九年级上册数学导学案25.2 用列举法求概率
- 格式:docx
- 大小:110.47 KB
- 文档页数:3
【学习目标】掌握用画树状图法求事件的概率.通过对“应用一般的列举法求概率”的探究,体会获得事件发生的概率的方法,培养分析、判断的能力。
通过分析探究事件的概率,培养学生良好的动脑习惯,提高用数学的意识,激发学习兴趣【学习重点】用列举法求事件的概率【学习难点】选择恰当的方法分析事件的概率学习过程:【课前预习】认真自学课本内容,完成下列问题⑴.用列举法求简单随机事件的概率同时掷两枚完全相同的硬币所产生的可能结果共有 4 结果,它们分别是(正,反),(正,正),(反,正),(反,反),其中两枚全部正面朝上的可能结果只有1种,我们把两枚硬币全部正面朝上记为事件A,则P(A)= 14,其中两枚全部反面朝上记为事件B,则P(B)= 14,其中一枚正面朝上和一枚反面朝上的可能结果有2种,我们把一枚正面朝上和一枚反面朝上记为事件C,则P(C)= 12。
(2)利用概率解决简单问题的步骤①利用列举法,列举出事件所有等可能结果n②利用相关知识对事件A会发生的结果m作出判断③利用公式P(A)= mn,求出相应的概率⑶.当一次实验涉及两个因素或分两步进行时,为了不重不漏掉所有可能的结果,可采用树状图法。
【自学尝试】例1. 九年级(1)班现要从A、B两位男生和D、E两位女生中,选派学生代表本班参加全校“中华好诗词”大赛.(1)如果选派一位学生代表参赛,那么选派到的代表是A的概率是14;(2)如果选派两位学生代表参赛,求恰好选派一男一女两位同学参赛的概率.【分析】(1)由九年级(1)班现要从A、B两位男生和D、E两位女生中,选派学生代表本班参加全校“中华好诗词”大赛,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选派一男一女两位同学参赛的情况,再利用概率公式即可求得答案.解:(1)∵九年级(1)班现要从A、B两位男生和D、E两位女生中,选派学生代表本班参加全校“中华好诗词”大赛,∴如果选派一位学生代表参赛,那么选派到的代表是A的概率是:14;(2)画树状图得:∵共有12种等可能的结果,恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:82123.例2. 把2张形状、大小相同但画面不同的风景图片全部从中间剪断,然后将四张形状相同的小图片混合在一起.现从这四张图片中随机的一次抽出2张.(1)请用列表或画树状图的方法表示出上述实验所有可能结果.(2)求这2张图片恰好组成一张完整风景图概率.【分析】(1)用A、a表示一张风景图片被剪成的两半,用B、b表示另一张风景图片被剪成的两半,然后利用树状图展示所有可能的结果数;(2)找出2张图片恰好组成一张完整风景图的结果数,然后根据概率公式求解.解:(1)用A、a表示一张风景图片被剪成的两半,用B、b表示另一张风景图片被剪成的两半,画树状图为:(2)共有12种等可能的结果数,其中2张图片恰好组成一张完整风景图的结果数为4,所以2张图片恰好组成一张完整风景图的概率=41 123=.总结:当一次试验要涉及3个或更多的因素时,列表法就不方便了,为不重不漏地列出所有可能的结果,通常采用树形图分析.【学习巩固】1. 有一箱子装有3张分别标示4、5、6的号码牌,已知小南以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的二位数为5的倍数的概率为()A.16B.14C.13D.12解:画树状图为:共有6种等可能的结果数,其中组成的二位数为5的倍数的结果数为2,所以组成的二位数为5的倍数的概率=21 63 =.故选C.2. 如图的两个圆盘中均有5个数字,同时旋转两个圆盘,指针落在某一个数上的机会均等,那么两个指针同时落在奇数上的概率是()A.425B.625C.1025D.1925解:画树状图得:∵共有25种等可能的结果,两个指针同时落在奇数上的有4种情况,∴两个指针同时落在奇数上的概率是:425.故选A.3. 有三张正面分别写有数字﹣1,1,2的卡片,它们的材质、大小和背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽取一张,以其正面的数学作为b的值,则满足a2+b2=5的概率为()A.16B.13C.12D.23解:根据题意,画出树状图如下:一共有6种情况,满足a2+b2=5的有:a=1,b=2;a=﹣1,b=2;a=2,b=1;a=2,b=﹣1;共4个,所以,P=42 63 =.