二项分布概念及图表和查表方法
- 格式:doc
- 大小:417.00 KB
- 文档页数:15
医学统计学二项分布课件xx年xx月xx日•二项分布概述•二项分布数学模型•二项分布的参数估计•二项分布与其它分布的关系目•二项分布的应用实例•二项分布在SPSS和R语言中的应用录01二项分布概述二项分布是一种离散概率分布,描述了在n次独立的是/非试验中成功的次数的概率分布。
其中,每次试验的成功概率为p,失败概率为1-p。
定义B(n, p) = C(n, k) * p^k * (1-p)^(n-k)公式二项分布的定义二项分布的特点二项分布在n次独立的是/非试验中成功的次数。
二项分布的随机变量取值为0,1,2,…,n。
在n次独立的是/非试验中,每次试验的成功概率为p,失败概率为1-p。
描述病情变化在医学领域中,病情变化是一个二项分布的过程。
病情可能变好也可能变坏,每次试验可以看作是医生对病情的观察和评估。
临床试验设计在临床试验中,通常将二项分布应用于设计试验方案和分析数据。
例如,在随机对照试验中,将患者随机分为试验组和对照组,比较两组的有效率或成功率等指标。
诊断和预后在医学诊断和预后评估中,通常将二项分布应用于计算概率和可信区间。
例如,计算某疾病的发病率、某检查手段的阳性率等指标。
二项分布在医学统计学中的应用02二项分布数学模型二项分布概率函数公式:$P(X=k) = C(n, k) p^k (1-p)^{n-k}$其中 $C(n, k)$ 表示组合数,$p$ 表示每次试验成功的概率,$n$ 表示试验次数二项分布概率函数二项分布的均值$E(X) = np$二项分布的方差$D(X) = np(1-p)$二项分布的均值和方差二项分布曲线是一个钟形曲线随着 $n$ 的增大,曲线越来越接近正态分布曲线二项分布曲线的形状03二项分布的参数估计样本大小的选择确定样本量医学研究中,样本量的选择是至关重要的。
通常根据研究目的、研究因素的数量和研究因素的水平数来决定样本量。
考虑变异性和研究因素在选择样本量时,需要考虑研究因素的变异性和水平数。
目录1 定义▪统计学定义▪医学定义2 概念3 性质4 图形特点5 应用条件6 应用实例定义统计学定义在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。
这样的单次成功/失败试验又称为伯努利试验。
实际上,当时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。
医学定义在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。
二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。
考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。
如果进行次伯努利试验,取得成功次数为的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X)二项分布公式式中的n为独立的伯努利试验次数,π为成功的概率,(1-π)为失败的概率,X为在n次伯努里试验中出现成功的次数,表示在n次试验中出现X的各种组合情况,在此称为二项系数(binomial coefficient)。
所以的含义为:含量为n的样本中,恰好有X例阳性数的概率。
概念二项分布(Binomial Distribution),即重复n次的伯努利试验(Bernoulli Experiment),用ξ表示随机试验的结果。
二项分布公式如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。
二项分布概念及图表和查表方法二项分布是概率论中常用的一种离散概率分布,它描述了在一系列独立重复的伯努利试验中,成功次数的概率分布。
本文将介绍二项分布的概念,讨论相关的图表和查表方法。
一、二项分布概念在概率论中,二项分布可用于描述以下类型的实验:进行一系列相互独立的伯努利试验,每次试验只有两种可能结果,成功或失败。
其中,每次试验的成功概率为p,失败概率为1-p。
试验次数为n,成功次数为k。
X表示成功次数的随机变量,二项分布概率质量函数可表达为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)二、图表方法为了更好地理解二项分布的特性,我们可以通过图表的方式来呈现相关的概率分布。
一种常见的图表是概率质量函数图(PMF)和累积分布函数图(CDF)。
概率质量函数图显示了每个可能成功次数的概率,即P(X=k)。
我们可以在横轴上绘制成功次数k,在纵轴上绘制概率P(X=k),通过连接各点得到离散的概率质量函数曲线。
累积分布函数图显示了成功次数少于或等于某个值k的概率,即P(X≤k)。
