发酵工程 第9章 发酵过程工艺控制
- 格式:pptx
- 大小:419.55 KB
- 文档页数:60
发酵工程发酵过程控制1. 引言发酵工程是利用微生物的生理代谢过程来生产有机化合物的一种工程技术。
而发酵过程控制则是在发酵工程中对发酵过程进行调控和监控,以确保发酵过程能够稳定进行,并获得高产率和良好的产品质量。
发酵过程控制通过对微生物与培养基、发酵设备和操作条件等方面进行控制,研究微生物的生长规律和代谢产物的生成规律,实现对发酵过程的调控,以实现最佳的发酵效果。
本文将介绍发酵工程发酵过程控制的主要内容和方法。
2. 发酵过程控制的目标发酵过程控制的主要目标是实现以下几个方面的调控:1.生物量的控制:调控微生物的生长速率和生物量,使其在适宜的培养基和环境条件下获得最佳生长,提高产酶或产物的产量;2.代谢产物的控制:调控微生物代谢过程中的关键反应步骤,实现选择性产物的生成,并提高产量;3.溶氧的控制:调控发酵过程中的溶氧浓度,提高氧传递效率,防止氧的限制性产物的堆积;4.pH的控制:调控发酵过程中的pH值,维持合适的酸碱环境,促进微生物的生长和代谢;5.温度的控制:调控发酵过程中的温度,提供适宜的环境条件,促进微生物的生长和代谢。
3. 发酵过程控制的方法发酵过程控制主要采用以下几种方法:3.1 反馈控制反馈控制是一种基于对发酵过程变量的测量和反馈,通过调节控制器输出量,实现对发酵过程的调控。
常见的反馈控制方法包括:•温度控制:通过测量发酵容器内的温度,控制加热或降温设备的输出,以维持适宜的温度;•pH控制:通过测量发酵液的pH值,控制酸碱调节器的输出,以维持适宜的酸碱环境;•溶氧控制:通过测量发酵液中的溶氧浓度,控制气体供应设备的输出,以维持适宜的溶氧浓度。
3.2 前馈控制前馈控制是一种基于对发酵过程中外部输入变量的预测,通过调节控制器输出量,实现对发酵过程的调控。
常见的前馈控制方法包括:•溶氧前馈控制:根据发酵微生物对溶氧需求的特性,通过对气体供应设备输出的调节,提前调整溶氧浓度,以满足微生物的需求;•pH前馈控制:根据发酵产物对酸碱环境的敏感性,通过对酸碱调节器输出的调节,提前调整pH值,以维持合适的酸碱环境。
发酵工程试题及答案一、名称解释1、前体指某些化合物加入到发酵培养基中,能直接彼微生物在生物合成过程中合成到产物物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因加入前体而有较大的提高。
2、发酵生长因子从广义上讲,凡是微生物生长不可缺少的微量的有机物质,如氨基酸、嘌呤、嘧啶、维生素等均称生长因子3、菌浓度的测定是衡量产生菌在整个培养过程中菌体量的变化,一般前期菌浓增长很快,中期菌浓基本恒定。
补料会引起菌浓的波动,这也是衡量补料量适合与否的一个参数。
4、搅拌热:在机械搅拌通气发酵罐中,由于机械搅拌带动发酵液作机械运动,造成液体之间,液体与搅拌器等设备之间的摩擦,产生可观的热量。
搅拌热与搅拌轴功率有关5、分批培养:简单的过程,培养基中接入菌种以后,没有物料的加入和取出,除了空气的通入和排气。
整个过程中菌的浓度、营养成分的浓度和产物浓度等参数都随时间变化。
6、接种量:接种量=移入种子的体积/接种后培养液的体积7、比耗氧速度或呼吸强度单位时间内单位体积重量的细胞所消耗的氧气,mmol O2?g菌-1?h-18、次级代谢产物是指微生物在一定生长时期,以初级代谢产物为前体物质,合成一些对微生物的生命活动无明确功能的物质过程,这一过程的产物,即为次级代谢产物。