故选D.4. 在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是.解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和大于4的有10种情况,∴两次摸出的小球的标号之和大于4的概率是:105168=.5. 一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,则能过第二关的概率是()A.56B.518C.14D.19解:当n=2时,将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷2次,画树状图为:共有36种等可能的结果数,其中2次抛掷所出现的点数之和大于22的结果数为30,所以能过第二关的概率=305 366=.故选A.6. 在“阳光体育”活动时间,甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中丙同学的概率;(2)用画树状图或列表的方法,求恰好选中甲、乙两位同学进行比赛的概率.解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是:13;(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,∴恰好选中甲、乙两人的概率为:21 126=.7. 某城市体育中考项目分为必测项目和选测项目,必测项目为:跳绳、立定跳远;选测项目为50米、实心球、踢毽子三项中任选一项.(1)每位考生将有3种选择方案;(2)用画树状图或列表的方法求小颖和小华将选择同种方案的概率.解:(1)∵必测项目为:跳绳、立定跳远;选测项目为50米、实心球、踢毽子三项中任选一项,∴每位考生将有3种选择方案;(2)画树状图得:∵共有9种等可能的结果,小颖和小华将选择同种方案的有3种情况,∴小颖和小华将选择同种方案的概率为:31.938. 体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.(1)如果从小强开始踢,经过两次踢后,足球踢到了小华处的概率是多少(用树状图表示或列表说明);(2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由.解:(1)如图:∴P(足球踢到小华处)=14(2)应从小明开始踢如图:若从小明开始踢,P(踢到小明处)=21 84同理,若从小强开始踢,P(踢到小明处)=3 8若从小华开始踢,P(踢到小明处)=3 8。
25.2 列举法求概率一、教材分析1、内容分析:《用列举法求概率》是人教版新教材九年级上册第二十五章第二节,本节内容分四课时完成,本次课设计是第一课时的教学。
主要内容是学习用列表法求概率。
2、地位与作用:概率与人们的日常生活密切相关,应用十分广泛。
因此,初中教材增加了这部分内容。
了解和掌握一些概率统计的基本知识,是学生初中毕业后参加实际工作的需要,也是高中进一步学习概率统计的基础,在教材中处于非常重要的位置。
二、学情分析我班学生活泼好动、有一定的自学能力,好奇心、求知欲、表现欲都非常强;在初一,初二学习基础上,他们具有一定的观察能力、分析能力、归纳能力,学习新知识速度快模仿能力强,具备一定的探索知识自主创新的能力,但课后复习巩固的效果较差。
为了加强他们的自学能力,提高课堂学习效率,根据他们的特点,本节课以学生自主探究方式完成学习,选择联系生活中的实际问题,适合学生的习题,由浅入深的引导,注重培养学生的自学能力,通过一定练习,激发学生的求知欲和提高学生的自信心。
三、目标分析【知识与技能目标】(1)理解“包含两步,并且每一步的结果为有限多个情形”的意义。
(2)会用列表的方法求出:包含两步,并且每一步的结果为有限多个情形,这样的试验出现的所有可能结果。
(3)学习用列表法计算概率,并通过比较概率大小作出合理的决策。
【过程与方法目标】(1)经历实验、列表、统计、运算等活动,学生在具体情境中分析事件,计算其发生的概率。
(2)渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。
【情感与态度目标】(1)通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯和提高学生的自学能力。
(2)在解决实际问题中提高他们解决问题的能力,发展学生应用知识的意识。
