是求解展开式的有理项时,令()1023r k k Z -=∈,由r Z ∈以及010r ≤≤,求出k 的值,进而得出r 的值,代入通项公式化简可得有理项,考查了学生计算能力,属于中档题.17.如图,有三个外形相同的箱子,分别编号为1,2,3,其中1号箱装有1个黑球和3个白球,2号箱装有2个黑球和2个白球,3号箱装有3个黑球,这些球除颜色外完全相同.小明先从三个箱子中任取一箱,再从取出的箱中任意摸出一球,记事件i A (123i =,,)表示“球取自第i 号箱”,事件B 表示“取得黑球”.(1)求()P B 的值:(2)若小明取出的球是黑球,判断该黑球来自几号箱的概率最大?请说明理由.【答案】(1)712(2)可判断该黑球来自3号箱的概率最大.【解析】【分析】(1)因先从三个箱子中任取一箱,再从取出的箱中任意摸出一球为黑球,其中有三种可能,即黑球取自于1号,2号或者3号箱,故事件B 属于全概率事件,分别计算出()i P A 和(|),1,2,3i P B A i =,代入全概率公式即得;(2)由“小明取出的球是黑球,判断该黑球来自几号箱”是求条件概率(|),1,2,3i P A B i =,根据条件概率公式分别计算再比较即得.【小问1详解】由已知得:1231()()()3P A P A P A ===,12311(|),(|),(|)1,42P B A P B A P B A ===而111111()(|)(),4312P BA P B A P A =⋅=⨯=222111()(|)(),236P BA P B A P A =⋅=⨯=33311()(|)()1.33P BA P B A P A =⋅=⨯=由全概率公式可得:1231117()()()().126312P B P BA P BA P BA =++=++=【小问2详解】因“小明取出的球是黑球,该黑球来自1号箱”可表示为:1A B ,其概率为111()112(|)7()712P A B P A B P B ===,“小明取出的球是黑球,该黑球来自2号箱”可表示为:2A B ,其概率为221()26(|)7()712P A B P A B P B ===,“小明取出的球是黑球,该黑球来自3号箱”可表示为:3A B ,其概率为331()43(|)7()712P A B P A B P B ===.综上,3(|)P A B 最大,即若小明取出的球是黑球,可判断该黑球来自3号箱的概率最大.18.为普及空间站相关知识,某部门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X 的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.【答案】(1)0.648(2)分布列见解析,期望为95,甲比乙闯关成功的概率要大.【解析】【分析】(1)根据题意,直接列出式子,代入计算即可得到结果;(2)根据题意,由条件可得X 的可能取值为0,1,2,3,然后分别计算其对应概率,即可得到分布列,然后计算甲闯关成功的概率比较大小即可.【小问1详解】记事件A 为“乙闯关成功”,乙正确完成每个程序的概率为0.6,则()()2233C 0.610.6(0.6)0.648;P A =⨯⨯-+=【小问2详解】甲编写程序正确的个数X 的可能取值为0,1,2,3,()()()()211233464664333310101010C C C C C C 13110,1,2,3C 30C 10C 2C 6P X P X P X P X ============,故X 的分布列为:X0123P 1303101216故()1311901233010265E X =⨯+⨯+⨯+⨯=,甲闯关成功的概率1120.648263P =+=>,故甲比乙闯关成功的概率要大.19.已知曲线()31:3C y f x x ax ==-.(1)求函数()313f x x ax =-()0a ≠的单调递增区间;(2)若曲线C 在点()()3,3f 处的切线与两坐标轴围成的三角形的面积大于18,求实数a 的取值范围.【答案】(1)答案见解析(2)()()0,99,18U 【解析】【分析】(1)求出函数的导函数,分0a >、a<0两种情况讨论,分别求出函数的单调递增区间;(2)利用导数的几何意义求出切线方程,再令0x =、0y =求出在坐标轴上的截距,再由面积公式得到不等式,解得即可.【小问1详解】∵()313f x x ax =-定义域为R ,且()2f x x a '=-,①当a<0时,()20f x x a '=->恒成立,∴()f x 在R 上单调递增;②当0a >时,令()20f x x a '=->,解得x <x >,∴()f x 在(,∞-,)∞+上单调递增,综上:当a<0时,()f x 的单调递增区间为(),-∞+∞;当0a >时,()f x 的单调递增区间为(,∞-,)∞+.【小问2详解】由(1)得()2339f a a =-=-',又∵()393f a =-,∴切线方程为()()()9393y a a x --=--,依题意90a -≠,令0x =,得18y =-;令0y =,得189x a=-,切线与坐标轴所围成的三角形的面积11816218299S a a =⨯⨯=--,依题意162189a >-,即919a>-,解得09a <<或918<<a ,即实数a 的取值范围为()()0,99,18⋃.。
陕西省西安市长安区第一中学2019—2020学年高二数学下学期期中试题 理时间:120分钟选择题(本大题共12小题,每小题5分,共60分).1.设集合2{|430}A x xx =-+<,{|230}B x x =->,则=AB ( )A .3(3,)2-- B .3(3,)2- C .3(,3)2D .3(1,)22.在复平面内,复数11i+的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3。
已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数, ()λ+∥a b c,则λ=( )A . 14B .12 C .1 D .24。
某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳5。