9、实罐灭菌实罐灭菌(即分批灭菌)将配制好的培养基放入发酵罐或其他装置中,通入蒸汽将培养基和所用设备加热至灭菌温度后维持一定时间,在冷却到接种温度,这一工艺过程称为实罐灭菌,也叫间歇灭菌。
10、种子扩大培养:指将保存在砂土管、冷冻干燥管中处休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养,最终获得一定数量和质量的纯种过程。
这些纯种培养物称为种子。
11、初级代谢产物是指微生物从外界吸收各种营养物质,通过分解代谢和合成代谢,生成维持生命活动所需要的物质和能量的过程。
这一过程的产物即为初级代谢产物。
12、倒种:一部分种子来源于种子罐,一部分来源于发酵罐。
《发酵工程》理论教学大纲(供四年制本科生物工程专业使用)I 前言发酵工程是生物学各专业本科生的专业课。
通过学习在工、农、医等方面的应用及发酵工艺的控制、发酵产物的提取、生产设备的结构,了解该学科的发展前沿、热点和问题,使学生牢固掌握发酵工程的基本理论和基础知识,为学生今后的学习及工作实践打下宽厚的基础。
本大纲适用于四年制本科生物工程专业使用。
现将大纲使用中有关问题说明如下:一为了使教师和学生更好地掌握教材,大纲每一章节均由教学目的、教学要求和教学内容三部分组成。
教学目的注明教学目标,教学要求分掌握、熟悉和了解三个级别,教学内容与教学要求级别对应,并统一标示(核心内容即知识点以下划实线,重点内容以下划虚线,一般内容不标示)便于学生重点学习。
二教师在保证大纲核心内容的前提下,可根据不同教学手段,讲授重点内容和介绍一般内容。
三总教学参考学时数:40学时,其中理论课36学时,实验课(参观)4学时。
理论与实验学时之比为9:1。
四教材:《微生物工程》,科学出版社出版,曹军卫主编,第二版,2007年3月。
Ⅱ正文第1章微生物工程概论一教学目的学习微生物工程的发展简史及其应用,发酵的一般过程。
二教学要求(一)了解微生物工程的发展简史。
(二)熟悉微生物工程的应用。
(三)掌握发酵的一般过程三教学内容(一)微生物工程的发展简史。
(二)微生物工程的应用(三)发酵的一般过程第2章生产菌种的来源一教学目的学习生产菌种的来源、分离方法。
二教学要求(一)掌握生产菌种的分离方法。
(二)掌握抗生素产生菌的分离。
(三)掌握氨基酸产生菌的分离。
三教学内容(一)生物物质产生菌的筛选过程。
(二)菌种的分离。
第3章微生物的代谢调节与代谢工程一教学目的通过本章的学习,学习初级代谢与次级代谢的概念、特点及二者的关系;微生物代谢的类型及关系;微生物代谢自我调节的方法及代谢调控方法;代谢工程的定义及方法。
二教学要求(一)了解微生物的代谢类型及关系。
(二)掌握初级代谢与次级代谢的概念、特点及二者的关系。
发酵工程第九章发酵过程控制发酵工程是一门应用生物学、微生物学、化学等知识与技术的交叉学科,通过对微生物在发酵过程中的代谢特点和运行规律的深入研究,从而探索在发酵生产过程中如何控制微生物的生长、代谢及产物的合成,以提高发酵产物的产量和质量。
发酵过程控制是发酵工程的核心内容,也是实现发酵过程优化的关键。
发酵过程控制主要包括微生物培养条件的优化、发酵参数的监控和调控等。
微生物培养条件的优化是指通过合理调控发酵基质、发酵条件和发酵设备等因素,为微生物提供适宜的生长和代谢环境,以达到提高产酶产物的目的。
其中,发酵基质的优化包括选用适宜的碳源、氮源、无机盐和微量元素等,以满足微生物的营养需求;发酵条件的优化包括控制培养温度、pH值、溶氧度、搅拌速度、通气量等,以提供适宜的生长环境;发酵设备的优化包括选择合适的发酵罐类型和规格,保证良好的混合效果和传质性能。
发酵参数的监控和调控是实现发酵过程可控性的重要手段。