四、教学重难点【重点】正确地用列表法计算出现结果数目较多时随机事件发生的概率【难点】如何灵活地列表表示出试验所有等可能的结果五、教学过程:25.2 列举法求概率(堂练)一、复习引入:1. 抛掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则向上的一面的点数大于4的概率为___________.2、广州市住宅电话号码是由8位数字组成,某人到电信公司申请安装一部住宅电话,那么该公司配送给这部电话的号码末尾数字为2的概率是 .二、用列举法求事件的概率1.例2、抛掷两枚普通的硬币,求下列事件出现的概率:(1)两枚硬币全部正面朝上; (2)两枚硬币全部反面朝上; (3) 一枚硬币正面朝上,一枚硬币反面朝上;2、练习:袋中有红、绿各一个小球,除颜色外无其他差别,随机摸出1个小球后放回,再随机摸出1个.求下列事件的概率:(1)第一次摸到红球,第二次摸到绿球;(2)两次都摸到相同颜色的小球;(3)两次摸到的球中有一个绿球和一个红球。
25.2 用列举法求概率第1课时1.会用直接列举法计算简单事件的概率.2.会用列表法求概率.3.重点:熟练应用直接列举法和列表法求概率.请你阅读教材本课时“例1、例2”的内容,完成下列问题.知识点一用直接列举法求概率1.抛掷一枚质地均匀的硬币,可能出现的结果有几种?两种,正,反.2.猜想:同时抛掷两枚质地均匀的硬币,可能有哪几种结果?动手试一试.可能的结果有:正正,正反,反正,反反.3.小明说:“抛掷两枚硬币,可能出现的结果有三种,即两正,一反一正,两反。
”你认为他的说法对吗?为什么?不对,如果将两枚硬币分别记为A、B的话,A正、B反与A反、B正是两种不同的结果,所以可能出现的结果应该有四种.4.“同时抛掷两枚质地均匀的硬币”与“先后两次抛掷一枚质地均匀的硬币”这两种试验的所有可能结果一样吗?与同桌一起试一试.这两种试验的所有可能结果一样.【归纳总结】利用直接列举法求概率,关键是要不重不漏地列举出所有可能出现的结果,然后找出事件A包含的结果,最后利用公式P(A)= 求得事件A发生的概率.【预习自测】袋中装有红、黑小球各一个,它们除颜色外无其他差别,随机摸出一个小球后放回,再随机摸出一个,求两次摸到相同颜色小球的概率.摸两次球所有可能出现的结果是:红红、红黑、黑红、黑黑,所以两次摸到相同颜色小球的概率是.知识点二用列表法求概率1.同时投掷两枚质地均匀的骰子,可能出现的结果有36种.2.两枚骰子点数相同的结果有6种,所以概率为.3.两枚骰子点数之和是7的概率是多少?你是怎样计算的?两枚骰子点数之和是7(记作事件D),结果有6种,即(1,6)(2,5)(3,4)(4,3)(5,2)(6,1),所以P(D)=.4.至少有一枚骰子点数是3的概率是.【归纳总结】当一个事件涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表法求概率.【讨论】同时投掷两枚质地均匀的骰子,你能用直接列举的方法写出所有可能出现的结果吗?与列表法比较,说一说列表法的好处.可以用直接列举的方法写出所有可能出现的结果,但结果较多,用直接列举法容易重、漏,而列表法既简洁、美观,又能做到不重不漏。
No.48 课题:25.2用列举法求概率(1)课型:新授课
主编:王晶审核:许爱农验收负责人:赵翠英授课时间:
学习目标:会用直接列举法计算简单事件发生的概率.
重点:用列举法计算简单事件发生的概率.
难点:能正确列举所有可能的结果.
学习过程:
一、预习导学
小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:
(1)牌上的数字为3;(2)牌上的数字为偶数;(3)牌上的数字为大于3且小于6.
解:任抽取一张牌,其出现数字可能为1,2,3,4,5,6,共6种,这6种结果出现的可能性相
等.
(1)P(牌上数字为3)= ;
(2)牌上数字为偶数的结果有3个,即牌上数字为。
所以P(牌上数字为偶数)=。
(3)牌上的数字为大于3且小于6的有两个,即牌上数字为。
所以 P(牌上数字大于3且小于6)=.
简记二、学习研讨
例掷两枚硬币,求下列事件的概率:
(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;
(3)一枚硬币正面朝上,一枚硬币反面朝上.
思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”
这两种试验的所有可能结果一样吗?
练习:
1
(1
(2
(3
三、当堂达标
1.