下列叙述中正确的是( ) A .若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"bac -≤B .若,,a b c R ∈,则22""abcb >的充要条件是""a c >C .命题“对任意x R ∈,有2x≥”的否定是“存在x R ∈,有2x≥”D .l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ6. 设()ln f x x =,0a b <<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ) A 。
q r p =<B .q r p =>C .p r q =<D .p r q =>7。
2021-2022学年陕西省榆林市第十中学高二下学期期中数学(理)试题一、单选题1.从分别标有数字1、2、3、…7的7张卡片中一次性抽取2张,则抽到的2张卡片上数字之和为8的概率是( ) A .121B .27C .17D .114【答案】C【分析】根据两张卡片和为8的情况有:1与7;2与6;3与5共3种情况,总的情况有27C 种,由古典概率公式可得选项.【详解】两张卡片和为8的情况有:1与7;2与6;3与5共3种情况,总的情况有27C 种, 所以27317P C ==, 故选:C.2.在621x x ⎛⎫+ ⎪⎝⎭的二项展开式中的常数项是第( )项.A .3B .5C .4D .6【答案】B【分析】由通项化简,根据x 的指数等于0可得.【详解】621x x ⎛⎫+ ⎪⎝⎭的二项展开式中第1r +项()621231661C C rrrr rr T x xx --+⎛⎫== ⎪⎝⎭由1230r -=可得4r =,所以常数项为展开式中的第5项. 故选:B3.6名同学排成一排,其中甲、乙两人必须在一起的不同排法共有( ) A .720 B .360 C .240 D .120【答案】C【分析】先将甲乙捆绑在一起,然后将其看成一个元素与其余4人一起进行全排列可得.【详解】先将甲、乙两人排成一排共222A =种排法,将甲、乙两人看成一个元素,然后与其余4人一起排成一排,共有55120A =种,所以甲、乙两人在一起的不同排法共有2120240⨯=种排法.故选:C4.小明同学喜欢篮球,假设他每一次投篮投中的概率为23,则小明投篮四次,恰好两次投中的概率是 A .481B .881C .427D .827【答案】D【详解】分析:利用二项分布的概率计算公式:概率222422133P C ⎛⎫⎛⎫=⨯⨯- ⎪ ⎪⎝⎭⎝⎭即可得出.详解::∵每次投篮命中的概率是23,∴在连续四次投篮中,恰有两次投中的概率22242281.3327P C ⎛⎫⎛⎫=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭.故在连续四次投篮中,恰有两次投中的概率是827. 故选D.点睛:本题考查了二项分布的概率计算公式,属于基础题. 5.下列说法错误的是( )A .在回归直线方程ˆ0.85 2.3yx =-+中,y 与x 具有负线性相关关系 B .两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C .在回归直线方程0.2.8ˆ0yx =-中,当解释变量x 每增加1个单位时,预报变量ˆy 平均增加0.2个单位D .对分类变量X 与Y ,随机变量2K 的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小 【答案】D【分析】根据回归方程的性质,相关系数的性质判断A ,B ,C ,再由独立性检验的知识判断D.【详解】因为回归直线方程ˆ0.85 2.3yx =-+的斜率为负数,所以y 与x 具有负线性相关关系,A 对,由相关系数性质可得相关系数的绝对值就越接近于1,线性相关性越强,B 对,因为回归直线方程为0.2.8ˆ0y x =-,所以当解释变量x 每增加1个单位时,预报变量ˆy平均增加0.2个单位,C 对,对分类变量X 与Y ,随机变量2K 的观测值k 越大,则判断“X 与Y 有关系”的把握程度越大,D 错, 故选:D.6.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A .120种 B .90种 C .60种 D .30种【答案】C【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【详解】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题. 7.已知51ax x ⎛⎫+ ⎪⎝⎭的展开式中各项系数之和为243,则实数a 的值为( )A .1B .2C .3D .-2【答案】B【分析】运用代入法进行求解即可.【详解】令1x =,则()51243132a a a +=⇒+=⇒=, 故选:B8.设ξ的分布列为又设η=2ξ+5,则E (η)等于( )A .76 B .176C .173D .323【答案】D【解析】先求E (ξ),进一步求出E (η).【详解】E (ξ)=1×16+2×16+3×13+4×13=176,所以E (η)=E (2ξ+5)=2E (ξ)+5=2×176+5=323.故选:D.9.某校共有500名高二学生,在一次考试中全校高二学生的语文成绩X 服从正态分布()()2110,0>N σσ,若()1001100.3≤≤=P X ,则该校高二学生语文成绩在120分以上的人数大约为 A .70 B .80 C .90 D .100【答案】D【分析】根据考试的成绩ξ服从正态分布()2110,N σ,得到考试的成绩关于110ξ=对称,根据()1001100.3P ξ≤≤=,得到()1200.2P ξ≥=根据频率乘以样本容量得到这个分数段上的人数.【详解】考试的成绩ξ服从正态分布()2110,N σ,∴考试的成绩关于110ξ=对称,()1001100.3P ξ≤≤=,()()()112010010.320.22P P ξξ∴≥=≤=-⨯= ∴该校高二学生语文成绩在120分以上的人数大约为0.2500100⨯=,故选D.【点睛】本题主要考查正态分布的性质与实际应用,属于中档题.有关正态分布的应用题考查知识点较为清晰,只要掌握以下两点,问题就能迎刃而解:(1)仔细阅读,将实际问题与正态分布“挂起钩来”;(2)熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系.10.不等式288A 6A x x -<⨯的解集为( )A .[]28,B .()7,12C .{712,}xx x N <<∈∣ D .