我们可以在横轴上绘制成功次数k,在纵轴上绘制概率P(X≤k),通过连接各点得到逐渐上升的累积分布函数曲线。
三、查表方法对于较大的试验次数n和成功次数k,计算二项分布的概率可能会比较困难。
因此,我们可以利用预先计算好的二项分布查表来快速获取相关概率值。
二项分布查表通常以n和p为参数展示。
表中的数值代表了在不同的n和p值下,对应的概率P(X≤k)或P(X=k)。
用户只需找到相应n和p的表格,并定位到对应的k值,即可得到所需的概率值。
当使用查表方法时,需要注意试验次数n和成功概率p必须与所用表格相对应。
此外,不同的表格可能提供不同的信息,可以根据需要选择适合的表格。
综上所述,本文介绍了二项分布的概念以及相关的图表和查表方法。
了解二项分布的概率分布特性,并熟悉图表和查表方法,将有助于我们在实际问题中的概率计算和决策分析中的应用。
二项分布知识点对于很多人来说,二项分布可能是一个比较陌生的概念。
但实际上,它是概率论中非常重要的一种概率分布,常常被应用于实际问题的解决中。
一、二项分布的定义二项分布(Binomial distribution)是一种离散型概率分布,它描述的是独立重复试验中成功次数的概率分布。
其中,“独立”指的是每次试验不会受到前一次试验结果的影响,“重复”指的是试验可以进行多次,“成功”指的是每次试验成功的概率。
二项分布的数学表达式为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,P(X=k)表示成功的次数为k的概率,n表示试验次数,p 表示每次试验成功的概率,C(n,k)表示从n次试验中选取k次成功的组合数。
二、二项分布的性质1. 期望值与方差二项分布的期望值与方差分别为:E(X) = npVar(X) = np(1-p)其中,n表示试验次数,p表示每次试验成功的概率。
2. 大数定理大数定理是概率论中的一条基本定理,用于描述随机事件的平均值会随着实验次数的增加而趋于稳定。
在二项分布中,当试验次数n越大,成功概率p越小时,二项分布越趋近于正态分布。
3. 中心极限定理中心极限定理是概率论中的另一条重要定理,用于描述当随机事件独立重复多次时,这些事件的和的分布趋近于正态分布。
在二项分布中,当试验次数n越大时,二项分布的形状趋近于正态分布。
三、二项分布的应用二项分布常常应用于实际生活中的问题中,例如:1. 产品合格率问题假设一个工厂制造的产品合格率为90%,每生产100个产品取样检验,成功率不变,求生产的100个产品中至少有95%产品合格的概率。
解:由于每个产品是否合格是一个二项分布,因此可以使用二项分布来求解。
令X为合格的数量,n=100,p=0.9,由于要求至少95%的合格率,因此可以计算X≥95的概率:P(X≥95) = 1 - P(X<95) = 1 - Σ i=0…94 (100 i) * 0.9^i * 0.1^(100-i) ≈ 0.021因此,生产的100个产品中至少有95%产品合格的概率为2.1%左右。
二项分布的定义和公式二项分布的定义和基本特征二项分布(Binomial Distribution)是概率论中一种常见的离散型概率分布,它描述了在n次独立重复试验中,成功事件发生的次数X的概率分布。
在二项分布中,每次试验只有两种结果,一种为成功(Success),概率为p;另一种为失败(Failure),概率为1-p。
试验独立重复进行n 次,其中成功事件发生的次数X就是我们关心的随机变量。
P(X=k)=C(n,k)*p^k*(1-p)^(n-k)其中,C(n,k)表示从n次试验中成功发生k次的组合数,计算方式为C(n,k)=n!/(k!*(n-k)!),n!表示n的阶乘。
1. 期望值:二项分布的期望值E(X)等于n乘以成功事件发生的概率p,即E(X) = np。
期望值表示了试验重复进行n次时,成功事件发生的平均次数。
2. 方差:二项分布的方差Var(X)等于n乘以成功事件发生的概率p乘以失败事件发生的概率1-p,即Var(X) = np(1-p)。
方差表示了试验重复进行n次时,成功事件发生次数的离散程度。
3. 归一性:二项分布是归一概率分布,即所有可能的取值k的概率之和等于1,即∑(k=0 to n) P(X=k) = 14.对称性:在二项分布中,如果成功事件的概率p等于失败事件的概率1-p,即p=1-p,那么二项分布具有对称性。
5.可加性:两个相互独立的二项分布的和仍然是二项分布。
也就是说,如果X1和X2分别是n1和n2次独立重复试验中成功事件发生的次数,那么X1+X2也是n1+n2次独立重复试验中成功事件发生的次数,且满足参数p1=p2=p。
6. 正态近似性:当试验次数n很大,且成功事件发生的概率p不接近0或1时,二项分布可以近似为正态分布。
这是由于中心极限定理的推论。
近似后的正态分布的均值和方差分别为μ = np,σ^2 = np(1-p)。