(2) 它是Q 2.。
25.2用列举法求概率第1课时学习目标:会用列举法求出简单事件的概率。
重、难点:会用列举法求出简单事件的概率。
学习过程:一、学生预习教师导学把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌上,从中任意抽出一张,求下列事件发生的概率:(1)抽出的牌的点数是6;(2)抽出的牌带有人像;(3)抽出的牌的花色是黑桃;(4)抽出的牌的花色是红桃。
二、学生探究教师引领例1、如图是计算机中“扫雷”游戏的画面。
在一个9×9个小方格的正方形雷区中,随机埋藏着10颗地雷,每个小方格最多只能藏一颗地雷。
小王在游戏开始时随机踩中一个方格,踩中后出现如图所示的情况。
我们把与标号3的方格相临的方格记为A区域(画线部分),A区域外的部分记为B区域。
数字3表示A区域有3颗地雷,那么第二步应踩在A区域还是B区域?变式应用:回顾例1,如果小王在游戏开始时踩中的第一个格子上出现了标号1,下一步踩在哪一区域比较安全?例2、掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上;“同时掷两枚硬币”与“先后两次掷一枚硬币”,所得到的结果有变化吗?例3,从长度分别为2、3、4、5的4条线段中任取3条,求构成三角形的概率。
四、学生达标教师测评1、袋子中装有红、绿各一个小球,除颜色外无其它差别,随机摸出1个小球后放回,再随机摸出一个,求下列事件的概率:(1)第一次摸到红球,第二次摸到绿球;(2)两次都摸到相同颜色的小球;(3)两次摸到的球中有一个绿球和一个红球。
2.甲、乙、丙3名医生志愿报名参加新冠肺炎救治工作.(1)随机抽取1名,则恰是甲的概率是;(2)随机抽取2名,求甲在其中的概率。
3、将分别标有数字1、2、3的三张卡片洗匀后,背面朝上放在桌面上。
(1)随机抽取一张,求P(奇数);(2)随机抽取一张作为十位上的数字,记下数字后放回,再抽取一张作为个位上的数字,能组成哪些两位数,这个两位数能被3整除的概率是多少?(2)随机抽取一张作为十位上的数字(不放回去),再抽取一张作为个位上的数字,能组哪些两位数?这个两位数能被3整除的概率是多少?4、一个家庭有三个孩子,若一个孩子是男孩还是女孩的可能性相同。
新人教版九年级数学上册导学案:25.2用列举法求概率(1)【学习目标】1、认识P(A)= nm(在一次试验中有n种可能的结果,其中A包含m种)的意义。
2、会用P(A)=nm解决一些实际问题。
预习导学一知识链接:1、设A是某一随机事件,则P(A)的值是()A、0<P(A)<1;B、0≤P(A)≤1;C、P(A)=1;D、P(A)=02、事件发生的可能性越大,它的概率越接近;反之,事件发生的可能性越小,则它的概率越接近。
思考:一个人随意翻书三次,三次都翻到了偶数页,我们能否说翻到偶数页的可能性就大吗?二、探究新知:1、自主探究:阅读课本P133—P134,先画图探究:自己画一个“扫雷”游戏画面,感知地雷的位置(或上电脑课时,动手玩一下),后完成填空。
(一)、在例1中(1)A区域的方格共有个,标号3表示在这个方格中有个方格各藏颗地雷,因此,踩A区域的任一方格,遇到地雷的概率是。
(2)B区域中共有个小方格,其中有个方格内各藏颗地雷。
因此,踩B区域的任一方格,遇到地雷的概率是。
(3)踩区域遇到地雷的可能性大;踩区域遇到地雷的可能性小。
因而第二步应踩区域。
(二)、在例2中,列表表示掷两枚硬币产生的所有可能结果。
P(A)= , P(B)= , P(C)= .2、探究:列表法有什么优越性?事件 A B C 结果正反正反个数学以致用1、袋子中装有红、黄各一个小球,随机摸出一个,是红球的概率是 。
2、投掷一枚质地均匀的正方体骰子,结果出现数是“3”的概率是( )A 、33.3%;B 、17% ;C 、16.6% ;D 、20%。
3、下列时间概率不是0.5的是( )A 、在1、2、3、4、5、6、7、8、9、10这十个数字中,任取一个数,其值不小于5。
B 、投掷一枚骰子,奇数点朝上;C 、投掷一枚均匀的硬币,正面朝上;D 、袋子中有4个球,其中2个红球、1 个黄球和1 个白球,从中抽出一个是红色的球。
4、从5到9这5 个数中任取一个数,是3的倍数的概率是 。
25.2用列举法求概率(第二课时)【学习目标】(一)知识技能:使学生在具体情境中了解概率的意义,能够运用列表列举法求简单事件发生的概率,并阐明理由。
(二)数学思考:通过对“应用列表法”求概率的方法探究,进一步发展学生抽象概括的能力。
(三)解决问题:1.通过观察列举法的结果是否重复和遗漏,总结列举不重复不遗漏的方法,培养学生观察、归纳、分析问题的能力。
2.通过应用列表法解决实际问题,提高学生解决问题的能力,发展应用意识。
(四)情感态度:引导学生对问题观察、质疑,激发学生的好奇心和求知欲,使学生在运用数学知识解决问题的活动中获得成功的体验,建立学习的自信心。
【学习重点】能够运用列表法计算简单事件发生的概率,并阐明理由。
【学习难点】能够运用列表法计算简单事件发生的概率,并阐明理由。