{}8 【答案】D【分析】根据排列数的性质和计算公式化简求其解即可.【详解】因为288A 6A x x -<⨯,所以88!6(8)!(10)!x x <⨯--!,所以(10)(9)6x x --<,所以(7)(12)0x x --<,又28x ≤≤,x ∈N , 所以8x =,所以不等式288A 6A x x -<⨯的解集为{}8,故选:D.11.二项式42(12)x x a ⎛⎫-- ⎪⎝⎭的展开式中3x 项的系数是-70,则实数a 的值为( )A .-2B .2C .-4D .4【答案】D【分析】先得出4(12)x -的展开式的通项公式,然后分别求出4(1)22x -⨯展开式中3x 项的系数和4(12)x x a⨯-展开式中3x 项的系数,从而可得答案.【详解】由4442(12)(122)(12)x x x x x a a =⨯⎛⎫---⨯- ⎝⎭-⎪4(12)x -的展开式的通项公式为()()14422rrrr r r T C x C x +=-=-,0,12,3,4r =,所以4(1)22x -⨯展开式中3x 项的系数是()3342264C ⨯-=- 4(12)x x a ⨯-展开式中3x 项的系数是()2241242C a a⨯-= 所以246470a--=-,解得4a = 故选:D12.下列说法中正确的是( )①设随机变量X 服从二项分布16,2B ⎛⎫⎪⎝⎭,则()5316P X ==②已知随机变量X 服从正态分布()22,N σ且()40.9P X <=,则()020.4P X <<=③小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点互不相同”,事件B =“小赵独自去一个景点”,则()29P A B =; ④()()2323E X E X +=+;()()2323D X D X +=+. A .①②③ B .②③④ C .②③ D .①③【答案】A【解析】根据题意条件,利用二项分布、正态分布、条件概率、期望与方程的定义与性质等对每一项进行逐项分析.【详解】解:命题①:设随机变量X 服从二项分布16,2B ⎛⎫⎪⎝⎭,则()3336115312216P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭,正确;命题②:∵ξ服从正态分布()22,N σ,∴正态曲线的对称轴是2x =,()()()40.9400.1P X P X P X <=⇒>=<=, ()()02240.4P X P X ∴<<=<<=,正确;命题③:设事件A =“4个人去的景点不相同”, 事件B =“小赵独自去一个景点”, 则()()34443!43,44P AB P B ⨯⨯==,所以()()()29P AB P A B P B ==,正确; 命题④:()()2323E X E X +=+正确,()()232D X D X +=错误,应该为()()234D X D X +=,故不正确.故选:A【点睛】本题考查了二项分布、正态分布、条件概率、期望与方程的定义与性质等;若命题正确,则应能给出证明;若错误,则应能给出反例. 二、填空题13.5名同学排成一排,若甲只能站在最左端,则不同的排法种数为_______.(用数字作答) 【答案】24【分析】先排甲,再排余下的同学,由分步乘法计数原理求总排法数即可. 【详解】满足条件的排法可分两步实现, 第一步,先排甲,有1种排法,第二步,排余下4位同学,有44A 种排法, 所以满足条件的排法共有24种, 故答案为:24.14.()61x +的展开式中所有二项式系数的最大值是_____(用数字作答). 【答案】20【分析】由题意利用二项式系数的性质,得出结论.【详解】解:6(1)x +的展开式中,所有二项式系数的最大值是3620C =,故答案为:20.15.若关于实数x 的不等式53x x a -++>解集为R ,则实数a 的取值范围是______.【答案】(,8)-∞【分析】由已知不等式()min 53x x a -++>,再由绝对值三角不等式求()min53x x -++,由此可得a 的取值范围.【详解】因为不等式53x x a -++>解集为R , 所以()min 53x x a -++>,又53538x x x x -++≥---=,当且仅当35x -≤≤时等号成立, 所以()min 53=8x x -++, 所以实数a 的取值范围是(,8)-∞, 故答案为:(,8)-∞.16.现要从抗击疫情的5名志愿者中选3名志愿者,分别承担“防疫宣传讲解”、“站岗执勤”和“发放口罩”三项工作,其中志愿者甲不能承担“防疫宣传讲解”工作,则不同的选法有_____种.(结果用数字作答) 【答案】48【分析】根据分步乘法原理求解即可. 【详解】解:根据题意,分3步进行分析:①对于“防疫宣传讲解”,甲不能承担该工作,有4种情况, ②对于“站岗执勤”,在剩下4人选择1人即可,有4种情况, ③对于“发放口罩”,在剩下3人选择1人即可,有3种情况, 则有44348⨯⨯=种不同的选法; 故答案为:48. 三、解答题17.在平面直角坐标系xOy 中,曲线1C 的参数方程为{[)()cos 3sin 0,2x y θθθπ==∈,曲线2C 的参数方程为122(x t t y ⎧=--⎪⎪⎨⎪=⎪⎩为参数). ()1求曲线1C ,2C 的普通方程;()2求曲线1C 上一点P 到曲线2C 距离的取值范围.【答案】(1) 2219y x +=0y ++=. (2)[0,.【分析】(1)利用平方和代入法,消去参数,t θ,即可得到曲线12,C C 的普通方程; (2)由曲线1C 的方程,设(cos ,3sin )P αα,再由点到直线的距离公式和三角函数的性质,即可求解.【详解】(1)由题意,cos (3sin x y θθθ=⎧⎨=⎩为参数),则cos sin 3x y θθ=⎧⎪⎨=⎪⎩,平方相加,即可得1C :22y x 19+=,由122(32x t t y t ⎧=--⎪⎪⎨⎪=⎪⎩为参数),消去参数,得2C :()y 3x 2=-+,即3x y 230++=.(2)设()P cos α,3sin α,P 到2C 的距离3cos α3sin α23d 2++=π23sin α2362⎛⎫++ ⎪⎝⎭=, ∵[)α0,2π∈,当πsin α16⎛⎫+= ⎪⎝⎭时,即πα3=,max d 23=,当πsin α16⎛⎫+=- ⎪⎝⎭时,即4πα3=,min d 0=.∴取值范围为0,23⎡⎤⎣⎦.