总之,二项分布广泛应用于概率统计的许多实际问题中,如抽样调查、质量控制、假设检验等。
二项分布概念
二项分布是一种具有广泛用途的离散型随机变量的概率分布。
它是由贝努里始创的,所以又叫贝努里分布。
二项分布是指统计变量中只有性质不同的两项群体的概率分布。
所谓两项群体是按两种不同性质划分的统计变量,是二项试验的结果。
即各个变量都可归为两个不同性质中的一个,两个观测值是对立的。
因而两项分布又可说是两个对立事件的概率分布。
二项分布的性质:
二项分布是离散型分布,概率直方图是跃阶式的。
因为x为不连续变量,用概率条图表示更合适,用直方图表示只是为了更形象些。
1、当p=q时图形是对称的
例2 (p + q)6,p=q=1/2,各项的概率可写作:
p6 + 6p5q + 15p4q2 + 20p3q3 + 15p2q4 + 6plq5 + q6
= 1/64+6/64+15/64+20/64+15/64+6/64+1/64
= 1
2、当p≠q时,直方图呈偏态,p<q与p>q的偏斜方向相反。
如果n很大,即使p≠q,偏态逐渐降低,最终成正态分布,二项分布的极限分布为正态分布。
故当n很大时,二项分布的概率可用正态分布的概率作为近
似值。
何谓n很大呢?一般规定:当p<q且np≥5,或p>q且nq ≥5,这时的n就被认为很大,可以用正态分布的概率作为近似值了。
统计学复习要点-医学总体率的估计(二项分布):(1)查表法:当样本含量n ≤50,特别是p 很接近于0或1时,按二项分布原理估计总体率的可信区间,可根据样本含量n 和阳性例数X 乾地查表查出总体率的可信区间。
(2)近态近似法:当样本含量n 足够大,且np>5且n(1-p)>5,样本率p 的抽样分布近似正态分布,总体率的可信区间),(2/2/p p S u p S up αα+-已知:n=,p= =-=np p s p )1( np=?>5 n(1-p)=?>5总体率的可信区间)96.1,96.1(pp S p S p +- 实际准备的药物:求出的上下限分别乘以总n 。
正态分布、二项式和泊松分布的关系:二项分布(binomial distribution ):对只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。
Poisson 分布是在π很小,样本含量n 趋于无穷大时,二项分布的极限形式。
当v=∞时,t 分布即为u 分布,趋向正态分布。
正态分布的特征:正态曲线在横轴上方均数处最高;以均数为中心,左右对称;正态分布有两个参数,即均数μ(位置参数)和标准差σ(形状参数),μ越大,曲线沿横轴越向右移动;σ越大,曲张越平阔;正态分布在±1σ处各有个拐点;正态曲线下的面积分布有一定的规律。
t 分布的特征:以0为中心,左右两侧对称的单峰型分布;t 分布曲线的变化与自由度的大小有关,自由度v 越小,则t 值越分散,曲线越低平;自由度v 逐渐增大时,则t 分布逐渐逼近正态分布。
当v=∞时,t 分布即为u 分布。
X s X t/)(μ-= n s s X /= 标准正态分布(u 分布)与t 分布有何异同?答:相同点:t 分布和标准正态分布(u 分布)都是以0为中心的正态分布。
标准正态分布是t 分布的特例(自由度是无限大时)。
不同点:t 分布为抽样分布,u 分布为理论分布;t 分布比标准正态分布的峰值低,且尾部翘得更高;t 分布受自由度大小的影响,随着自由度的增大,逐渐趋近于标准正态分布;t 分布有无数条曲线,而u 分布只有唯一一条曲线。
目录1 定义▪统计学定义▪医学定义2 概念3 性质4 图形特点5 应用条件6 应用实例定义统计学定义在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。
这样的单次成功/失败试验又称为伯努利试验。
实际上,当时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。
医学定义在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。
二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。
考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。
如果进行次伯努利试验,取得成功次数为的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X)二项分布公式式中的n为独立的伯努利试验次数,π为成功的概率,(1-π)为失败的概率,X为在n次伯努里试验中出现成功的次数,表示在n次试验中出现X的各种组合情况,在此称为二项系数(binomial coefficient)。