【学习过程】【情境引入】上节课我们学习了直接列举法求简单事件的概率的方法,你能运用上节课所学知识来解决这个问题吗?出示例3:同时掷两个质地均匀的骰子,计算下列事件的概率:(1) 两个骰子的点数相同;(2) 两个骰子的点数的和是9;(3) 至少有一个骰子的点数为2。
设计意图:通过回顾练习,复习上一节课所学知识。
【自主探究】学生独自思考、解答。
温馨提示: 由于本题用直接列举法解题,所列内容较多,一定要注意列举的内容无遗漏无重复。
设计意图:通过对较为复杂的概率问题的探索,激发学生找到新解法的学习欲望。
【合作探究】这道题涉及到掷两个骰子并且可能出现的结果数目较多,列举时容易出现重复和遗漏,为了避免这点,你有没有好的方法?学生讨论,可能会得出给两个骰子分别编号的结论,还可能会得出按一定的顺序列举会避免重复、遗漏的方法。
教师适当点拨:为了解题规范,我们可以用列表法来解决这个问题。
教师示范,学生用列表的方法来重新解决问题。
指导学生体会列表法对列举所有结果所起的作用,总结并解答。
设计意图:通过学生合作探究,教师的适当点拨,指导学生体会列表法对列举所有结果所起的作用,体会列表法求概率的优点和应用条件。
用列举法求概率课题:25.2 用列举法求概率(2)序号学习目标:1、知识和技能:会用列举法求简单随机事件的概率。
2、过程和方法:通过对简单随机事件的模拟实验,体会当随机事件的试验结果比较少时,用列举法求解的简洁性。
3、情感、态度、价值观:通过应用列表法解决实际问题,提高自我解决问题的能力,发展应用意识。
学习重点:用列举法求概率。
学习难点:用列举法求概率时,列举结果不重不漏。
导学过程一、课前预习:①掷一枚质地均匀的硬币,有几种可能的结果?②先后掷两枚硬币,又有几种可能的结果呢?结果是由几个因素确定的?③“先后掷两枚硬币”与“同时掷两枚硬币”,这两种试验的所有可能结果一样吗?二、课堂导学:1、导入:刚学完概率的定义,小明和小军在解答:求掷俩玫硬币,全部正面朝上的概率,意见出现了分歧,你能帮他们做出判断吗?出示任务、自主学习:会用列举法求简单随机事件的概率。
3、合作探究:阅读教材P134,回答下列问题:(1)为什么列举掷俩枚硬币出现的结果有四种呢?(2)正反”与“反正”为什么是两种不同的结果?(3)“两枚硬币至少有一枚正面朝上”的概率是多少?为什么?(4)上述问题中影响事件发生可能性的因素有几个?每个因素可能出现的结果有几个?(5)用什么样的办法才能不重不漏的列举出所有可能出现的结果?三、展示反馈1,完成教材134页练习2.2.完成《问题与导学》122——123“自主测评”1——3,“基础反思”1、2.四、学习小结:1.本节课你学到了什么?有什么收获?2.你有什么疑惑的地方吗?五、达标检测:完成《问题与导学》122——123“展题设计”1、2.“能力提升”3、4.课后作业: .必做题: 138页2、4板书设计:25.2用列举法求概率(2)例2小结课后反思:在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
所以在学习上级的精神下,本期个人的研修经历如下:1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。
新人教版九年级数学上册导学案:25.2用列举法求概率(2)【学习目标】1、进一步认识“例举法”的条件和解题方法,并灵活应用它解决一些实际问题。
2、进一步认识有限等可能性事件概率的意义。
3、会用树形图求出一次试验中涉及2个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率。
预习导学一 知识链接:1、在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一球,两次都摸到黑球的概率是( ) A.41 B.31C.21 D.32 2、计算概率的两个前提条件是:一次试验中,可能出现的结果 多个;各种结果发生的可能性 .3、如何计算概率? 一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为 二、探究新知:自主探究:阅读课本P134—P137。
一、在例3中;先作图探究:自己画一个坐标系,感知坐标的唯一性。
1、同时投掷两个骰子,可能出现的结果有 。
2、满足两个骰子点数相同的结果有 。
3、满足两个骰子点数和为9的结果有 。
4、满足至少有一个骰子点数为2的结果有 。
二、在例4中;1、可能出现的结果有 个。
2、只有1个元音字母的结果有 个。
3、只有2个元音字母的结果有 个。
4、全部是元音字母的结果有 个。
探究:一次试验要涉及2个因素时,为什么要采用列表法?一次试验要涉及3个因素时,为什么要采用树形图?【温馨提示】1、结合实际引入本节知识2、一次试验要涉及2个或3个因素时。
哪些是元音字母?学以致用1、一次抛掷三枚质地均匀的硬币,求下列问题的概率:(1)正好一个正面朝上的概率是 ;(2)正好两个正面朝上的概率是 ;(3)至少一个正面朝上的概率是 。
2、将一枚质地均匀的硬币掷两次,正好两次都是正面朝上的概率是 ;3、均匀的正四面体标有1、2、3、4四个数字,同时抛掷两个这样的正四面体,它们着地的一面数字相同的概率是 。
25.2 用列举法求概率
1. 会用列表法求出简单事件的概率.