【点睛】本题主要考查了参数方程与普通方程的互化,以及椭圆的参数方程的应用问题,其中解答中合理利用平方和代入,正确化简消去参数得到普通方程,再利用椭圆的参数方程,把距离转化为三角函数问题是解答的关键,着重考查了分析问题和解答问题的能力.18.某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望. 【答案】(1)4960;(2) 分布列见解析,()65E X =. 【详解】(1)设“选出的3名同学来自互不相同的学院”为事件A , 则.(2)随机变量X 的所有可能值为0,1,2,3.随机变量X 的分布列为X123X随机变量X 的数学期望.19.某个体服装店经营某种服装在某周内获纯利y (元)与该周每天销售这件服装件数x (件)之间有如下数据: 服装件数x (件)3456789某周内获纯利y (元) 66 69 73 81 89 90 91(1)求,x y ;(2)若纯利y 与每天销售这件服装件数x 之间是线性相关的,求回归方程;(保留2位小数)(3)若该店每天至少要获利200元,请你预测该店每天至少要销售这种服装多少件? 【答案】(1)6x =,6797y =;(2)回归方程为ˆ 4.7551.36yx =+; (3)若该店每天至少要获纯利200元,则该店每天至少要销售这种服装32件.【分析】(1)根据平均数公式求,x y ;(2)利用最小二乘法公式求回归方程;(3)根据回归方程,进行预测即可.【详解】(1)服装件数的平均数()1345678967x =++++++=, 纯利的平均值()16666973818990917977y =++++++= (2)由已知可得71366469573681789890991=3487i i i x y ==⨯+⨯+⨯+⨯+⨯+⨯+⨯∑,72222222213456789280i i x==++++++=∑,27252x =,73354x y ⋅=,纯利y 与每天销售这件服装件数x 之间的回归方程为ˆˆˆybx a =+,由最小二乘法可得7172217348733544.752802527ˆi ii ii x y x ybxx ==-⋅-===--∑∑,61ˆˆ=792851.3672ay bx =--≈, 所以纯利y 与每天销售这件服装件数x 之间的回归方程为ˆ 4.7551.36yx =+ (3)由(2)可得当ˆ200y=时,200 4.7551.36x =+, 所以31.29x ≈,所以若该店每天至少要获纯利200元,则该店每天至少要销售这种服装32件. 20.已知函数()|24||1|f x x x =-++,x ∈R . (1)解不等式:()5f x ≤;(2)记()f x 的最小值为M ,若实数,a b 满足22a b M +=,试证明:22112213a b +≥++. 【答案】(1)803x x ⎧⎫≤≤⎨⎬⎩⎭;(2)证明见解析.【分析】(1)先将函数解析式写成分段函数的形式,分2x >,12x -≤≤,1x <-三种情况,求解不等式,即可得出结果;(2)根据函数单调性,确定()f x 的最小值,得到223a b +=,再由22222211111[(2)(1)]21216a b a b a b ⎛⎫+=++++⨯ ⎪++++⎝⎭展开后利用基本不等式即可求出最小值,从而可得结论成立.【详解】(1)易知33,2()2415,1233,1x x f x x x x x x x ->⎧⎪=-++=--≤≤⎨⎪-+<-⎩,因为()5f x ≤,所以2335x x >⎧⎨-≤⎩,或1255x x -≤≤⎧⎨-≤⎩,或1335x x <-⎧⎨-+≤⎩ 所以823x <≤,或02x ≤≤,或∅,所以803x ≤≤, 所以不等式的解集为803x x ⎧⎫≤≤⎨⎬⎩⎭(2)由(1)知33,2()2415,1233,1x x f x x x x x x x ->⎧⎪=-++=--≤≤⎨⎪-+<-⎩,所以()f x 在(),2-∞上单调递减,在()2,+∞上单调递增, ∴()f x 的最小值为(2)3M f ==,所以223a b +=,所以22222211111[(2)(1)]21216a b a b a b ⎛⎫+=++++⨯ ⎪++++⎝⎭22221212216b a a b ⎛⎫++=++⨯ ⎪++⎝⎭12263⎛≥+⨯= ⎝, 当且仅当22221221b a a b ++=++,即21a =,22b =时取等号. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?(2)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下2×2列联表:根据表中数据,能否有90%的把握认为“冰桶挑战赛与受邀者的性别有关”? 附:22()()()()()n ad bc K a b c d a c b d -=++++【答案】(1)3个人中至少有2个人接受挑战的概率是12;(2)没有90%的把握认为“冰桶挑战赛与受邀者的性别有关”.【分析】(1) 设3个人中接受挑战的人数为ξ,求出ξ的分布列,根据分布列求事件3个人中至少有2个人接受挑战概率;(2) 根据22⨯列联表,得到2K 的观测值,与临界值比较,即可得到结论.【详解】(1)设3个人中接受挑战的人数为ξ,则随即变量ξ的所有可能值为0,1,2,33031(0)C 281P ξ⎛⎫ ⎪===⎝⎭,3133(1)C 281P ξ⎛⎫=== ⎪⎝⎭ 3233(2)C 281P ξ⎛⎫=== ⎪⎝⎭,3331(3)C 281P ξ⎛⎫ ⎪===⎝⎭ ∴随即变量ξ的分布列是事件3个人中至少有2个人接受挑战可表示为2ξ≥,又311(2)882P ξ≥=+=, 所以事件3个人中至少有2个人接受挑战的概率为12,(2)假设冰桶挑战赛与受邀者的性别无关,根据22⨯列联表,得到2K 的观测值为:()2210045152515 1.78660407030K ⨯⨯-⨯=≈⨯⨯⨯,因为1.786 2.706<,2( 2.706)0.1P K ≥=,所以没有90%的把握认为“冰桶挑战赛与受邀者的性别有关”.22.甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为321,,432,乙队每人答对的概率都是23.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (I )求随机变量ξ的分布列及其数学期望E ξ;(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.