所以的含义为:含量为n的样本中,恰好有X例阳性数的概率。
概念二项分布(Binomial Distribution),即重复n次的伯努利试验(Bernoulli Experiment),用ξ表示随机试验的结果。
二项分布公式如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。
目录1 定义▪统计学定义▪医学定义2 概念3 性质4 图形特点5 应用条件6 应用实例定义统计学定义在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。
这样的单次成功/失败试验又称为伯努利试验。
实际上,当时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。
医学定义在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。
二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。
考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。
如果进行次伯努利试验,取得成功次数为的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X)二项分布公式式中的n为独立的伯努利试验次数,π为成功的概率,(1-π)为失败的概率,X为在n次伯努里试验中出现成功的次数,表示在n次试验中出现X的各种组合情况,在此称为二项系数(binomial coefficient)。
所以的含义为:含量为n的样本中,恰好有X例阳性数的概率。
概念二项分布(Binomial Distribution),即重复n次的伯努利试验(Bernoulli Experiment),用ξ表示随机试验的结果。
二项分布公式如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。
那么就说这个属于二项分布。
其中P称为成功概率。
记作ξ~B(n,p)期望:Eξ=np;方差:Dξ=npq;其中q=1-p证明:由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。
因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和。
设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n).因X(k)相互独立,所以期望:方差:证毕。
如果1.在每次试验中只有两种可能的结果,而且是互相对立的;2.每次实验是独立的,与其它各次试验结果无关;3.结果事件发生的概率在整个系列试验中保持不变,则这一系列试验称为伯努利实验。
在这试验中,事件发生的次数为一随机事件,它服从二次分布。
二项分布可二项分布以用于可靠性试验。
可靠性试验常常是投入n个相同的式样进行试验T小时,而只允许k个式样失败,应用二项分布可以得到通过试验的概率。
若某事件概率为p,现重复试验n次,该事件发生k次的概率为:P=C(n,k)×p^k×(1-p)^(n-k)。
C(n,k)表示组合数,即从n个事物中拿出k个的方法数。
性质(一)二项分布是离散型分布,概率直方图是跃阶式的。
因为x为不连续变量,用概率条图表示更合适,用直方图表示只是为了更形象些。
1.当p=q时图形是对称的例如,,p=q=1/2,各项的概率可写作:2.当p≠q时,直方图呈偏态,p<q与p>q的偏斜方向相反。
如果n很大,即使p≠q,偏态逐渐降低,最终成正态分布,二项分布的极限分布为正态分布。
故当n很大时,二项分布的概率可用正态分布的概率作为近似值。
何谓n很大呢?一般规定:当p<q且np≥5,或p>q且nq≥5,这时的n就被认为很大,可以用正态分布的概率作为近似值了。
(二)二项分布的平均数与标准差如果二项分布满足p<q,np≥5,(或p>q,np≥5)时,二项分布接近正态分布。
这时,也仅仅在这时,二项分布的x变量(即成功的次数)具有如下性质:即x变量具有μ =np,的正态分布。
式中n为独立试验的次数,p为成功事件的概率,q=1- p。
由于n很大时二项分布逼近正态分布,其平均数,标准差是根据理论推导而来的,故用μ和σ而不用X和S表示。
它们的含意是指在二项试验中,成功的次数的平均数μ =np,成功次数的分散程。
例如一个掷10枚硬币的试验,出现正面向上的平均次数为5次(μ= np=),正面向上的散布程度为√10×(1/2)×(1/2)= 1.58(次),这是根据理论的计算,而在实际试验中,有的人可得10个正面向上,有人得9个、8个……,人数越多,正面向上的平均数越接近5,分散程度越接近1.58。