2. 会用树状图法求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率.
重点:运用列表法或树状图法计算简单事件的概率. 难点:用树状图法求出所有可能的结果.
一、自学指导.(10分钟) 自学:阅读教材P 136~139.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)
1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?
解:两种结果:白球、黄球.
2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?
解:三种结果:两白球、一白一黄两球、两黄球. 3.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,两个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是__1
6
__.
4.同时抛掷两枚正方体骰子,所得点数之和为7的概率是__1
6
__.
点拨精讲:这里2,3,4题均为两次试验(或一次两项),可直接采用树状图法或列表法.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)
1.同时掷两个质地均匀的骰子,计算下列事件的概率:
(1)两个骰子的点数相同; (2)两个骰子点数的和是9; (3)至少有一个骰子的点数为2.
讨论:(1)上述问题中一次试验涉及到几个因素?你是用什么方法不重不漏地列出了所有可能的结果,从而解决了上述问题?
(2)能找到一种将所有可能的结果不重不漏地列举出来的方法吗?(介绍列表法求概率,让学生重新利用此法做上题).
(3)如果把上例中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?
点拨精讲:当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列表法. 列表法是将两个步骤分别列在表头中,所有可能性写在表格中,再把组合情况填在表内各空格中.
2.甲口袋中装有2个相同的小球,他们分别写有A 和B ;乙口袋中装有3个相同的小球,分别写有C ,D 和E ;丙口袋中装有2个相同的小球,他们分别写有H 和I .从3个口袋中各随机取出1个小球.
(1)取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少?
(2)取出3个小球上全是辅音字母的概率是多少?
点拨:A ,E ,I 是元音字母;B ,C ,D ,H 是辅音字母.
分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?打算用什么方法求得?
点拨精讲:第一步可能产生的结果会是什么?——(A 和B ),两者出现的可能性相同吗?分不分先后?写在第一行.
第二步可能产生的结果是什么?——(C ,D 和E ),三者出现的可能性相同吗?分不分先后?从A 和B 分别画出三个分支,在分支下的第二行分别写上C ,D 和E .
第三步可能产生的结果有几个?——是什么?——(H 和I ),两者出现的可能性相同吗?分不分先后?从C ,D 和E 分别画出两个分支,在分支下的第三行分别写上H 和I .
(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数.再找出符合要求的种数,就可计算概率了.
合作完成树状图.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.将一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”(提示:只有红色和蓝色可配成紫色)的概率是__1
18
__.
2.抛掷两枚普通的骰子,出现数字之积为奇数的概率是__1
4__,出现数字之积为偶数的
概率是__3
4
__.
3.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒中随机的取出一个球,求下列事件的概率:
(1)取出的两个球都是黄球;
(2)取出的两个球中有一个白球一个黄球. 解:16;12
.
4.在六张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?
解:718
.
点拨精讲:这里第4题中如果抽取一张后不放回,则第二次的结果不再是6,而是5. 5.小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?
解:P(积为奇数)=13,P(积为偶数)=2
3
.
13×2=1×2
3
.∴这个游戏对双方公平. 学生总结本堂课的收获与困惑.(2分钟)
1. 一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能的结果. 2.注意第二次放回与不放回的区别.
3.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.
学习至此,请使用本课时对应训练部分.(10分钟)。