【答案】(Ⅰ)分布列见解析,期望为2312;(Ⅱ)16【详解】试题分析:解:(1)ξ的可能取值为0,1,2,31111(0)43224P ξ==⨯⨯=;3111211111(1)4324324324P ξ==⨯⨯+⨯⨯+⨯⨯=; 32112131111(2)43243243224P ξ==⨯⨯+⨯⨯+⨯⨯=;3211(3)4324P ξ==⨯⨯=ξ∴的分布列为1111123()012324424412E ξ=⨯+⨯+⨯+⨯= (2)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B则32132123331211211211()()4324334333P A C C C ⎛⎫⎛⎫⎛⎫=⨯+⨯⨯+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 11231211()()43318P AB C ⎛⎫=⨯⨯= ⎪⎝⎭ ∴1()118(|)1()63P AB P B A P A === 【解析】分布列及其数学期望;概率点评:求随机变量的分布列和数学期望是常考题型,解决这种题目关键是求出随机变量对应的概率.。
昆十六中高二年级下学期期中考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分.共60分.在每小题给出的四个选项中,只有一个是正确的,将正确答案的代号涂在答题卡上.1。
一个容量为32的样本,已知某组样本的频率为 0。
375,则该组样本的频数为( )A。
4 B.8 ﻩC。
12ﻩﻩD。
162、若,且是第二象限角,则的值为 ( C )A. B. C.ﻩD.3、某几何体的正视图和侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是(C)ﻩA。
B。
ﻩC. ﻩD.4.已知:函数f(x)= 错误!;则满足f(x)= 错误! 的x的值为(B )A 2 B 3 C 错误! D错误!5、现有男大学生6名,女大学生4名,其中男、女班长各1人。
从这10人中选派5人到某中学顶岗,班长中至少有一人参加,则不同有选派方法有()A。
169种ﻩB。
140种ﻩC。
126种ﻩD。
196种6.曲线y= ln x(x>0)的一条切线为y = 2x + m,则m的值为( D )ﻫA ln2-1B 1—ln2 C 1+ln2 D -1-ln27.已知:定义域为R的函数f(x)为奇函数,当x>0时,f(x)= x3+1;则x<0时,f(x)的解析式为( B)ﻫA f(x)= x3+1 B f(x)= x3 -1 C f(x)= —x3 +1D f(x)= -x3 -18.△ABC中,∠A =错误!,边BC = 错误!,错误!·错误!= 3,且边AB < AC,则边AB的长为(A)ﻫA 2 B 3 C 4 D 69.已知等差数列{an }的公差为2,若a1,a3,a4成等比数列.则a2的值为( C )ﻫA —4B 4C —6D 610.设分别是双曲线的左、右焦点,若双曲线上存在点,使,且,则双曲线的离心率为( B )A. ﻩﻩB.ﻩC.ﻩﻩD.11、、是空间不同的直线,、是空间不同的平面,对于命题,命题,下面判断正确的是A. 为真命题ﻩB.为真命题为真命题ﻩD.为假命题12。
四平市2023-2024学年度第二学期期中质量监测高二数学试题(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第二册第五章,选择性必修第三册第六章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()23cos f x x x=+的导函数是()A.()6sin f x x x '=+B.()6sin f x x x '=-C.()3sin f x x x'=- D.()3sin f x x x'=+【答案】B 【解析】【分析】利用导数的运算法则即可求解.【详解】()()()23cos 6sin f x x x x x '''=+=-.故选:B.2.5(2)x -的展开式中3x 的系数为()A.40-B.20- C.20D.40【答案】D 【解析】【分析】写出展开式的通项,即可计算可得.【详解】因为5(2)x -展开式的通项为()515C 2rr rr T x -+=-(05r ≤≤且N r ∈),所以5(2)x -的展开式中3x 的系数为225C (2)40⨯-=.故选:D3.某学校广播站有6个节目准备分2天播出,每天播出3个,其中学习经验介绍和新闻报道两个节目必须在第一天播出,谈话节目必须在第二天播出,则不同的播出方案共有()A.108种B.90种C.72种D.36种【答案】A 【解析】【分析】先确定第一天和第二天播放的节目,然后再确定节目的播放顺序,利用分步乘法计数原理可得结果.【详解】第一步,从无限制条件的3个节目中选取1个,同学习经验介绍和新闻报道两个节目在第一天播出,共有1333C A 18=种;第二步,某谈话节目和其他剩余的2个节目在第二天播出,有33A 6=种播出方案,综上所述,由分步乘法计数原理可知,共有186108⨯=种不同的播出方案.故选:A4.已知*0,x n ≠∈N ,则“8n =”是“312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】计算二项展开式中存在常数项的等价条件,根据充分条件和必要条件的定义分别进行判断即可.【详解】若8n =,则8312x x ⎛⎫+ ⎪⎝⎭的常数项为()626381C 2112x x ⎛⎫⋅= ⎪⎝⎭;若312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项,设二项式的通项为()33411=C22C rn rrn r r n r r nn T x x x ---+⎛⎫⋅=⋅⋅ ⎪⎝⎭,且存在常数项,则340n r -=,34nr =,r 为整数,所以n 能被4整除.所以“8n =”是“312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项”的充分不必要条件.故选:A.5.已知曲线2ln y x x =-在点A 处的切线与直线20x y +-=垂直,则点A 的横坐标为()A.2-B.1-C.2D.1【答案】D 【解析】【分析】设点()00,A x y ,根据题意可得()01f x '=,从而求得0x .