其中,监控发酵参数主要通过测定和分析微生物生长曲线、代谢产物浓度、培养液的理化指标等来了解发酵过程的动态变化,并及时调整发酵条件;调控发酵参数主要通过采用在线控制与传感技术,实时监测并自动调节温度、pH 值、溶氧度、搅拌速度、通气量等关键参数,以实现发酵过程的自动化和精确控制。
发酵过程控制的目标是在保证微生物生长和代谢的基础上,提高发酵产物的产量和质量,实现发酵过程的高效、稳定和可控。
为此,需要通过对发酵过程的深入研究和优化设计,建立合理的发酵工艺和控制策略。
在发酵过程中,应用传统的经验法和现代的控制理论相结合,根据不同微生物和不同发酵产物的特点,制定相应的控制策略。
例如,对于需氧发酵的菌种,应充分考虑氧的供应情况,控制溶氧度在合适的范围内;对于需酸性环境的菌种,应合理调控pH值,维持在适宜的范围内;对于同时产生多种代谢产物的菌种,应选择合适的反馈控制方法,控制各种产物的生成量。
此外,还应考虑发酵过程的反应动力学和传输过程等因素对控制的影响。
1、发酵过程工艺控制中物理参数包括:温度、压力、搅拌转速和质量等。
2、介质过滤除菌机理主要有:惯性碰撞,拦截作用,静电吸引,布朗运动和重力沉降等。
3、液体发酵反应器种类主要包括:酒精发酵罐;啤酒发酵罐;机械搅拌通气式发酵罐;自吸式发酵罐;循环式发酵罐和排管式发酵罐等。
4、实验室使用的发酵系统基本组成可分解为:罐体系统,包括罐体等装置;灭菌系统,包括:蒸汽发生器等装置;温度控制系统,包括:罐内温度传感器等装置;无菌空气制备系统,包括:空气压缩机等装置;控制系统,包括:电源开关等装置。
1.灭菌方法主要有()A.干热灭菌法B.湿热灭菌法C.射线灭菌法D.化学药品灭菌法E.过滤除菌法2.能影响发酵过程中温度变化的因素是()A.微生物分解有机物释放的能量B.机械搅拌C.水分蒸发D.发酵罐散热E.菌体自溶3. 发酵过程中污染杂菌的途径可能有()A.种子带菌B.无菌空气带菌C.设备渗漏D.培养基和设备灭菌不彻底E.操作不当4.影响培养基灭菌效果的因素有()A.温度B.时间C.pH值D.培养基成分和颗粒物质E.泡沫5. 补料有利于控制微生物的中间代谢,补料的内容有()A.能源和碳源B.氮源C.消泡剂D.微量元素或无机盐E.诱导酶的底物1.下列不是微生物生长、繁殖所必需的物质的是()A 激素B 核苷酸C 维生素D 色素E 抗生素2.高温对培养基成分的有害影响,表现在()A 形成沉淀B 破坏营养C 提高色泽D 改变培养基的pH值E 降低培养基浓度3.微生物的次级代谢产物,()A 是微生物生长繁殖所必需的物质B 对微生物无明显的生理功能C 在细胞内积累D 具有菌株特异性E 是以初级代谢产物为前体衍生而来4. 近代发酵工业具有以下特点()A 由自然发酵转为代谢控制发酵和人工支配遗传因子的发酵B 微生物酶反应生物合成和化学合成相结合C 向大型发酵和连续化、自动化方向发展D 微生物工业涉及国民经济的各个领域E 从糖质原料转到利用石油、天然气及纤维素资源5. 目前发酵过程已经实现在线测量和控制的参数是()A 温度B pH值C 溶解氧浓度D 消泡E 流量5.发酵完毕后,目标产物提取前,要对发酵液进行预处理,其内容包括:(),(),(),()。
发酵过程控制和优化技术的有关知识发酵的生产水平高低除了取决于生产菌种本身的性能外,还要受到发酵条件、工艺的影响。
只有深入了解生产菌种在生长和合成产物的过程中的代谢和调控机制以及可能的代谢途径,弄清生产菌种对环境条件的要求,掌握菌种在发酵过程中的代谢变化规律,有效控制各种工艺条件和参数,使生产菌种始终处于生长和产物合成的优化环境中,从而最大限度地发挥生产菌种的生产能力,取得最大的经济效益。