图形特点(1)当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值;(2)当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。
注:[x]为不超过x的最大整数。
应用条件1.各观察单位只能具有相互对立的一种结果,如阳性或阴性,生存或死亡等,属于两分类资料。
2.已知发生某一结果(阳性)的概率为π,其对立结果的概率为1-π,实际工作中要求π是从大量观察中获得比较稳定的数值。
二项分布公式3.n次试验在相同条件下进行,且各个观察单位的观察结果相互独立,即每个观察单位的观察结果不会影响到其他观察单位的结果。
如要求疾病无传染性、无家族性等。
应用实例二项分布在心理与教育研究中,主要用于解决含有机遇性质的问题。
所谓机遇问题,即指在实验或调查中,实验结果可能是由猜测而造成的。
比如,选择题目的回答,划对划错,可能完全由猜测造成。
凡此类问题,欲区分由猜测而造成的结果与真实的结果之间的界限,就要应用二项分布来解决。
下面给出一个例子。
已知有正误题10题,问答题者答对几题才能认为他是真会,或者说答对几题,才能认为不是出于猜测因素?分析:此题,即猜对猜错的概率各为0.5。
,故此二项分布接近正态分布:根据正态分布概率,当Z=1.645时,该点以下包含了全体的95%。
如果用原分数表示,则为它的意义是,完全凭猜测,10题中猜对8题以下的可能性为95%,猜对8、9、10题的概率只5%。
因此可以推论说,答对8题以上者不是凭猜测,而是会答。
但应该明确:作此结论,也仍然有犯错误的可能,即那些完全靠猜测的人也有5%的可能性答对8、9、10道题。
此题的概率值,还可用二项分布函数直接计算,亦得与正态分布近似的结果:b(8 10 0.5)=10*9/2*0.58*0.52 = 45/1024b(9 10 0.5)=10*0.59*0.51 = 10/1024b(10 10 0.5) = 1/1024根据概率加法,答对8题及其以上的总概率为:45/1024+10/1024+1/1024=56/1024 = 0.0547 同理,可计算8题以下的概率为95%。
(近似)附表 1 二项分布表P {Xx } ⎛ n ⎛ p k(1 p )nkkk 0 ⎛k ⎛nx p0.001 0.002 0.003 0.005 0.010.020.030.050.100.150.200.250.302 0 0.9980 0.9960 0.9940 0.9900 0.9801 0.9604 0.9409 0.9025 0.8100 0.7225 0.6400 0.5625 0.4900 2 1 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9991 0.9975 0.9900 0.9775 0.9600 0.9375 0.91003 0 0.9970 0.9940 0.9910 0.9851 0.9703 0.9412 0.9127 0.8574 0.7290 0.6141 0.5120 0.4219 0.3430 3 1 1.00001.0000 1.0000 0.9999 0.9997 0.9988 0.9974 0.9928 0.9720 0.9393 0.8960 0.8438 0.78403 21.0000 1.0000 1.0000 1.0000 0.9999 0.9990 0.9966 0.9920 0.9844 0.97304 0 0.9960 0.9920 0.9881 0.9801 0.9606 0.9224 0.8853 0.8145 0.6561 0.5220 0.4096 0.3164 0.24014 1 1.00001.0000 0.99990.9999 0.9994 0.9977 0.9948 0.9860 0.9477 0.8905 0.8192 0.7383 0.65174 2 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9963 0.9880 0.9728 0.9492 0.9163 4 31.0000 1.0000 0.9999 0.9995 0.9984 0.9961 0.99195 0 0.9950 0.9900 0.9851 0.9752 0.9510 0.9039 0.8587 0.7738 0.5905 0.4437 0.3277 0.2373 0.16815 1 1.00001.0000 0.99990.9998 0.9990 0.9962 0.9915 0.9774 0.9185 0.8352 0.7373 0.6328 0.5282x查表方法:本表对于n、p、x给出二项分布函数P(x;n,p)的数值。
例:对于n=11,p=0.02和x=0,P(x;n,p)=0.8007。