【详解】设()2ln f x x x =-,点()00,A x y ,则()12f x x x='-,由在点A 处的切线与直线20x y +-=垂直可得()01f x '=,即00121x x -=,又00x >,01x ∴=.故选:D6.已知函数()()22e xf x x ax a =++,若()f x 在2x =-处取得极小值,则a 的取值范围是()A.()4,+∞ B.[)4,+∞ C.[)2,+∞ D.()2,+∞【答案】A 【解析】【分析】利用求导得到导函数的零点2a-和2-,就参数a 分类讨论,判断函数()f x 的单调性,即可分析判断,确定参数a 的范围.【详解】由题意得,()()()()()()222e 4e 242e 22e x x x xf x x ax a x a x a x a x a x ⎡⎤=++++=+++=++⎣⎦',由()0f x '=可得,2ax =-或2x =-,①若22a -=-,即4a =时,()()222e 0x f x x =+≥',显然不合题意;②若22a -<-,即4a >时,当2ax <-或2x >-时,()0f x '>,即()f x 在(,2a -∞-和(2,)-+∞上单调递增;当22a x -<<-,()0f x '<,()f x 在(,2)2a--上单调递减,故()f x 在2x =-处取得极小值,符合题意;③若22a ->-,即4a <时,当<2x -或2x a >-时,()0f x '>,即()f x 在(,2)-∞-和(,)2a -+∞上单调递增;当22a x -<<-,()0f x '<,()f x 在(2,)2a--上单调递减,故()f x 在2x =-处取得极大值,不符题意.综上所述,当4a >时,()f x 在2x =-处取得极小值,故a 的取值范围是()4,∞+.故选:A.7.若()()()()23416321241811N x x x x =+-+-+-+-,则N =()A.()41x - B.()41+x C.()43x - D.()43x +【答案】B 【解析】【分析】利用二项式定理可得答案.【详解】()()()()23416321241811N x x x x =+-+-+-+-413222334444(1)C (1)2C (1)2C (1)22x x x x =-+-⋅+-⋅+-⋅+4(12)x =-+4(1)x =+.故选:B8.若函数()21ln 32f x x ax =++在区间()1,4内存在单调减区间,则实数a 的取值范围是()A.1,16⎛⎫-∞- ⎪⎝⎭B.()1,1,16⎛⎫-∞-+∞ ⎪⎝⎭C.(),1-∞- D.()0,1【答案】A 【解析】【分析】对()f x 求导,分0a ≥和a<0两种情况,结合()f x 在区间()1,4内存在单调减区间,求出a 的取值范围即可.【详解】()21ln 32f x x ax =++,()211ax f x ax x x+'=+=,当0a ≥时,()0f x ¢>,不符合题意;当0a <时,令()0f x '<,解得x >()f x 在区间()1,4内存在单调减区间,∴4<,解得116a <-.∴实数a 的取值范围是1,16⎛⎫-∞-⎪⎝⎭.故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.A ,B ,C ,D ,E 五个人并排站在一起,下列说法正确的是()A.若A ,B 不相邻,有72种排法B.若A ,B 不相邻,有48种排法C.若A ,B 相邻,有48种排法D.若A ,B 相邻,有24种排法【答案】AC 【解析】【分析】求得A ,B 不相邻时的排法总数判断选项AB ;求得A ,B 相邻时的排法总数判断选项CD.【详解】A ,B ,C ,D ,E 五个人并排站在一起,若A ,B 不相邻,则先让C ,D ,E 自由排列,再让A ,B 去插空即可,则方法总数为3234A A 72=(种).则选项A 判断正确;选项B 判断错误;A ,B ,C ,D ,E 五个人并排站在一起,若A ,B 相邻,则将A ,B “捆绑”在一起,视为一个整体,与C ,D ,E 自由排列即可,则方法总数为2424A A 48=(种).则选项C 判断正确;选项D 判断错误.故选:AC10.在62x⎛⎝的展开式中,下列命题正确的是()A.偶数项的二项式系数之和为32B.第3项的二项式系数最大C.常数项为60D.有理项的个数为3【答案】AC 【解析】【分析】根据题意,由二项式展开式的通项公式以及二项式系数的性质,代入计算,对选项逐一判断,即【详解】偶数项的二项式系数之和为152232n -==,故A 正确;根据二项式,当3r =时36C 的值最大,即第4项的二项式系数最大,故B 错误()()36662166C 21C 2r r rr rr r r T x x---+⎛==-⋅⋅⋅ ⎝,令3602r -=,4r =,∴4256C 260T =⋅=,故C 正确;362r -为整数时,0,2,4,6r =,故有理项的个数为4,故D 错误.故选:AC .11.已知函数()ln xxf x e =,则下列说法正确的是()A.()f x 有且仅有一个极值点B.()f x 有且仅有两个极值点C.当01x <<时,()f x 的图象位于x 轴下方D.存在0x ,使得()01f x e=【答案】AC 【解析】【分析】利用导数与极值、最值的关系求解即可.【详解】由题意知,()1ln xxx f x e -'=,令()1ln h x x x =-,()211h x x x '=--,易得()h x 在()0,∞+上单调递减,又()110h =>,()12ln 202h =-<,所以()01,2x ∃∈,使得()00h x =,所以当00x x <<时,()0f x '>,当0x x >时,()0f x '<,故()f x 在()00,x 上单调递增,在()0,x ∞+上单调递减,所以()f x 有且仅有一个极值点.故A 正确,B 错误;当01x <<时,ln 0x <,e 0x >,所以()0f x <,故C 正确;所以()()0000max 0ln 11ex x x f x f x e x e ===<,故D 错误.三、填空题:本题共3小题,每小题5分,共15分.12.三名学生分别从计算机、英语两学科中选修一门课程,不同的选法有___________种.【答案】8【解析】【分析】利用分步加法计数原理计算即得.