一.发酵过程进行优化控制的意义随着生物和基因工程技术在各工业行业中的应用,发酵产品生产规模和品种不断增加,对发酵过程进行控制和优化也显得越来越重要。
作为发酵中游技术的发酵过程控制和优化技术,既关系到能否发挥菌种的最大生产能力,又会影响到下游处理的难易程度,在整个发酵过程中是一项承上启下的关键技术。
与物理和化学反应过程不同,生物过程的反应速率比较慢,目的产物的浓度、生产强度、反应物质(底物或基质)向目的产物的转化率也比较底。
工业微生物学从两个方面解决上述问题,一方面通过菌种选育和改良获得高产的发酵菌种;另一方面,通过控制培养条件使微生物最大限度地生产目标产物。
相对来讲,通过发酵过程控制和优化,将生物过程准确地控制在最优的环境或操作条件下,是提高整体生产水平的一个捷径或者说是一种更容易的方法,其重要性也绝不亚于利用分子生物学和基因工程进行菌种改良的方法。
二.生化过程的特征与物理和化学反应过程相比,生化反应过程有以下不同特征:①动力学模型高度非线性;②动力学模型参数的时变性;③除简单的物理和化学状态变量(温度、pH、压力、气体分压、DO 外,绝大多数生物状态变量(生物量、营养物浓度、代谢产物浓度、生物活性等)很难在线测量;④过程参数的滞后性,一个生物过程可能涉及成千上万个小的物理和化学反应,其相互间的作用和影响造成了生物过程的响应速率慢。
生物过程的控制和优化还具有以下特点:①不需要太高的控制精度;②各状态变量之间存在一定的连带关系;③由于没有合适的定量的数学模型可循,其控制与优化操作还必须完全依靠操作人员的经验和知识来进行。
专题九发酵工程(1)泡菜、果酒和果醋的制备原理、过程和条件控制。
(2)微生物培养基的配制和无菌技术。
(3)微生物的选择培养和计数。
(4)发酵工程及其基本环节。
1.判断有关发酵工程应用说法的正误(1)腐乳制作利用了毛霉等微生物产生的蛋白酶和脂肪酶。
(√)(2)在制作果醋时,如果条件适宜,醋酸菌可将葡萄汁中的糖分解成乙酸。
(√)(3)果酒发酵所需的最适温度高于果醋发酵温度。
(×)(4)制作泡菜时,盐水煮沸后可以立即使用。
(×)(5)泡菜的制作前期需要通入氧气,后期应严格保持无氧条件。
(×)(6)发酵工程的产品主要包括微生物的代谢产物、酶及菌体本身。
(√)(7)在啤酒生产中,使用基因工程改造的啤酒酵母,可以加速发酵过程,缩短生产周期。
(√)2.判断有关微生物培养与应用说法的正误(1)在琼脂固体培养基上长出的单个菌落含有多种细菌。
(×)(2)检测土壤中细菌总数实验操作中,确定对照组无菌后,选择菌落数在300以上的实验组平板进行计数。
(×)(3)虽然各种培养基的具体配方不同,但一般都含有水、碳源、氮源和无机盐。
(√)(4)对异养微生物来说,含C、H、O、N的有机化合物既是碳源又是氮源。
(√)(5)观察细菌培养的实验时,最好是在另一块平板上接种无菌水作为对照实验。
(√)(6)平板划线法要求多次划线,稀释涂布平板法中菌液要充分地稀释。
(√)(7)倒平板时,应将打开的皿盖放到一边,以免培养基溅到皿盖上。
(×)(8)对细菌进行计数能采用稀释涂布平板法,也能用平板划线法。
(×)(9)分解尿素的细菌在分解尿素时,可以将尿素转化为氨,使得培养基的酸碱度降低。
(×)(10)刚果红可以与纤维素形成透明复合物,所以可以通过是否产生透明圈来筛选纤维素分解菌。
(×)1.果酒发酵时,装入发酵瓶要留有大约1/3的空间,原因是。
提示为酵母菌大量繁殖提供适量的氧气,防止发酵时汁液溢出2.某同学在通过发酵制作果酒时,发现在制作原料中添加一定量的糖,可以提高酒精度,原因是。