【详解】依题意,可由三名学生依次选修课程,故分三步完成,由分步乘法计数原理知,不同的选法有322228⨯⨯==(种).故答案为:8.13.函数()ln f x x x =-的单调减区间为___________.【答案】(]0,1【解析】【分析】首先求出函数的定义域为()0,∞+,再求出()f x ',令()0f x '≤,解不等式即可求解.【详解】函数()ln f x x x =-的定义域为()0,∞+,且()111x f x x x-'=-=,令()0f x '≤,即10x x-≤,解不等式可得01x <≤,所以函数的单调递减区间为(]0,1.故答案为:(]0,1【点睛】本题考查了利用导数研究函数的单调性,解题的关键是求出导函数,属于基础题.14.已知函数()f x 的导函数()f x '满足()()f x f x '>在R 上恒成立,则不等式()()23e 21e 10x f x f x --->的解集是______.【答案】2,3⎛⎫+∞ ⎪⎝⎭【解析】【分析】根据已知关系式可构造函数()()xf xg x =e,可知()g x 在R 上单调递增,将所求不等式转化为()()211g x g x ->-,利用单调性可解不等式求得结果.【详解】令()()x f x g x =e ,则()()()0ex f x f x g x '-'=>,所以()g x 在R 上单调递增,由()()23e 21e 10xf x f x --->,得()()211>1e21ex xf x f x ----,即()()211g x g x ->-,又()g x 在R 上单调递增,所以211x x ->-,解得23x >.所以不等式()()23e 21e 10xf x f x --->的解集是2,3⎛⎫+∞⎪⎝⎭.故答案为:2,3⎛⎫+∞⎪⎝⎭.【点睛】关键点点睛:此类问题要结合代数式的特点,选择适当的函数,通过导函数研究出函数的单调性,从而解不等式即可.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(1)求值:2222310C C C +++ ;(2)解方程:32213A 2A 6A x x x +=+.【答案】(1)165;(2)5x =【解析】【分析】(1)利用组合数性质计算可得原式等于311C 165=;(2)由排列数计算公式可得(32)(5)0x x --=,可得5x =.【详解】(1)因为11C C C m m m n nn -+=+,所以11C C C m m m n n n -+-=,原式()()()()333333333345410911103C C C C C C C C C ++++-+=--- 31111109C 165123⨯⨯===⨯⨯;(2)因为32213A 2A 6A x x x +=+,所以!(1)!!326(3)!(1)!(2)!x x x x x x +⨯=⨯+⨯---,化简可得(32)(5)0x x --=,同时3x ≥,解得5x =.16.已知二项式nx⎛- ⎝的展开式中,所有项的二项式系数之和为a ,各项的系数之和为b ,32a b +=(1)求n 的值;(2)求其展开式中所有的有理项.【答案】(1)4(2)42135,54,81T x T x T x-===【解析】【分析】(1)先利用题给条件列出关于n 的方程,解之即可求得n 的值;(2)利用二项展开式的通项公式即可求得其展开式中所有的有理项.【小问1详解】因为2,(2)n n a b ==-,所以2(2)32n n +-=,当n 为奇数时,此方程无解,当n 为偶数时,方程可化为2232n ⨯=,解得4n =;【小问2详解】由通项公式3442144C (3)C rrr r r r r T x x--+=⋅=-⋅,当342r -为整数时,1r T +是有理项,则0,2,4r =,所以有理项为0442214422143454(3)C ,(3)C 54,(3)C 81T x x T x x T xx --=-==-==-=.17.为庆祝3.8妇女节,某中学准备举行教职工排球比赛,赛制要求每个年级派出十名老师分为两支队伍,每支队伍五人,并要求每支队伍至少有两名女老师,现高二年级共有4名男老师,6名女老师报名参加比赛.(1)高二年级一共有多少不同的分组方案?(2)若甲,乙两位男老师和丙,丁,戊三位女老师组成的队伍顺利夺得冠军,在领奖合影时从左到右站成一排,丙不宜站最右端,丁和戊要站在相邻的位置,则一共有多少种排列方式?【答案】(1)120种;(2)36种.【解析】【分析】(1)利用分类加法计数原理,结合平均分组问题列式计算.(2)按相邻问题及有位置限制问题,利用分步乘法计数原理列式计算即得.【小问1详解】两组都是3女2男的情况有326422C C 60 A ⋅=(种):一组是1男4女,另一组是3男2女的情况有1446C C 60⋅=(种),所以总情况数为6060120+=(种),故一共有120种不同的分组方案.【小问2详解】视丁和戊为一个整体,与甲、乙任取1个站最右端,有13C 种,再排余下两个及丙,有33A 种,而丁和戊的排列有22A 种,所以不同排列方式的种数是132332C A A 36=.18.已知函数()()2212ln 2f x a x x ax a =-++∈R .(1)当1a =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)讨论函数()f x 的单调性;【答案】(1)32y =(2)答案见解析【解析】【分析】(1)代入1a =,求出'(1),(1)f f 即可求得切线方程;(2)函数求导'(2)()()x a x a f x x+-=,对a 分类讨论,进而求得单调性.【小问1详解】当1a =时,()212ln 2f x x x x =-++,'2()1f x x x =-++,所以'3(1)2110,(1)2f f =-++==,曲线()y f x =在()()1,1f 处的切线方程为32y =.【小问2详解】22'2(2)()()x ax a x a x a f x x x+-+-==,①当0a =时,'()0f x x =>,所以函数在(0,)+∞上单调递增;②当0a >时,令'()0f x =,则12x a =-(舍)或2x a =,'()0,0f x x a <<<,当(0,)x a ∈时,函数()f x 单调递减;'()0,f x x a >>,当(,)x a ∈+∞时,函数()f x 单调递增.③当0a <时,令'()0f x =,则12x a =-或2x a =(舍),'()0,02f x x a <<<-,当(0,2)x a ∈-时,函数()f x 单调递减;'()0,2f x x a >>-,当(2,)x a ∈-+∞时,函数()f x 单调递增.综上所述:当0a =时,函数在(0,+∞)上单调递增;当0a >时,当(0,)x a ∈时,函数()f x 单调递减当(,)x a ∈+∞时,函数()f x 单调递增;当0a <时,当(0,2)x a ∈-时,函数()f x 单调递减;当(2,)x a ∈-+∞时,函数()f x 单调递增19.已知函数()ln 32a f x ax x =--,其中0a ≠.(1)求函数()f x 的单调区间;(2)若()10xf x +≥恒成立,求实数a 的取值范围.【答案】(1)答案见解析(2)[)2,+∞.【解析】【分析】(1)利用导数,讨论a 的符号判断函数单调性;(2)问题转化为1ln 3102ax x x x ⎛⎫--+≥ ⎪⎝⎭恒成立,取1x =,有310a -+≥,可得2a ≥,构造函数利用导数求最小值证明1ln 02x x ->,则12ln 30x x x --+≥恒成立,通过构造函数利用导数求最小值证明.【小问1详解】函数()f x 的定义域为()0,∞+,()()2122a x a f x a x x -'=-=,①当0a >时,()0f x '<解得102x <<,()0f x ¢>解得12x >,此时函数()f x 的减区间为10,2⎛⎫ ⎪⎝⎭,增区间为1,2⎛⎫+∞ ⎪⎝⎭,②当0a <时,()0f x ¢>解得102x <<,()0f x '<解得12x >,此时函数()f x 的增区间为10,2⎛⎫ ⎪⎝⎭,减区间为1,2⎛⎫+∞⎪⎝⎭;【小问2详解】不等式()10xf x +≥可化为2ln 3102a ax x x x --+≥,由2ln 3102a ax x x x --+≥恒成立,取1x =,有310a -+≥,可得2a ≥,又由2ln 3102a ax x x x --+≥可化为1ln 3102ax x x x ⎛⎫--+≥ ⎪⎝⎭,令()1ln 2g x x x =-,有()121122x g x x x -'=-=,令()0g x '<解得102x <<,()0g x '>解得12x >此时函数()g x 的减区间为10,2⎛⎫ ⎪⎝⎭,增区间为1,2⎛⎫+∞ ⎪⎝⎭,有()111111ln ln 20222222g x g ⎛⎫≥=-=+> ⎪⎝⎭,可得1ln 02x x ->,可得211ln 2ln 2ln 22ax x x x x x x x x ⎛⎫⎛⎫-≥-=- ⎪ ⎪⎝⎭⎝⎭,下面证明22ln 310x x x x --+≥,即证明12ln 30x x x --+≥,令()12ln 3h x x x x =--+,有()()()222221111212x x x x h x x x x x+---'=--==,令()0h x '<解得01x <<,()0h x '>解得1x >,可得函数()h x 的减区间为()0,1,增区间为()1,+∞,有()()120310h x h ≥=--+=,可得不等式22ln 310x x x x --+≥成立,所以若()10xf x +≥恒成立,则实数a 的取值范围为[)2,+∞.。
大同市实验中学2011-2012学年高二下学期期中考试数学(理)试题
(时间90分钟 分数100分 命题人:贺小虎)
一、 选择题(共10题,各4分,共40分)
1、曲线12x y 2+=在点)3,1(处的切线的斜率是 ( )
A 、2
B 、3
C 、4
D 、5
2、函数93x f(x)3-++=x mx 在3-=x 处取得极值,则m 的值为 ( )
A 、4
B 、5
C 、6
D 、7
3、定积分⎰++1
021x dx x )(的值是 ( ) A 、3 B 、2 C 、
65 D 、6
11 4、欲证:7632-<-成立,只需证 ( )
A 、22)76()32(-<-
B 、22)73()62(-<-
C 、22)63()72(+<+
D 、22)7()6-32(-<-
5、)(x
2x 5R x ∈+)(展式中3x 的系数是 ( ) A 、7 B 、8 C 、9 D 、10
6、一个袋子里放有5个球,另一个袋子里放有8个球,每个球各不相同,从两个袋子里各取一个球,不同取法种数为 ( ) A 、40 B 、13 C 、60 D 、23
7、10名同学合影站成前排3人,后排7人,现在摄影师要从后排7人中抽2人放
到前排,其他人的相对顺序不变,则不同的调整方法种数是 ( )
A 、5527A C
B 、2227A
C C 、2527A C
D 、3527A C
8、复数
2i
-1i 2+的共轭复数是 ( ) A 、i B 、i - C 、i 53 D 、i 53-
9、下列函数中在),0(+∞内为增函数的是 ( )
A 、x y sin =
B 、x y =
C 、x x y -=3
D 、x y )2
1(=
10、已知0
00')()()(lim 0x x x f x f x f x x --=→,2-)3(,2)3('==f f 则 3
)(32lim 3--→x x f x x 的值是 ( ) A 、4 B 、6 C 、8 D 、不存在
二.填空题(共4题,各4分)
11、定积分dx ⎰2
2-2x -4=
12、函数x e x y 32sin -=的导数'y =
13、某班学习小组共有10人,其中团员5人,从这10人中任选4人参
加某项活动,用X 表示4人中的团员人数,则)(2X P == 。
14、方程7=++z y x 的非负整数解有 组。
三、解答题(共4题,共44分)
15、(10分)用数学归纳法证明:对任*N n ∈有2322321n ++++ = )12)(1(6
1++n n n
16、(10分)在100件产品中,有5件次品,从中任意抽取5件,求下列抽取
方法各有多少种?(用数字回答)
(1)、恰有两件次品?
(2)、至少有4件次品?
17、(12分)若0177889991-x 2a x a x a x a x a +++++= )(
(1)、求9321a a a a ++++
(2)、97531a a a a a ++++
18、(12分)已知函数x e k x x f )()(-=
(1)、求)(x f 的单调区间
(2)、若)(x f 在[]1,0上单调递减,求k 的取值范围
(3)、求)(x f 在区间]1,0[上的最小值。